Universitext Forothertitlesinthisseries,goto www.springer.com/series/223 · Anton Deitmar Siegfried Echterhoff Principles of Harmonic Analysis 123 AntonDeitmar SiegfriedEchterhoff UniversitätTübingen UniversitätMünster Inst.Mathematik MathematischesInstitut AufderMorgenstelle10 Einsteinstr.62 72076Tübingen 48149Münster Germany Germany [email protected] [email protected] Editorialboard: SheldonAxler,SanFranciscoStateUniversity,SanFrancisco,CA,USA VincenzoCapasso,UniversityofMilan,Milan,Italy CarlesCasacuberta,UniversitatdeBarcelona,Barcelona,Spain AngusMacIntyre,QueenMary,UniversityofLondon,London,UK KennethRibet,UniversityofCalifornia,Berkeley,CA,USA ClaudeSabbah,EcolePolytechnique,Palaiseau,France EndreSüli,OxfordUniversity,Oxford,UK WojborWoyczynski,CaseWesternReserveUniversity,Cleveland,OH,USA ISBN:978-0-387-85468-7 e-ISBN:978-0-387-85469-4 DOI:10.1007/978-0-387-85469-4 LibraryofCongressControlNumber:2008938333 MathematicsSubjectClassification(2000):43-01,42-01,22Bxx (cid:1)c SpringerScience+BusinessMedia,LLC2009 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork, NY 10013, USA), except for brief excerpts inconnection with reviews orscholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. Printedonacid-freepaper springer.com Preface The tread of this book is formed by two fundamental principles of Harmonic Analysis: the Plancherel Formula and the Poisson Sum- mation Formula. We first prove both for locally compact abelian groups. For non-abelian groups we discuss the Plancherel Theorem in the general situation for Type I groups. The generalization of the Poisson Summation Formula to non-abelian groups is the Sel- berg Trace Formula, which we prove for arbitrary groups admitting uniform lattices. As examples for the application of the Trace For- mula we treat the Heisenberg group and the group SL (R). In the 2 former case the trace formula yields a decomposition of the L2-space of the Heisenberg group modulo a lattice. In the case SL (R), the 2 trace formula is used to derive results like the Weil asymptotic law for hyperbolic surfaces and to provide the analytic continuation of the Selberg zeta function. We finally include a chapter on the appli- cations of abstract Harmonic Analysis on the theory of wavelets. The present book is a text book for a graduate course on abstract harmonic analysis and its applications. The book can be used as a follow up of the First Course in Harmonic Analysis, [9], or indepen- dently, if the students have required a modest knowledge of Fourier Analysis already. In this book, among other things, proofs are given of Pontryagin Duality and the Plancherel Theorem for LCA-groups, which were mentioned but not proved in [9]. Using Pontryagin du- ality, we also obtain various structure theorems for locally compact abelian groups. Knowledge of set theoretic topology, Lebesgue integration, and func- tional analysis on an introductory level will be required in the body of the book. For the convenience of the reader we have included all necessary ingredients from these areas in the appendices. v Acknowledgments The authors thank the following people for corrections and com- ments on the book: Ralf Beckmann, Wolfgang Bertram, Alexander Schmidt, Dana Williams. Chapters 3 and 4 are partly based on written notes of a course given by Professor Eberhard Kaniuth on duality theory for abelian locally compact groups. The authors are grateful to Professor Kaniuth for allowing us to use this material. vii Chapter Dependency 1 2 (cid:2)(cid:1) (cid:2)(cid:2)(cid:2)(cid:1)(cid:2)(cid:1)(cid:2)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) (cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3) (cid:2) (cid:1)(cid:1) (cid:3)(cid:3)(cid:3) (cid:4)(cid:4) (cid:2) (cid:2) (cid:2) 3,4 5 (cid:2)(cid:2)(cid:2) (cid:3)(cid:3)(cid:3) (cid:2) (cid:3) (cid:2)(cid:2) (cid:3)(cid:3)(cid:3) (cid:2)(cid:2) (cid:3)(cid:3)(cid:3) 6 (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3)(cid:3)(cid:3) (cid:4)(cid:4) (cid:1)(cid:1) 7 8 9 (cid:1) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3)(cid:3)(cid:3) (cid:1)(cid:1) (cid:3)(cid:3)(cid:3) (cid:1)(cid:1) 12 11 10 Notation We write N = {1,2,3,...} for the set of natural numbers. The sets of integer, real, and complex numbers are denoted as Z, R, C. For a set A we write 1 for the characteristic function of A, i.e., 1 (x) A A is 1 if x ∈ A and zero otherwise. The Kronecker-delta function is defined to be (cid:1) 1 if i = j, δ d=ef i,j 0 otherwise. The word positive will always mean ≥ 0. For > 0, we use the words strictly positive. ix Contents 1 Haar Integration 1 1.1 Topological Groups . . . . . . . . . . . . . . . . . . . . 1 1.2 Locally Compact Groups. . . . . . . . . . . . . . . . . 6 1.3 Haar Measure . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 The Modular Function . . . . . . . . . . . . . . . . . . 17 1.5 The Quotient Integral Formula . . . . . . . . . . . . . 21 1.6 Convolution . . . . . . . . . . . . . . . . . . . . . . . . 25 1.7 The Fourier Transform . . . . . . . . . . . . . . . . . . 29 1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 Banach Algebras 33 2.1 Banach Algebras . . . . . . . . . . . . . . . . . . . . . 33 2.2 The Spectrum σA(a) . . . . . . . . . . . . . . . . . . . 37 2.3 Adjoining a Unit . . . . . . . . . . . . . . . . . . . . . 41 2.4 The Gelfand Map . . . . . . . . . . . . . . . . . . . . . 43 2.5 Maximal Ideals . . . . . . . . . . . . . . . . . . . . . . 47 2.6 The Gelfand-Naimark Theorem . . . . . . . . . . . . . 49 2.7 The Continuous Functional Calculus . . . . . . . . . . 54 2.8 Exercises and Notes . . . . . . . . . . . . . . . . . . . 58 3 Duality for Abelian Groups 63 xi xii CONTENTS 3.1 The Dual Group . . . . . . . . . . . . . . . . . . . . . 63 3.2 The Fourier Transform . . . . . . . . . . . . . . . . . . 67 3.3 The C∗-Algebra of an LCA-Group . . . . . . . . . . . 69 3.4 The Plancherel Theorem . . . . . . . . . . . . . . . . . 72 3.5 Pontryagin Duality . . . . . . . . . . . . . . . . . . . . 78 3.6 The Poisson Summation Formula . . . . . . . . . . . . 83 3.7 Exercises and Notes . . . . . . . . . . . . . . . . . . . 86 4 The Structure of LCA-Groups 91 4.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . 91 4.2 The Structure Theorems . . . . . . . . . . . . . . . . . 95 4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 107 5 Operators on Hilbert Spaces 109 5.1 Functional Calculus . . . . . . . . . . . . . . . . . . . 109 5.2 Compact Operators . . . . . . . . . . . . . . . . . . . 115 5.3 Hilbert-Schmidt and Trace Class . . . . . . . . . . . . 119 5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Representations 127 6.1 Schur’s Lemma . . . . . . . . . . . . . . . . . . . . . . 127 6.2 Representations of L1(G) . . . . . . . . . . . . . . . . 131 6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 135 7 Compact Groups 139 7.1 Finite Dimensional Representations . . . . . . . . . . . 139 7.2 The Peter-Weyl Theorem . . . . . . . . . . . . . . . . 141 7.3 Isotypes . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.4 Induced Representations . . . . . . . . . . . . . . . . . 148 CONTENTS xiii 7.5 Representations of SU(2) . . . . . . . . . . . . . . . . 150 7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 156 8 Direct Integrals 159 8.1 Von Neumann Algebras . . . . . . . . . . . . . . . . . 159 8.2 Weak and Strong Topologies . . . . . . . . . . . . . . 160 8.3 Representations . . . . . . . . . . . . . . . . . . . . . . 162 8.4 Hilbert Integrals . . . . . . . . . . . . . . . . . . . . . 165 8.5 The Plancherel Theorem . . . . . . . . . . . . . . . . . 167 8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 169 9 The Selberg Trace Formula 171 9.1 Cocompact Groups and Lattices . . . . . . . . . . . . 171 9.2 Discreteness of the Spectrum . . . . . . . . . . . . . . 174 9.3 The Trace Formula . . . . . . . . . . . . . . . . . . . . 179 9.4 Locally Constant Functions . . . . . . . . . . . . . . . 185 9.5 Exercises and Notes . . . . . . . . . . . . . . . . . . . 186 10 The Heisenberg Group 189 10.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 189 10.2 The Unitary Dual . . . . . . . . . . . . . . . . . . . . 190 10.3 The Plancherel Theorem for H . . . . . . . . . . . . . 195 10.4 The Standard Lattice . . . . . . . . . . . . . . . . . . 196 10.5 Exercises and Notes . . . . . . . . . . . . . . . . . . . 199 11 SL (R) 201 2 11.1 The Upper Half Plane . . . . . . . . . . . . . . . . . . 201 11.2 The Hecke Algebra . . . . . . . . . . . . . . . . . . . . 205 11.3 An Explicit Plancherel Theorem . . . . . . . . . . . . 214
Description: