ebook img

Principles of Harmonic Analysis PDF

330 Pages·2014·2.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Principles of Harmonic Analysis

Universitext Universitext SeriesEditors: SheldonAxler SanFranciscoStateUniversity VincenzoCapasso UniversitàdegliStudidiMilano CarlesCasacuberta UniversitatdeBarcelona AngusMacIntyre QueenMary,UniversityofLondon KennethRibet UniversityofCalifornia,Berkeley ClaudeSabbah CNRS,ÉcolePolytechnique EndreSüli UniversityofOxford WojborA.Woyczynski CaseWesternReserveUniversity Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal, even experimental approachtotheirsubjectmatter.Someofthemostsuccessfulandestablishedbooks intheserieshaveevolvedthroughseveraleditions, alwaysfollowingtheevolution ofteachingcurricula,toverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Forfurthervolumes: www.springer.com/series/223 Anton Deitmar (cid:129) Siegfried Echterhoff Principles of Harmonic Analysis Second Edition 2123 AntonDeitmar SiegfriedEchterhoff UniversitätTübingenInstitutfürMathematik UniversitätMünsterMathematischesInstitut Tübingen Münster Baden-Württemberg Germany Germany ISSN0172-5939 ISSN2191-6675(electronic) ISBN978-3-319-05791-0 ISBN978-3-319-05792-7(eBook) DOI10.1007/978-3-319-05792-7 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014934841 © SpringerInternationalPublishingSwitzerland2009,2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’s location,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissions forusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliableto prosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsor omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothe materialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface ThethreadofthisbookisformedbytwofundamentalprinciplesofHarmonicAnal- ysis: the Plancherel Formula and the Poisson Summation Formula. We first prove both for locally compact abelian groups. For non-abelian groups we discuss the Plancherel Theorem in the general situation for type-I groups. The generalization ofthePoissonSummationFormulatonon-abeliangroupsistheSelbergTraceFor- mula,whichweproveforarbitrarygroupsadmittinguniformlattices.Asexamples fortheapplicationoftheTraceFormulawetreattheHeisenberggroupandthegroup SL (R).IntheformercasethetraceformulayieldsadecompositionoftheL2-space 2 oftheHeisenberggroupmoduloalattice. InthecaseSL (R), thetraceformulais 2 used to derive results like the Weil asymptotic law for hyperbolic surfaces and to providetheanalyticcontinuationoftheSelbergzetafunction.Wefinallyincludea chapterontheapplicationsofabstractHarmonicAnalysisonthetheoryofwavelets, andweincludeachapteronp-adicandadelicgroups,whichareimportantexamples, astheyareusedinnumbertheory. Thepresentbookisatextbookforagraduatecourseonabstractharmonicanalysis and its applications. The book can be used as a follow up of the First Course in HarmonicAnalysis,[Dei05],orindependently,ifthestudentshaverequiredamodest knowledgeofFourierAnalysisalready.Inthisbook,amongotherthings,proofsare given of Pontryagin Duality and the Plancherel Theorem for LCA groups, which werementionedbutnotprovedin[Dei05].UsingPontryaginduality,wealsoobtain variousstructuretheoremsforlocallycompactabeliangroups. Knowledgeofsettheoretictopology,Lebesgueintegration,andfunctionalanalysis onanintroductorylevelwillberequiredinthebodyofthebook.Fortheconvenience of the reader we have included all necessary ingredients from these areas in the appendices. Differences to the first edition: Many details have been changed, new and better proofs have been found, some assertions have been sharpened and a few are even new to this book. Section 1.8 and Chap. 13 have not been part of the first edition. Whilstfittinginthechanges,wetriedtopreservethenumberingofTheoremsetc.We apologizeforinconveniencesthatariseatthoseplaceswherethiswasnotpossible. v Acknowledgments Theauthorsthankthefollowingpeopleforcorrectionsandcommentsonthebook: Ralf Beckmann, Wolfgang Bertram, Robert Burckel, Cody Gunton, Linus Kramer, YiLi,JonasMorrissey,MichaelMueger,KennethRoss,AlexanderSchmidt,Christian Schmidt,VahidShirbisheh,FrankValckenborgh,FabianWerner,DanaWilliams. Chapters3and4arepartlybasedonwrittennotesofacoursegivenbyProf.Eberhard Kaniuthondualitytheoryforabelianlocallycompactgroups.Theauthorsaregrateful toProf.Kaniuthforallowingustousethismaterial. vii Chapter Dependency 1 2 3 5 4 6 13 7 8 9 12 10 11 Notation We write N = {1,2,3,...} for the set of natural numbers. The sets of integer, real, and complex numbers are denoted as Z,R,C. For a set A we write 1 for A the characteristic function of A, i.e., 1 (x) is 1 ifx ∈ A and zero otherwise. The A Kronecker-deltafunctionisdefinedtobe (cid:2) δ =def 1 ifi=j, i,j 0 otherwise. Thewordpositivewillalwaysmean≥0.For>0,weusethewordsstrictlypositive. ix Contents 1 HaarIntegration.............................................. 1 1.1 TopologicalGroups....................................... 1 1.2 LocallyCompactGroups .................................. 5 1.3 HaarMeasure............................................ 6 1.4 TheModularFunction .................................... 14 1.5 TheQuotientIntegralFormula ............................. 17 1.6 Convolution ............................................. 22 1.7 TheFourierTransform .................................... 25 1.8 Limits .................................................. 26 1.9 Exercises ............................................... 33 2 BanachAlgebras .............................................. 37 2.1 BanachAlgebras ......................................... 37 2.2 TheSpectrumσA(a)...................................... 40 2.3 AdjoiningaUnit ......................................... 43 2.4 TheGelfandMap ........................................ 45 2.5 MaximalIdeals .......................................... 48 2.6 TheGelfand-NaimarkTheorem............................. 49 2.7 TheContinuousFunctionalCalculus ........................ 54 2.8 ExercisesandNotes ...................................... 57 3 DualityforAbelianGroups..................................... 61 3.1 TheDualGroup.......................................... 61 3.2 TheFourierTransform .................................... 64 3.3 TheC∗-AlgebraofanLCA-Group .......................... 66 3.4 ThePlancherelTheorem................................... 69 3.5 PontryaginDuality ....................................... 73 3.6 ThePoissonSummationFormula ........................... 77 3.7 ExercisesandNotes ...................................... 80 xi xii Contents 4 TheStructureofLCA-Groups.................................. 85 4.1 Connectedness........................................... 85 4.2 TheStructureTheorems ................................... 93 4.3 Exercises ............................................... 105 5 OperatorsonHilbertSpaces ................................... 107 5.1 FunctionalCalculus ...................................... 107 5.2 CompactOperators ....................................... 111 5.3 Hilbert-SchmidtandTraceClass............................ 114 5.4 Exercises ............................................... 119 6 Representations............................................... 123 6.1 Schur’sLemma .......................................... 123 6.2 RepresentationsofL1(G).................................. 127 6.3 Exercises ............................................... 130 7 CompactGroups.............................................. 133 7.1 FiniteDimensionalRepresentations ......................... 133 7.2 ThePeter-WeylTheorem .................................. 135 7.3 Isotypes ................................................ 142 7.4 InducedRepresentations................................... 144 7.5 RepresentationsofSU(2) .................................. 146 7.6 Exercises ............................................... 150 8 DirectIntegrals ............................................... 153 8.1 VonNeumannAlgebras ................................... 153 8.2 WeakandStrongTopologies ............................... 154 8.3 Representations .......................................... 155 8.4 HilbertIntegrals.......................................... 159 8.5 ThePlancherelTheorem................................... 160 8.6 Exercises ............................................... 161 9 TheSelbergTraceFormula..................................... 165 9.1 CocompactGroupsandLattices ............................ 165 9.2 DiscretenessoftheSpectrum............................... 167 9.3 TheTraceFormula ....................................... 172 9.4 LocallyConstantFunctions ................................ 177 9.5 LieGroups.............................................. 177 9.6 Exercises ............................................... 182 10 TheHeisenbergGroup......................................... 185 10.1 Definition............................................... 185 10.2 TheUnitaryDual......................................... 186 10.3 ThePlancherelTheoremforH ............................. 190 10.4 TheStandardLattice...................................... 190 10.5 ExercisesandNotes ...................................... 193

Description:
This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The prin
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.