Universitext Universitext SeriesEditors: SheldonAxler SanFranciscoStateUniversity VincenzoCapasso UniversitàdegliStudidiMilano CarlesCasacuberta UniversitatdeBarcelona AngusMacIntyre QueenMary,UniversityofLondon KennethRibet UniversityofCalifornia,Berkeley ClaudeSabbah CNRS,ÉcolePolytechnique EndreSüli UniversityofOxford WojborA.Woyczynski CaseWesternReserveUniversity Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal, even experimental approachtotheirsubjectmatter.Someofthemostsuccessfulandestablishedbooks intheserieshaveevolvedthroughseveraleditions, alwaysfollowingtheevolution ofteachingcurricula,toverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Forfurthervolumes: www.springer.com/series/223 Anton Deitmar (cid:129) Siegfried Echterhoff Principles of Harmonic Analysis Second Edition 2123 AntonDeitmar SiegfriedEchterhoff UniversitätTübingenInstitutfürMathematik UniversitätMünsterMathematischesInstitut Tübingen Münster Baden-Württemberg Germany Germany ISSN0172-5939 ISSN2191-6675(electronic) ISBN978-3-319-05791-0 ISBN978-3-319-05792-7(eBook) DOI10.1007/978-3-319-05792-7 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014934841 © SpringerInternationalPublishingSwitzerland2009,2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’s location,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissions forusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliableto prosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsor omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothe materialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface ThethreadofthisbookisformedbytwofundamentalprinciplesofHarmonicAnal- ysis: the Plancherel Formula and the Poisson Summation Formula. We first prove both for locally compact abelian groups. For non-abelian groups we discuss the Plancherel Theorem in the general situation for type-I groups. The generalization ofthePoissonSummationFormulatonon-abeliangroupsistheSelbergTraceFor- mula,whichweproveforarbitrarygroupsadmittinguniformlattices.Asexamples fortheapplicationoftheTraceFormulawetreattheHeisenberggroupandthegroup SL (R).IntheformercasethetraceformulayieldsadecompositionoftheL2-space 2 oftheHeisenberggroupmoduloalattice. InthecaseSL (R), thetraceformulais 2 used to derive results like the Weil asymptotic law for hyperbolic surfaces and to providetheanalyticcontinuationoftheSelbergzetafunction.Wefinallyincludea chapterontheapplicationsofabstractHarmonicAnalysisonthetheoryofwavelets, andweincludeachapteronp-adicandadelicgroups,whichareimportantexamples, astheyareusedinnumbertheory. Thepresentbookisatextbookforagraduatecourseonabstractharmonicanalysis and its applications. The book can be used as a follow up of the First Course in HarmonicAnalysis,[Dei05],orindependently,ifthestudentshaverequiredamodest knowledgeofFourierAnalysisalready.Inthisbook,amongotherthings,proofsare given of Pontryagin Duality and the Plancherel Theorem for LCA groups, which werementionedbutnotprovedin[Dei05].UsingPontryaginduality,wealsoobtain variousstructuretheoremsforlocallycompactabeliangroups. Knowledgeofsettheoretictopology,Lebesgueintegration,andfunctionalanalysis onanintroductorylevelwillberequiredinthebodyofthebook.Fortheconvenience of the reader we have included all necessary ingredients from these areas in the appendices. Differences to the first edition: Many details have been changed, new and better proofs have been found, some assertions have been sharpened and a few are even new to this book. Section 1.8 and Chap. 13 have not been part of the first edition. Whilstfittinginthechanges,wetriedtopreservethenumberingofTheoremsetc.We apologizeforinconveniencesthatariseatthoseplaceswherethiswasnotpossible. v Acknowledgments Theauthorsthankthefollowingpeopleforcorrectionsandcommentsonthebook: Ralf Beckmann, Wolfgang Bertram, Robert Burckel, Cody Gunton, Linus Kramer, YiLi,JonasMorrissey,MichaelMueger,KennethRoss,AlexanderSchmidt,Christian Schmidt,VahidShirbisheh,FrankValckenborgh,FabianWerner,DanaWilliams. Chapters3and4arepartlybasedonwrittennotesofacoursegivenbyProf.Eberhard Kaniuthondualitytheoryforabelianlocallycompactgroups.Theauthorsaregrateful toProf.Kaniuthforallowingustousethismaterial. vii Chapter Dependency 1 2 3 5 4 6 13 7 8 9 12 10 11 Notation We write N = {1,2,3,...} for the set of natural numbers. The sets of integer, real, and complex numbers are denoted as Z,R,C. For a set A we write 1 for A the characteristic function of A, i.e., 1 (x) is 1 ifx ∈ A and zero otherwise. The A Kronecker-deltafunctionisdefinedtobe (cid:2) δ =def 1 ifi=j, i,j 0 otherwise. Thewordpositivewillalwaysmean≥0.For>0,weusethewordsstrictlypositive. ix Contents 1 HaarIntegration.............................................. 1 1.1 TopologicalGroups....................................... 1 1.2 LocallyCompactGroups .................................. 5 1.3 HaarMeasure............................................ 6 1.4 TheModularFunction .................................... 14 1.5 TheQuotientIntegralFormula ............................. 17 1.6 Convolution ............................................. 22 1.7 TheFourierTransform .................................... 25 1.8 Limits .................................................. 26 1.9 Exercises ............................................... 33 2 BanachAlgebras .............................................. 37 2.1 BanachAlgebras ......................................... 37 2.2 TheSpectrumσA(a)...................................... 40 2.3 AdjoiningaUnit ......................................... 43 2.4 TheGelfandMap ........................................ 45 2.5 MaximalIdeals .......................................... 48 2.6 TheGelfand-NaimarkTheorem............................. 49 2.7 TheContinuousFunctionalCalculus ........................ 54 2.8 ExercisesandNotes ...................................... 57 3 DualityforAbelianGroups..................................... 61 3.1 TheDualGroup.......................................... 61 3.2 TheFourierTransform .................................... 64 3.3 TheC∗-AlgebraofanLCA-Group .......................... 66 3.4 ThePlancherelTheorem................................... 69 3.5 PontryaginDuality ....................................... 73 3.6 ThePoissonSummationFormula ........................... 77 3.7 ExercisesandNotes ...................................... 80 xi xii Contents 4 TheStructureofLCA-Groups.................................. 85 4.1 Connectedness........................................... 85 4.2 TheStructureTheorems ................................... 93 4.3 Exercises ............................................... 105 5 OperatorsonHilbertSpaces ................................... 107 5.1 FunctionalCalculus ...................................... 107 5.2 CompactOperators ....................................... 111 5.3 Hilbert-SchmidtandTraceClass............................ 114 5.4 Exercises ............................................... 119 6 Representations............................................... 123 6.1 Schur’sLemma .......................................... 123 6.2 RepresentationsofL1(G).................................. 127 6.3 Exercises ............................................... 130 7 CompactGroups.............................................. 133 7.1 FiniteDimensionalRepresentations ......................... 133 7.2 ThePeter-WeylTheorem .................................. 135 7.3 Isotypes ................................................ 142 7.4 InducedRepresentations................................... 144 7.5 RepresentationsofSU(2) .................................. 146 7.6 Exercises ............................................... 150 8 DirectIntegrals ............................................... 153 8.1 VonNeumannAlgebras ................................... 153 8.2 WeakandStrongTopologies ............................... 154 8.3 Representations .......................................... 155 8.4 HilbertIntegrals.......................................... 159 8.5 ThePlancherelTheorem................................... 160 8.6 Exercises ............................................... 161 9 TheSelbergTraceFormula..................................... 165 9.1 CocompactGroupsandLattices ............................ 165 9.2 DiscretenessoftheSpectrum............................... 167 9.3 TheTraceFormula ....................................... 172 9.4 LocallyConstantFunctions ................................ 177 9.5 LieGroups.............................................. 177 9.6 Exercises ............................................... 182 10 TheHeisenbergGroup......................................... 185 10.1 Definition............................................... 185 10.2 TheUnitaryDual......................................... 186 10.3 ThePlancherelTheoremforH ............................. 190 10.4 TheStandardLattice...................................... 190 10.5 ExercisesandNotes ...................................... 193
Description: