ebook img

Primordial non-Gaussianity and Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure PDF

9.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Primordial non-Gaussianity and Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure

Primordial non-Gaussianity and Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure MicheleLiguori∗ Centre for Theoretical Cosmology Department of Applied Mathematics and Theoretical Physics University of Cambridge WilberforceRoad,Cambridge,CB30WA,UK EmilianoSefusatti† Institut de Physique The´orique Commissariat a` l’E´nergie Atomique 0 F-91191Gif-sur-Yvette,France 1 0 JamesR.Fergusson‡ andE.P.S.Shellard§ 2 Centre for Theoretical Cosmology n Department of Applied Mathematics and Theoretical Physics a University of Cambridge J WilberforceRoad,Cambridge,CB30WA,UK 5 2 Themostdirectprobeofnon-Gaussianinitialconditionshascomefrombispectrummeasurementsoftemperature fluctuationsintheCosmicMicrowaveBackgroundandofthematterandgalaxydistributionatlargescales.Such ] bispectrumestimatorsareexpectedtocontinuetoprovidethebestconstraintsonthenon-Gaussianparametersin O futureobservations.Wereviewandcomparethetheoreticalandobservationalproblems,currentresultsandfuture C prospectsforthedetectionofanon-vanishingprimordialcomponentinthebispectrumoftheCosmicMicrowave Backgroundandlarge-scalestructure,andtherelationtospecificpredictionsfromdifferentinflationarymodels. . h p - o r t s Contents a [ I. Introduction 3 1 II. Initialconditionsandtheprimordialbispectrum 5 v A. Theprimordialbispectrumandshapefunction 5 7 B. Generalprimordialbispectraandseparablemodeexpansions 8 0 C. Familiesofprimordialmodelsandtheircorrelations 11 7 1. Theconstantmodel 11 4 2. Equilateraltriangles–centre-weightedmodels 11 . 3. Squeezedtriangles–corner-weightedmodels 12 1 4. Flattenedtriangles–edge-weightedmodels 13 0 5. Features–scale-dependentmodels 14 0 1 III. CosmicMicrowaveBackground 14 : A. TheCMBbispectrum 14 v B. SeparableprimordialshapesandCMBbispectrumsolutions 16 i X C. Non-separablebispectrarevisited 18 D. CMBbispectrumcalculationsandcorrelations 19 r a ∗Electronicaddress:[email protected] †Electronicaddress:[email protected] ‡Electronicaddress:[email protected] §Electronicaddress:[email protected] 2 1. Nearlyscale-invariantmodels 19 2. Scale-dependentmodels,cosmicstringsandotherlate-timephenomena 20 E. Theestimationof fNLfromCMBbispectra 22 1. Bispectrumestimatorof fNL 23 2. Optimalityofthecubicestimator 24 3. Breakingrotationalinvariance 27 4. Large fNLregime 28 F. Numericalimplementationofthebispectrumestimator 30 1. Primarycubictermfor fNL 31 2. Linearcorrectiontermfor fNL 33 G. Experimentalconstraintson fNL 35 H. Fishermatrixforecasts 36 1. Ageneralderivation 36 2. Polarization 38 I. Non-Gaussiancontaminants 39 1. Diffuseforegroundemission 43 2. Unresolvedpointsources 44 3. Secondaryanisotropies 45 4. Non-Gaussiannoise 46 5. Othereffects 46 J. Generationofsimulatednon-GaussianCMBmaps 46 1. Algorithmsforlocalnon-Gaussianity 48 2. Algorithmsforarbitrarybispectra 49 IV. Large-ScaleStructure 52 A. Theskewness 53 B. Thematterbispectrum 54 1. Leading-orderresultsinPerturbationTheory 55 2. Second-ordercorrections 59 C. TheGalaxyBispectrum 60 1. Thegalaxybispectrumandlocalbias 61 2. Abispectrumestimator 62 3. Fishermatrixforecasts 63 4. Effectsofcovarianceandcurrentresults 65 5. Primordialnon-Gaussianityandnon-localGalaxyBias 67 6. TheGalaxyBispectrumafterDalaletal.(2008) 70 D. Runningnon-Gaussianity 72 1. Thecaseofascale-dependent fNL 72 2. Runningnon-Gaussianityandbispectrummeasurements 72 V. Conclusions 74 Acknowledgments 75 A. Basicsofestimationtheory 75 References 78 3 I. INTRODUCTION The standard inflationary paradigm predicts a flat Universe perturbed by nearly Gaussian and scale invariant pri- mordialperturbations. ThesepredictionshavebeenverifiedtoahighdegreeofaccuracybyCosmicMicrowaveBack- ground(CMB)andLarge-ScaleStructure(LSS)measurements,suchasthoseprovidedbytheWilkinsonMicrowave AnisotropyProbe(WMAP;Komatsuetal.,2009), the2dFGalaxyRedshiftSurvey(2dFGRS;Percivaletal.,2002) andtheSloanDigitalSkySurvey(SDSS;Tegmarketal.,2004). Despitethissuccess,ithasprovedtobedifficultto discriminatebetweenthevastarrayofinflationaryscenariosthathavebeenproposedbyhigh-energytheoreticalinves- tigations,oreventorule-outalternativestoinflation.. SincemostofthepresentconstraintsontheLagrangianofthe inflatonfieldhavebeenobtainedfrommeasurementsofthetwo-pointfunction,orpowerspectrum,oftheprimordial fluctuations,anaturalstepistoextendtheavailableinformationistolookatnon-Gaussiansignaturesinhigherorder correlators. Thelowestorderadditionalcorrelatortotakeintoaccountisthethree-pointfunctionoritscounterpartinFourier space, the bispectrum. Every model of inflation is characterized by specific predictions for the bispectrum of the primordial perturbations in the gravitational potential Φ(k). The bispectrum BΦ(k1,k2,k3) of these perturbations is definedas (cid:104)Φ(k1)Φ(k2)Φ(k3)(cid:105)≡(2π)3δD(k123)BΦ(k1,k2,k3), (I.1) wherewehaveintroducedthenotationk ≡k +k sothattheDiracdeltafunctionhereisδ (k )≡δ (k +k +k ). ij 1 2 D 123 D 1 2 3 Togetherwiththeassumptionofstatisticalhomogeneityandisotropyfortheprimordialperturbations,thisimpliesthat thebispectrumisafunctionofthetripletdefinedbythemagnitudeofthewavenumbersk ,k andk formingaclosed 1 2 3 triangular configuration. The current constraints that we are able to derive on the bispectrum BΦ(k1,k2,k3) provide additional information about the early Universe; the possible detection of a non-vanishing primordial bispectrum in future observations would represent a major discovery, especially as it is predicted to be negligible by standard inflation. The cosmological observable most directly related to the initial curvature bispectrum is given by the bispectrum of the CMB temperature fluctuations, which provide a map of the density perturbations at the time of decoupling, theearliestinformationwehaveabouttheUniverse. Currentmeasurementsofindividualtriangularconfigurationsof theCMBbispectrumare,however,consistentwithzero. Studiesoftheprimordialbispectrum,therefore,areusually characterizedbyconstraintsonasingleamplitudeparameter,denotedby fNL,onceaspecificmodelforBΦisassumed. Since most models predict a curvature bispectrum obeying the hierarchical scaling BΦ(k,k,k) ∼ P2Φ(k), with PΦ(k) beingthecurvaturepowerspectrum,thenon-Gaussianparameterroughlyquantifiestheratio fNL ∼ BΦ(k,k,k)/P2Φ(k), definingthe“strength”oftheprimordialnon-Gaussiansignal. Inaddition,wecanwrite BΦ(k1,k2,k3)≡ fNLF(k1,k2,k3), (I.2) where F(k ,k ,k ) encodes the functional dependence of the primordial bispectrum on the specific triangle config- 1 2 3 urations. For brevity, the characteristic shape-dependence of a given bispectrum is often referred to simply as the bispectrumshape(aprecisedefinitionofthebispectrumshapefunctionwillbegiveninsectionII.A).Inflationarypre- dictionsforboththeamplitude fNL andtheshapeof BΦ thatarestronglymodel-dependent. Noticethatthesubscript “NL”standsfor“nonlinear”, sinceacommonphenomenologicalmodelforthenon-Gaussianityoftheinitialcondi- tionscanbewrittenasasimplenonlineartransformationofaGaussianfield. Generically,ofcourse,non-Gaussianity isassociatedwithnonlinearities,suchasnontrivialdynamicsduringinflation,resonantbehaviourattheendofinfla- tion(‘preheating’),ornonlinearpost-inflationaryevolution. Attheveryleast,futureCMBandLSSobservationsare expectedtobeabletoeventuallydetectthesmalllastcontribution. PerturbationsintheCMBprovideaparticularlyconvenienttestoftheprimordialdensityfieldbecauseCMBtemper- atureandpolarizationanisotropiesaresmallenoughtobestudiedinthelinearregimeofcosmologicalperturbations. Once the effects of foregrounds are properly taken into account, a non-vanishing CMB bispectrum at large scales wouldbea directconsequenceofanon-vanishing primordialbispectrum. As wewillsee, whileotherCMB probes ofprimordialnon-Gaussianityareavailable,suchastestsofthetopologicalpropertiesofthetemperaturemapbased on Minkowski Functionals or measurements of the CMB trispectrum, the estimator for the non-Gaussian parameter 4 f has been shown to be optimal. We will focus mostly on this bispectrum estimator in the section of this review NL dedicatedtotheCMB. In the standard cosmological model, the large-scale structure of the Universe, that is, the distribution of matter andgalaxiesonlargescales,istheresultofthenonlinearevolutionduetogravitationalinstabilityofthesameinitial density perturbations responsible for the CMB anisotropies. This is, perhaps, the most important prediction of the inflationary framework which provides a common origin for the CMB and large-scale structure perturbations as the resultoftinyquantumfluctuationsstretchedovercosmologicalscalesduringaphaseofacceleratedexpansion. The large-scalestructureweobserveatlowredshift,however,ischaracterizedbylargevoidsandsmallregionswithvery large matter density, and it is therefore a much less direct probe of the initial conditions. The distribution of matter becomes a highly non-Gaussian field precisely as a result of the nonlinear growth of structures, even for Gaussian initial conditions. This non-Gaussianity is expressed, in particular, by a non-vanishing matter bispectrum at any measurablescale,includingthelargestscalesprobedbycurrentorfutureredshiftsurveys. Inthiscontext,theeffect of primordial non-Gaussianity, i.e. of an initial component in the curvature bispectrum, will constitute a correction tothegalaxybispectrum. Itfollowsthatthepossibilityofconstrainingordetectingthisinitialcomponentisstrictly relatedtoourabilitytodistinguishitfromother,primarysourcesofnon-Gaussianity,thatisthenonlineargravitational evolution,and,inthecaseofgalaxysurveys,nonlinearbias. Thestudyofnon-Gaussianinitialconditionsforlarge-scalestructurehasarelativelylonghistory, withimportant contributions going back to the mid eighties. The standard picture that has been developed over the years, assumed that, at large scales, the effect of primordial non-Gaussianity on the galaxy distribution is simply given in terms of an additional component to the galaxy bispectrum. This is obtained, in perturbation theory, as the linearly evolved and linearly biased initial matter bispectrum, related to the curvature bispectrum BΦ(k1,k2,k3) by the Poisson equa- tion. Suchcomponentbecomessubdominantasthegravity-inducednon-Gaussiancontributiongrowsintime. Inthis framework,asonecanexpect,high-redshiftandlarge-volumegalaxysurveyswouldconstitutethebestprobesofthe initial conditions. It has been shown, in fact, that proposed and planned redshift surveys, such as Euclid (Refregier et al., 2010), should be able to provide constraints on the primordial non-Gaussian parameters comparable, if not better, thanthoseexpectedfromCMBmissionssuchasPlanck. Whatismoreimportant, intheeventofadetection byPlanck,isthatconfirmationbylarge-scalestructureobservationswillberequired. RecentresultsfromN-bodysimulationswithnon-Gaussianinitialconditions,however,haverevealedamorecom- plex picture. The effect of primordial non-Gaussianity at large scales is not limited to an additional contribution to thegalaxybispectrum,butitquitedramaticallyaffectsthegalaxybiasrelationitself,thatis,therelationbetweenthe matter and galaxy distributions. A surprising consequence is that it induces a large correction even for the galaxy power spectrum. Such an effect has attracted considerable recent attention and, remarkably, have placed constraints onthenon-GaussianparameterfromcurrentLSSdata-setswhichalreadyappeartomarginallyimproveonCMBlim- its. However, from a theoretical point of view, a proper understanding of the phenomenon remains to be properly developed and, for example, reliable predictions for the galaxy bispectrum are not yet available. Most importantly, asforgeneralcosmologicalparameterestimation,acompletelikelihoodanalysisaimedatconstraining,ordetecting, primordialnon-Gaussianityinlarge-volumeredshiftsurveysshouldinvolvejointmeasurementsofthegalaxypower spectrumandbispectrum,aswellaspossiblyhigher-ordercorrelationfunctions. Whilewearestillfarfromaproper assessmentofwhatsuchanalysiswouldbeabletoachieve,currentresultsinthisdirectionareveryencouraging. This review is divided in four parts. In section II we will first discuss initial conditions as defined in terms of the primordial curvature bispectrum and its phenomenology. We will then review the observational consequences of primordial non-Gaussianity on the CMB bispectrum, section III, and on the large-scale structure bispectrum as measuredinredshiftsurveys,sectionIV.Inbothcaseswewilldiscusstheoreticalmodelsfortheobservedbispectra and technical problems related to the estimation of the non-Gaussian parameters, with the differences that naturally characterize such distinct observables. We also give an example of joint analysis using both CMB and large-scale structurewhenweconsiderthepossibilityofconstrainingastronglyscale-dependentnon-Gaussianparameter f (k), NL emerginginsomerecentlyproposedinflationarymodels. 5 k1 k1 k3 k k 2 1 k 3 k2 k3 k 2 FIG.1 Triangletypescontributingtothebispectrumcorrespondingto‘squeezed’orlocalconfigurationswithk (cid:28) k ,k (left), 3 1 2 equilateralconfigurationswithk ≈k ≈k (centre)andflattenedconfigurationswithk ≈k +k (right). 3 1 2 3 1 2 II. INITIALCONDITIONSANDTHEPRIMORDIALBISPECTRUM A. Theprimordialbispectrumandshapefunction ThestartingpointforthisdiscussionistheprimordialgravitationalpotentialperturbationΦ(x, t)whichwasseeded by quantum fluctuations during inflation or by some other mechanism in the very early universe (t (cid:28) t ). When dec characterizingthefluctuationsΦweusuallyworkinFourierspacewiththe(flatspace)transformdefinedthrough (cid:90) d3k Φ(x, t)= e−ik·xΦ(k,t). (II.3) (2π)3 TheprimordialpowerspectrumPΦ(k)ofthesepotentialfluctuationsisfoundusinganensembleaverage, (cid:104)Φ(k)Φ∗(k(cid:48))(cid:105)=(2π)3δD(k−k(cid:48))PΦ(k), (II.4) where we have assumed that physical processes creating the fluctuations are statistically isotropic so that only the dependenceonthewavenumberremains,k = |k|. Recallthatfornearlyscale-invariantperturbations,thefluctuation varianceonthehorizonscalek≈ Hisalmostconstant∆2k∼H ≈k3PΦ(k)/2π2 ≈const.,implyingPΦ(k)∼k−3. TheprimordialbispectrumBΦ(k,k2, k3)isfoundfromtheFouriertransformofthethree-pointcorrelatoras (cid:104)Φ(k1)Φ(k2)Φ(k3)(cid:105)=(2π)3δD(k123)BΦ(k1,k2,k3). (II.5) Here, the delta function enforces the triangle condition, that is, the constraint that the wavevectors in Fourier space mustclosetoformatriangle,k +k +k = 0. Examplesofsuchtrianglesareshowninfig.1,illustratingthebasic 1 2 3 squeezed,equilateralandflattenedtrianglestowhichwewillreferlater.Notethataspecifictrianglecanbecompletely describedbythethreelengthsofitssidesandso, intheisotropiccase, weareabletodescribethebispectrumusing onlythewavenumbersk ,k ,k . Thetriangleconditionrestrictstheallowedwavenumberconfigurations(k ,k ,k )to 1 2 3 1 2 3 theinteriorofthetetrahedronillustratedinfig.2. The most studied primordial bispectrum is the local model in which contributions from ‘squeezed’ triangles are dominant, that is, with e.g. k (cid:28) k , k (as illustrated in the left of fig. 1). This is well-motivated physically as it 3 1 2 encompasses ‘superhorizon’ effects during inflation when a large scale mode k (say) which has exited the Hubble 3 radius exerts a nonlinear influence on the subsequent evolution of smaller scale modes k , k . Although this effect 1 2 is small in single field slow-roll inflation, it can be much larger for multifield models. In a weakly coupled regime, the potential can be split into two components, the linear term Φ , representing a Gaussian field, giving the usual L perturbationresultsplusasmalllocalnon-GaussiantermΦ (Salopek&Bond,1990), NL Φ(x) = Φ (x)+Φ (x) L NL = Φ (x)+ f (cid:2)Φ2(x)−(cid:104)Φ2(x)(cid:105)(cid:3), (II.6) L NL L L 6 k 3 (0,K,K) k 2 (K,0,K) K (K,K,0) 0 K k 1 FIG.2 Tetrahedraldomainforallowedwavenumberconfigurationsk ,k ,k contributingtotheprimordialbispectrumB(k ,k ,k )). 1 2 3 1 2 3 Aregulartetrahedronisshownsatisfyingk +k +k ≤2k ≡2K. 1 2 3 max where f iscalledthenonlinearityparameter. InFourierspace,thenonlineartermisthengivenbytheconvolution NL (cid:34)(cid:90) (cid:35) d3k Φ (k)= f Φ (k+k(cid:48))Φ (k(cid:48))−(2π)3δ (k)(cid:104)Φ2(cid:105) . (II.7) NL NL (2π)3 L L D L Fromthiswecaninfer,using(II.4),thattheonlynon-vanishingcontributionstothebispectrum(II.5)taketheform (cid:104)Φ(k1)Φ(k2)Φ(k3)(cid:105)=2(2π)3δD(k123)PΦ(k1)PΦ(k2). (II.8) Accountingforpermutations,thelocalbispectrumbecomes BΦ(k1,k2,k3) = 2fNL[PΦ(k1)PΦ(k2)+PΦ(k2)PΦ(k3)+PΦ(k3)PΦ(k1)] (cid:39) 2fNL(k k∆2Φk )2 kkk12 + kkk22 + kkk32  . (II.9) 1 2 3 2 3 1 3 1 2 Although this is a rather pathological function which diverges along the edges of the tetrahedron (i.e. when any k → 0),wecaninferfromitsomebasicpropertiesofthebispectrumforanymodelwhichisnearlyscale-invariant. i Forexample,wecanobservethatthebispectrumatequalk hasthecharacteristicscaling, i BΦ(k, k, k)=2fNL∆2Φ/k6. (II.10) If we remove this overall k−6 scaling by multiplying (II.9) by the factor (k k k )2, we note that on transverse slices 1 2 3 throughthetetrahedrondefinedbyk˜ ≡(k +k +k )/2=const.(seefig.2)thebispectrumonlydependsontheratios 1 2 3 ofthewavenumbers,sayk /k andk /k . Indeed,itcanproveconvenienttocharacterizethebispectrumintermsof 2 1 3 1 thefollowingtransverseparameters(Fergusson&Shellard,2007;Rigopoulosetal.,2006a) k˜ = 1(k +k +k ), α˜ =(k −k )/k˜, β˜ =(k˜−k )/k˜, (II.11) 2 1 2 3 2 3 1 withthedomainsk˜ ≤ k ,0 ≤ β˜ ≤ 1and−(1−β˜) ≤ α˜ ≤ 1−β˜. Thevolumeelementontheregulartetrahedronof max allowedwavenumbersthenbecomesdk dk dk =k2dk˜dα˜dβ˜. 1 2 3 7 FIG.3 Shapefunctionsforthescale-invariantequilateral(left)andlocal(right)models,S(k ,k ,k )=S(α˜,β˜)ontransverseslices 1 2 3 with2k˜ =k +k +k =const. 1 2 3 Theseconsiderationsleadnaturallytothedefinitionoftheprimordialshapefunction(Babichetal.,2004) 1 S(k1,k2,k3)≡ N(k1k2k3)2BΦ(k1,k2,k3), (II.12) whereNisanormalizationfactorwhichisoftenchosensuchthatS isunityfortheequalk case,thatis,S(k, k, k)=1 i (weshalldiscussalternativestothisratherarbitraryconventionlater). Forexample,thecanonical‘local’model(II.9) hastheshape   Slocal(k1,k2,k3)= 31kkk12 + kkk22 + kkk32  . (II.13) 2 3 1 3 1 2 Thus it is usual to describe the primordial bispectrum in terms of an overall amplitude f and a transverse two- NL dimensionalshapeS(k ,k ,k ) = S(α˜, β˜), whichincorporatesanydistinctivemomentumdependence. Ofcourse, if 1 2 3 thereisanon-trivialscaledependence, thenthefullthree-dimensionaldependenceofS(k ,k ,k )onthek mustbe 1 2 3 i retained. There are other physically well-motivated shapes in the literature which have also been extensively studied. The simplestshapeistheconstantmodel Sconst(k ,k ,k )=1, (II.14) 1 2 3 which,likethelocalmodel,hasalarge-angleanalyticsolutionfortheCMBbispectrum(Fergusson&Shellard,2009). The local model tends to be the benchmark against which all other models are compared and normalized, but for practical purposes the constant model is much more useful, given its regularity at both late and early times. The equilateralshapeisanotherimportantcasewith(Babichetal.,2004) (k +k −k )(k +k −k )(k +k −k ) Sequil(k ,k ,k )= 1 2 3 2 3 1 3 1 2 . (II.15) 1 2 3 k k k 1 2 3 While not derived directly from a physical model, it has been chosen phenomenologically as a separable ansatz for higher derivative models (Creminelli, 2003) and DBI inflation (Alishahiha et al., 2004). The equilateral shape is contrastedwiththelocalmodelinfig.3. Another important early result was the primordial bispectrum shape for single-field slow roll inflation derived by Acquavivaetal.(2003);Maldacena(2003) SMald(k1,k2,k3) ∝ (3(cid:15)−2η)kkk12 + kkk22 + kkk32 +(cid:15)(k1k22+5perm.)+4k12k22+kkk22kk32+k32k12 2 3 1 3 1 2 1 2 3 5 (cid:39) (6(cid:15)−2η)Slocal(k ,k ,k )+ (cid:15)Sequil(k ,k ,k ), (II.16) 1 2 3 1 2 3 3 8 where (cid:15), η are the usual slow roll parameters. In the second line, we have noted that this shape can be accurately representedasthesuperpositionoflocalandequilateralshapes. Thecoefficientsin(II.16), whichincludethescalar spectral index n−1 = −6(cid:15) +2η (cid:39) −0.05, confirm that f (cid:28) 1 and so standard single slow roll inflation cannot NL produceanobservationallysignificantsignal. Nevertheless,itisinterestingtodeterminewhichshapeisdominantin (II.16)andtowhatextentotherprimordialshapesareindependentfromoneanother. Whethertwodifferentprimordialshapescanbedistinguishedobservationallycanbedeterminedfromthecorrela- tion between the corresponding two CMB bispectra weighted for the anticipated signal to noise, as in the estimator (seenextsection)andtheFishermatrixanalysis(seesectionIII.H).However,directcalculationsoftheCMBbispec- trumcanbeverycomputationallydemanding. Amuchsimplerapproachistodeterminetheindependenceofthetwo shapefunctionsS andS(cid:48)fromthecorrelationintegral(Fergusson&Shellard,2009,seealsoBabichetal.(2004)) (cid:90) F (S,S(cid:48))= S(k ,k ,k )S(cid:48)(k ,k ,k )ω (k ,k ,k )dV , (II.17) (cid:15) 1 2 3 1 2 3 (cid:15) 1 2 3 k V k wherewechoosetheweightfunctiontobe 1 ω (k ,k ,k )= , (II.18) (cid:15) 1 2 3 k +k +k 1 2 3 reflectingtheprimaryscalingoftheCMBcorrelator. Theshapecorrelatoristhendefinedby F(S,S(cid:48)) C¯(S,S(cid:48))= √ . (II.19) F(S,S)F(S(cid:48),S(cid:48)) Here, the integral is over the tetrahedral region shown in fig. 2 taken out to a maximum wavenumber k (cid:46) k max corresponding to the experimental range l ≤ (cid:96) for which forecasts are sought (with (cid:96) ≈ τ k ). The weight max max 0 max function ω (k ,k ,k ) appropriate for mimicking the large-scale structure bispectrum estimator (see section IV.C.2), (cid:15) 1 2 3 wouldbedifferentwithvaryingscalinglawasintroducedbythetransferfunctionsforwavenumberskaboveandbelow k ,theinversecomovinghorizonatequalmatter-radiation. Nevertheless,the1/k weightgivenin(II.18)providesa eq compromisebetweenthesescalings,andsoshapecorrelationresultsshouldofferausefulfirstapproximation. Belowwewillsurveyprimordialmodelsintheliterature, showinghowclosetheshapecorrelatorcomestoafull Fisher matrix analysis. However, here we note that the local shape (II.13) and the equilateral shape (III.53) have only a modest 46% correlation. For the natural values of the slow roll parameters (cid:15) ≈ η we find the somewhat surprisingresultthatSMald is99.7%correlatedwithSlocal (anditcannotbeeasilytunedotherwisebecause3(cid:15) ≈ ηis notconsistentwithdeviationsfromscale-invariancefavoredobservationallyn−1<0). Suchstrongcorrespondences areimportantindefiningfamiliesofrelatedprimordialshapes,thusreducingthenumberofdifferentcasesforwhich separateobservationalconstraintsmustbesought. B. Generalprimordialbispectraandseparablemodeexpansions Thethreeshapefunctions(II.13),(II.14)and(III.53)quotedabovesharetheimportantpropertyofseparability,that is,theycanbewrittenintheform S(k ,k ,k )= X(k )Y(k )Z(k )+5perms., (II.20) 1 2 3 1 2 3 or as the sum of just a few such terms. As we shall see, if a shape S is separable, then the computational cost of evaluatingthecorrespondingCMBbispectrum B isdramaticallyreduced. Infact,withoutthisproperty,thetask (cid:96)1(cid:96)2(cid:96)3 of estimating whether a non-separable bispectrum is consistent with observation appears to be intractable (for large (cid:96) ). Ofcourse,thenumberofmodelswhichcanbeexpresseddirectlyintheform(II.20)isverylimited,despitethe max usefulnessofapproximateansa¨tzesuchastheequilateralshape(III.53). Indeed,approximatingnon-separableshapes byeducatedguessesforfortheseparablefunctionsX, Y, Zisneithersystematicnorcomputationallyefficient(because arbitrarynon-scalingfunctionscreatenumericaldifficulties,asweshallexplainlater). 9 n = 5 n = 4 4 n = 3 n = 2 n = 1 2 n = 0 0.2 0.4 0.6 0.8 1.0 -2 -4 FIG.4 Theone-dimensionaltetrahedralpolynomialsq (k)onthedomain(II.23),rescaledtotheunitintervalforn = 0–5. Also n plottedaretheshiftedLegendrepolynomialsP (2x−1)(dashedlines)whichsharequalitativefeaturessuchasnnodalpoints. n Instead, we shall present a separable mode expansion approach for efficient calculations with any non-separable bispectrum,asdescribedindetailinFergussonetal.(2009)(andoriginallyproposedinFergusson&Shellard,2007). Ouraimwillbetoexpressanyshapefunctionasanexpansioninmodefunctions (cid:88)(cid:88)(cid:88) (cid:88) S(k ,k ,k )= α q (k )q (k )q (k )≡ αQQ (k ,k ,k ), (II.21) 1 2 3 prs {p 1 r 2 s} 3 n n 1 2 3 p r s n where,here,forconveniencewehaverepresentedthesymmetrizedproductsoftheseparablebasisfunctionsq (k)as p (cid:104) (cid:105) Q (k ,k ,k )= 1 q (x)q (y)q (z)+5perms ≡ q q q , (II.22) n 1 2 3 6 p r s {p r s} withaone-to-onemappingorderingtheproductsasn↔{prs}. Theimportantpointisthattheq (k)mustbeaninde- p pendentsetofwell-behavedbasisfunctionswhichcanbeusedtoconstructcompleteandorthogonalthree-dimensional eigenfunctionsonthetetrahedralregionV definedby(seefig.2) T k ,k ,k ≤k , k ≤k +k fork ≥k , k , + 2perms. (II.23) 1 2 3 max 1 2 3 1 2 3 Theintroductionofthecut-offatk ismotivatedbothbyseparabilityandthecorrespondencewiththeobservational max domain l ≤ (cid:96) . In the shape correlator (II.19), we have already seen what is essentially an inner product between max twoshapesonthistetrahedralregion,whichwecandefinefortwofunctions f, gas (cid:90) (cid:104)f, g(cid:105)= f(k ,k ,k )g(k ,k ,k )ω(k ,k ,k )dV , (II.24) 1 2 3 1 2 3 1 2 3 T VT withweightfunctionw. Satisfactory convergence for known bispectra can be found by using simple polynomials q (k) in the expansion p (II.21), that is, using analogues of Legendre polynomials on the domain (II.23). With unit weight, the polynomials satisfying(cid:104)q (k ), q (k )(cid:105) = δ canbefoundbygeneratingfunctionswiththefirstthreegivenby(Fergussonetal., p 1 r 1 pr 2009) √ (cid:16) (cid:17) q (x)= 2, q (x)=5.79(−7 +x), q (x)=23.3 54 − 48x+x2 , ... (II.25) 0 1 12 2 215 43 Thefirstfewpolynomialsq (k)areplottedinfig.4,wheretheyarecontrastedwithLegendrepolynomials. p Thethree-dimensionalseparablebasisfunctionsQ in(II.22)reflectthesixsymmetriesofthebispectrumthrough n thepermutedsumoftheproductterms. Theycouldhavebeenconstructeddirectlyfromsimplerpolynomials,suchas 10 FIG. 5 Orthonormal eigenmode decomposition coefficients (II.26) for the equilateral and DBI models (upper panel) and shape correlations (II.19) of the original bispectrum against the partial sum up to a given mode n (lower panel). The correlation plot includesbothprimordialandlate-timeCMBbispectrafortheequilateralandDBImodels,aswellasthelate-timeCMBbispectrum from cosmic strings (refer to section III). In all cases, we find that we need at most 15 three-dimensional modes to obtain a correlationgreaterthan98%(primordialconvergencewithouttheacousticpeaksrequiresonly6modes). 1, k +k +k , k2+k2+k2, ...,however,theq polynomialshavetwodistinctadvantages. First,theq ’sconferpartial 1 2 3 1 2 3 p p orthogonalityontheQ and,secondly,theseremainwell-behavedwhenconvolvedwithtransferfunctions. n InordertorapidlydecomposeanarbitraryshapefunctionS intothecoefficientsαQ ↔ αQ ,itismoreconvenient n prs toworkinanon-separableorthonormalbasisR ((cid:104)R , R (cid:105)=δ . ThesecanbederiveddirectlyfromtheQ through n n m nm n Gram-Schmidtorthogonalization,sothatR = (cid:80)n λ Q withλ alowertriangularmatrix(seeFergussonetal., n p=0 mp p mp 2009). Thuswecanfindtheuniqueshapefunctiondecomposition (cid:88)N (cid:88)N (cid:88)N S(k ,k ,k )= αRR (k ,k ,k )= αQQ (k ,k ,k ), with αR =(cid:104)S, R (cid:105) and αQ = (λ(cid:62)) αR. (II.26) 1 2 3 n n 1 2 3 n n 1 2 3 n n n np p n n p In the orthonormal R frame, Parseval’s theorem ensures that the autocorrelator is simply (cid:104)S, S(cid:105) = (cid:80) αR2. Hence, n n n with a simple and efficient prescription we can construct separable and complete basis functions on the tetrahedral domain (II.23) providing rapidly convergent expansions for any well-behaved shape function S. These eigenmode expansionswillprovetobeofgreatutilityinsubsequentsections. Examplesofthisbispectraldecompositionandits rapidconvergencefortheequilateralandDBImodelsareshowninfig.5.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.