ebook img

Prime geodesic theorem of Gallagher type PDF

0.12 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Prime geodesic theorem of Gallagher type

PRIME GEODESIC THEOREM OF GALLAGHER TYPE MUHAREMAVDISPAHIC´ 7 1 0 Abstract. We reduce the exponent in the error term of the prime geodesic 2 theorem for compact Riemann surfaces from 3 to 7 outside a set of finite 4 10 logarithmicmeasure. n a J 9 ] 1. Introduction T N Let Γ ⊂ PSL(2,R) be a strictly hyperbolic Fuchsian group and F = Γ\H be the corresponding compact Riemann surface of a genus g ≥ 2, where H = {z = . h x+iy : y > 0} denotes the upper half-plane equipped with the hyperbolic metric t a ds2 = dx2+dy2. The Selberg zeta function on F is defined by the Euler product m y2 ∞ [ Z(s)=Z (s)= (1−N(P )−s−k), Re(s)>1, Γ 0 v1 {YP0}kY=0 5 where the product is takenover all primitive conjugacy classes{P } and N(P ) is 0 0 1 the norm of a conjugacy class P . (See any of the standard references [9], [13] for 1 0 a necessary background.) 2 0 The Selberg zeta function can be continued to the whole complex plane as a . meromorphic function of a finite order. Its zeros ρ = 1 +iγ are denumerable and 1 2 closely related to the eigenvalues λ of the Laplace-Beltrami operator on F. This 0 7 operatorbeing essentially self-adjoint, its eigenvaluesare non-negativeand tend to 1 infinity. Therefore, there are finitely many of them that are less than 1. We have 4 : v γ =± λ− 1 for λ≥ 1 and γ =∓i 1 −λ for λ< 1. So, the zeros of Z are split i q 4 4 q4 4 X into two parts: those lying on the critical line Res = 1 and the real zeros in the 2 r interval [0,1]. a Compared to the Riemann zeta case, there are ”too many zeros” of Z in some sense[9,(6.14)onp. 113]. LetN(t)denotethenumberofzerosρ= 1+iγ suchthat 2 0<γ ≤t. ThefunctionR(t),givenbyN(t)= |F|t2+R(t),growsasO t(logt)−1 , 4π where |F| is the volume of F. (cid:0) (cid:1) The norm N(P ) is determined by the length of the geodesic joining two fixed 0 points,necessarilythesameonesforallrepresentativesofP . Thestatementabout 0 the number π (x) of classes {P } such that N(P )≤x, for x>0, is known as the 0 0 0 prime geodesic theorem. It has been proved by Selberg [21] and Huber [10, 11] andsubsequentlygeneralizedtovarioussettings. Thereferences[16,5,8,18,6,19] form an interesting range of samples. 2010 Mathematics Subject Classification. 11M36,11F72,58J50. Keywords andphrases. Primegeodesictheorem,Selbergzetafunction,hyperbolicmanifolds. 1 2 MUHAREMAVDISPAHIC´ One should consult [9, Discussion 6.20., pp. 113-115 and Discussion 15.16., pp. 253-255] on the difficulties in improving Huber’s O x43(logx)−21 . The best esti- (cid:16) (cid:17) matefortheerrortermintheprimegeodesictheoremuptonowisO x34(logx)−1 (cid:16) (cid:17) obtained by Randol [20]. Its analogue has been also established for higher di- mensional hyperbolic manifolds [2], improving Park’s theorem [17, Th. 1.2.]. An important ingredient, implicitly [20] or explicitly [17], is the growth rate of the log-derivative of the Ruelle zeta vs. the Selberg zeta log-derivative [3]. Though the expected exponent on Riemann surfaces is 1 +ε, the above men- 2 tioned 3 was successfully reduced only in the case of modular surfaces Γ \ H, 4 Γ ⊂ PSL(2,Z). Iwaniec [12] obtained 35 +ε, Luo and Sarnak [15] 7 +ε, Cai [4] 48 10 71 +ε, Soundararajanand Young [22] 25 +ε. 102 36 Following Gallagher’s [7] approach to the Riemann zeta, we shall prove that 7 10 can be achieved for Γ⊂PSL(2,R) outside a set of finite logarithmic measure. 2. Main result Let ψ(x) = Λ(P) = logN(P0) and ψ (x) = xψ(t)dt be the 1−N(P)−1 1 1 N(PP)≤x N(PP)≤x R Chebyshev resp. integrated Chebyshev function, as usual. Recall that the error termO x34(logx)−1 inthe primegeodesictheoremcorrespondstoO x43 inthe (cid:16) (cid:17) (cid:16) (cid:17) explicit formula for ψ. Our main result is given by the following theorem that substantially improves [14, Th. 1.]. and [1, Th. 2.] Theorem. LetΓ⊂PSL(2,R)beastrictlyhyperbolic Fuchsiangroup. Thereexists a set G of finite logarithmic measure such that ψ(x)=x+ xρ +O x170(logx)15 (loglogx)51+ε (x→∞,x∈/ G), ρ 7X<ρ<1 (cid:16) (cid:17) 10 where ε>0 is arbitrarily small. Proof. As the starting point, we shalltake Hejhal’s explicit formula for ψ with an 1 error term [9, Th. 6.16. on p. 110] 1 ψ (x)=α x+β xlogx+α +β logx+F 1 0 0 1 1 (cid:18)x(cid:19) x2 xρ+1 x2logx + + +O (x→∞), 2 ρ(ρ+1) (cid:18) T (cid:19) Xρ |γ|<T ∞ where F(x)=(2g−2) 2k+1 x1−k. k(k−1) kP=2 The asymptoticsofψ is convenientlyderivedfromthe asymptoticsofψ viathe 1 relation x x+h f(t)dt≤f(x)h≤ f(t)dt Z Z x−h x valid for any non-decreasing function f, where h>0. PRIME GEODESIC THEOREM 3 We have x+h 1 xρ ψ(x)≤ ψ(t)dt=x+ +O(logx)+O(h) h Z ρ x 12<Xρ<1 (1) 1 (cid:12) (x+h)ρ+1−xρ+1(cid:12) x2logx + (cid:12) (cid:12)+O . (cid:12) (cid:12) h(cid:12)(cid:12)ReX(ρ)=1 ρ(ρ+1) (cid:12)(cid:12) (cid:18) hT (cid:19) (cid:12) |γ|≤T2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Now, for Y <T, (cid:12) (cid:12) (x+h)ρ+1−xρ+1 (x+h)ρ+1−xρ+1 (x+h)ρ+1−xρ+1 = + . ρ(ρ+1) ρ(ρ+1) ρ(ρ+1) ReX(ρ)=1 ReX(ρ)=1 ReX(ρ)=1 2 2 2 |γ|≤T |γ|≤Y Y<|γ|≤T The trivial bound for the first sum on the right hand side is given by 1 (cid:12) (x+h)ρ+1−xρ+1(cid:12)  1  (2) (cid:12)(cid:12) (cid:12)(cid:12)=O x21 =O x21Y . h(cid:12)(cid:12)ReX(ρ)=1 ρ(ρ+1) (cid:12)(cid:12)  ReX(ρ)=1 |ρ| (cid:16) (cid:17) (cid:12) |γ|≤Y2 (cid:12)  |γ|≤Y2  (cid:12) (cid:12)   (cid:12) (cid:12) The second(cid:12) sum is split into (cid:12) (x+h)ρ+1 xρ+1 − . ρ(ρ+1) ρ(ρ+1) ReX(ρ)=1 ReX(ρ)=1 2 2 Y<|γ|≤T Y<|γ|≤T Let  (cid:12) xρ+1 (cid:12)  3 DYT =x∈[T,eT):(cid:12)(cid:12)(cid:12) X ρ(ρ+1)(cid:12)(cid:12)(cid:12)>xα(logx)β(loglogx)β, 1<α< 2, β >0. (cid:12)Re(ρ)=1 (cid:12) (cid:12) 2 (cid:12) Then,  (cid:12)(cid:12)(cid:12)Y<|γ|≤T (cid:12)(cid:12)(cid:12)  dt dt µ×DT = = t2α(logt)2β(loglogt)2β Y Z t Z t1+2α(logt)2β(loglogt)2β DT DT Y Y 2 1 (cid:12) tρ+1 (cid:12) t3−2α ≤ (cid:12) (cid:12) dt (logT)2β(loglogT)2βDZYT (cid:12)(cid:12)(cid:12)(cid:12)YR<eX(|ργ)|=≤2T1 ρ(ρ+1)(cid:12)(cid:12)(cid:12)(cid:12) t4 (cid:12) (cid:12) (cid:12) (cid:12) 2 (cid:12) (cid:12) eT T3−2α (cid:12) tρ+1 (cid:12) dt = O (cid:12) (cid:12) . (cid:18)(logT)2β(loglogT)2β(cid:19)ZT (cid:12)(cid:12)(cid:12)(cid:12)YR<eX(|ργ)|=≤2T1 ρ(ρ+1)(cid:12)(cid:12)(cid:12)(cid:12) t4 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 4 MUHAREMAVDISPAHIC´ According to Koyama [14, p. 79], 2 eT (cid:12) tρ+1 (cid:12) dt 1 (cid:12) (cid:12) =O . ZT (cid:12)(cid:12)(cid:12)(cid:12)YR<eX(|ργ)|=≤1T2 ρ(ρ+1)(cid:12)(cid:12)(cid:12)(cid:12) t4 (cid:18)Y (cid:19) (cid:12) (cid:12) (cid:12) (cid:12) Taking Y =T3−2α(logT)(cid:12)1−2β(loglogT)1−2(cid:12)β+ε, we obtain 1 µ×DT ≪ . Y logT(loglogT)1+ε For n = ⌊logx⌋, T = en, denote E = DT. Then, µ×E ≪ 1 and n Y n n(logn)1+ε µ×∪E ≪ 1 <∞. n n(logn)1+ε If x∈ enP,en+1 \E , one gets n (cid:2) (cid:1) (cid:12) xρ+1 (cid:12) (3) (cid:12) (cid:12)≤xα(logx)β(loglogx)β. (cid:12) (cid:12) (cid:12) X ρ(ρ+1)(cid:12) (cid:12)Re(ρ)=1 (cid:12) (cid:12) 2 (cid:12) (cid:12)Y<|γ|≤T (cid:12) (cid:12) (cid:12) We are interested in(cid:12)achieving h<x43(cid:12). If it happens that x+h∈ en,en+1 \En, one shall have (cid:2) (cid:1) (x+h)ρ+1 =O xα(logx)β(loglogx)β ρ(ρ+1) X (cid:0) (cid:1) Re(ρ)=1 2 Y<|γ|≤T as well, since x+h<2x. The other possibility is that x+h ∈ en+1,en+2 . In that case, we proceed as follows (cid:2) (cid:1) (x+h)ρ+1 (x+h)ρ+1 (x+h)ρ+1 = − . ρ(ρ+1) ρ(ρ+1) ρ(ρ+1) X X X Re(ρ)=1 Re(ρ)=1 Re(ρ)=1 2 2 2 Y<|γ|≤T Y<|γ|≤eT T<|γ|≤eT For x+h∈ en+1,en+2 \E , we get n+1 (cid:2) (cid:1) (x+h)ρ+1 (4) =O xα(logx)β(loglogx)β . ρ(ρ+1) X (cid:0) (cid:1) Re(ρ)=1 2 Y<|γ|≤eT To estimate (x+h)ρ+1, we shall consider ρ(ρ+1) Re(Pρ)=1 2 T<|γ|≤eT  (cid:12) xρ+1 (cid:12)  DTeT =x∈(cid:2)eT,e2T(cid:1):(cid:12)(cid:12)(cid:12)(cid:12)ReX(ρ)=1 ρ(ρ+1)(cid:12)(cid:12)(cid:12)(cid:12)>xα(logx)β(loglogx)β. (cid:12) 2 (cid:12)  (cid:12)(cid:12)(cid:12)T<|γ|≤eT (cid:12)(cid:12)(cid:12)  PRIME GEODESIC THEOREM 5 By the argumentation above leading to the estimate of µ×DT, we get Y T3−2α 1 1 µ×DeT ≪ · ≪ . T (logT)2β(loglogT)2β T T2α−2 Recall that n = ⌊logx⌋, T = en and denote F = DeT. Notice that µ×F < n+1 T n+1 1 and the series 1 converges since α > 1. Thus, if we additionally e(2α−2)n e(2α−2)n assume x+h∈ en+1,ePn+2 \F , we get n+1 (cid:2) (x(cid:1)+h)ρ+1 (5) =O xα(logx)β(loglogx)β . ρ(ρ+1) X (cid:0) (cid:1) Re(ρ)=1 2 T<|γ|≤eT Looking back at (1), and taking into account the relations (2), (3), (4) and (5), we are left to optimize h, xlohgx, x12Y and xα(logx)βh(loglogx)β, i.e., h, x21 ·x3−2α(logx)1−2β(loglogx)1−2β and xα(logx)βh(loglogx)β since α>1, T ≈x and Y =O x3−2α(logx)1−2β(loglogx)1−2β+ε . Choosing h ≈ xα2(logx)β2(lo(cid:0)glogx)β2, we get 1 +3−2α = α (cid:1)and 1−2β = β. 2 2 2 Hence, α = 7 and β = 2. This completes the proof since the sets E = ∪E and 5 5 n F =∪F have finite logarithmic measure. n (cid:3) References [1] M.Avdispahi´c,OnKoyama’srefinementoftheprimegeodesictheorem,arXiv:1701.01642 [2] M.Avdispahi´candDˇz.Guˇsi´c,Ontheerrortermintheprimegeodesictheorem,Bull.Korean Math.Soc.49(2012), no.2,367–372. [3] M.Avdispahi´candL.Smajlovi´c,AnexplicitformulaanditsapplicationtotheSelbergtrace formula,Monatsh.Math.147(2006), no.3,183–198. [4] Y.Cai,Primegeodesictheorem,J.Th´eor.NombresBordeaux14(2002), no.1,59–72. [5] D.L. DeGeorge, Length spectrum for compact locally symmetric spaces of strictly negative curvature,Ann.Sci.EcoleNorm.Sup.10(1977), 133–152. [6] A.Deitmar,Aprimegeodesictheorem forhigherrankspaces.Geom FunctAnal.14(2004) 1238–1266 [7] P.X.Gallagher,SomeconsequencesoftheRiemannhypothesis,ActaArith.37(1980),339– 343. [8] R.GangolliandG.Warner,ZetafunctionsofSelberg’stypeforsomenoncompact quotients ofsymmetricspacesofrankone,NagoyaMath.J.78(1980), 1–44. [9] D.A.Hejhal,TheSelbergtraceformulaforPSL(2,R).VolI,LectureNotesinMathematics, Vol548,Springer,Berlin1976. [10] H.Huber,ZuranalytischenTheoriehyperbolischerRaumformenundBewegungsgruppen II, Math.Ann.142(1961), 385–398. [11] H.Huber,Nachtragzu[10],Math.Ann.143(1961), 463–464. [12] H.Iwaniec,Primegeodesictheorem,J.ReineAngew.Math.349(1984), 136–159. [13] H.Iwaniec,SpectralMethodsofAutomorphicForms(2nded.).Amer.Math.Soc.,Providence 2002. [14] S. Koyama, Refinement of primegeodesic theorem, Proc. Japan Acad. Ser A Math. Sci. 92 (2016), no.7,77–81. [15] W.LuoandP.Sarnak,QuantumergodicityofeigenfunctionsonPSL2(Z)\Hˆ2,Inst.Hautes EtudesSci.Publ.Math.no.81(1995), 207–237. [16] G. A. Margulis, Certain applications of ergodic theory to the investigation of manifolds of negativecurvature,Funkcional. Anal.iPrilozhen.3(1969), no.4,89–90. 6 MUHAREMAVDISPAHIC´ [17] J.Park,Ruellezetafunctionandprimegeodesictheoremforhyperbolicmanifoldswithcusps, in: G. vanDijk, M.Wakayama (eds.), Casimir Force, Casimir Operators and the Riemann Hypothesis, 9-13 November 2009, Kyushu University, Fukuoka, Japan, Walter de Gruyter 2010. [18] W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of AxiomAflows,Ann.ofMath.(2)118(1983), no.3,573–591. [19] M. Pollicott and M. Sharp, Length asymptotics in higher Teichmu¨ller theory, Proc. Amer. Math.Soc.142(2014), 101–112. [20] B.Randol,OntheasymptoticdistributionofclosedgeodesicsoncompactRiemannsurfaces, Trans.Amer.Math.Soc.233(1977), 241–247. [21] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaceswithapplicationstoDirichletseries,J.IndianMath.Soc.B.20(1956), 47–87. [22] K. Soundararajan and M. P. Young, The prime geodesic theorem, J. Reine Angew. Math. 676(2013), 105–120. University of Sarajevo, Department of Mathematics, Zmaja od Bosne 33-35, 71000 Sarajevo,Bosnia andHerzegovina E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.