PRIME GEODESIC THEOREM OF GALLAGHER TYPE MUHAREMAVDISPAHIC´ 7 1 0 Abstract. We reduce the exponent in the error term of the prime geodesic 2 theorem for compact Riemann surfaces from 3 to 7 outside a set of finite 4 10 logarithmicmeasure. n a J 9 ] 1. Introduction T N Let Γ ⊂ PSL(2,R) be a strictly hyperbolic Fuchsian group and F = Γ\H be the corresponding compact Riemann surface of a genus g ≥ 2, where H = {z = . h x+iy : y > 0} denotes the upper half-plane equipped with the hyperbolic metric t a ds2 = dx2+dy2. The Selberg zeta function on F is defined by the Euler product m y2 ∞ [ Z(s)=Z (s)= (1−N(P )−s−k), Re(s)>1, Γ 0 v1 {YP0}kY=0 5 where the product is takenover all primitive conjugacy classes{P } and N(P ) is 0 0 1 the norm of a conjugacy class P . (See any of the standard references [9], [13] for 1 0 a necessary background.) 2 0 The Selberg zeta function can be continued to the whole complex plane as a . meromorphic function of a finite order. Its zeros ρ = 1 +iγ are denumerable and 1 2 closely related to the eigenvalues λ of the Laplace-Beltrami operator on F. This 0 7 operatorbeing essentially self-adjoint, its eigenvaluesare non-negativeand tend to 1 infinity. Therefore, there are finitely many of them that are less than 1. We have 4 : v γ =± λ− 1 for λ≥ 1 and γ =∓i 1 −λ for λ< 1. So, the zeros of Z are split i q 4 4 q4 4 X into two parts: those lying on the critical line Res = 1 and the real zeros in the 2 r interval [0,1]. a Compared to the Riemann zeta case, there are ”too many zeros” of Z in some sense[9,(6.14)onp. 113]. LetN(t)denotethenumberofzerosρ= 1+iγ suchthat 2 0<γ ≤t. ThefunctionR(t),givenbyN(t)= |F|t2+R(t),growsasO t(logt)−1 , 4π where |F| is the volume of F. (cid:0) (cid:1) The norm N(P ) is determined by the length of the geodesic joining two fixed 0 points,necessarilythesameonesforallrepresentativesofP . Thestatementabout 0 the number π (x) of classes {P } such that N(P )≤x, for x>0, is known as the 0 0 0 prime geodesic theorem. It has been proved by Selberg [21] and Huber [10, 11] andsubsequentlygeneralizedtovarioussettings. Thereferences[16,5,8,18,6,19] form an interesting range of samples. 2010 Mathematics Subject Classification. 11M36,11F72,58J50. Keywords andphrases. Primegeodesictheorem,Selbergzetafunction,hyperbolicmanifolds. 1 2 MUHAREMAVDISPAHIC´ One should consult [9, Discussion 6.20., pp. 113-115 and Discussion 15.16., pp. 253-255] on the difficulties in improving Huber’s O x43(logx)−21 . The best esti- (cid:16) (cid:17) matefortheerrortermintheprimegeodesictheoremuptonowisO x34(logx)−1 (cid:16) (cid:17) obtained by Randol [20]. Its analogue has been also established for higher di- mensional hyperbolic manifolds [2], improving Park’s theorem [17, Th. 1.2.]. An important ingredient, implicitly [20] or explicitly [17], is the growth rate of the log-derivative of the Ruelle zeta vs. the Selberg zeta log-derivative [3]. Though the expected exponent on Riemann surfaces is 1 +ε, the above men- 2 tioned 3 was successfully reduced only in the case of modular surfaces Γ \ H, 4 Γ ⊂ PSL(2,Z). Iwaniec [12] obtained 35 +ε, Luo and Sarnak [15] 7 +ε, Cai [4] 48 10 71 +ε, Soundararajanand Young [22] 25 +ε. 102 36 Following Gallagher’s [7] approach to the Riemann zeta, we shall prove that 7 10 can be achieved for Γ⊂PSL(2,R) outside a set of finite logarithmic measure. 2. Main result Let ψ(x) = Λ(P) = logN(P0) and ψ (x) = xψ(t)dt be the 1−N(P)−1 1 1 N(PP)≤x N(PP)≤x R Chebyshev resp. integrated Chebyshev function, as usual. Recall that the error termO x34(logx)−1 inthe primegeodesictheoremcorrespondstoO x43 inthe (cid:16) (cid:17) (cid:16) (cid:17) explicit formula for ψ. Our main result is given by the following theorem that substantially improves [14, Th. 1.]. and [1, Th. 2.] Theorem. LetΓ⊂PSL(2,R)beastrictlyhyperbolic Fuchsiangroup. Thereexists a set G of finite logarithmic measure such that ψ(x)=x+ xρ +O x170(logx)15 (loglogx)51+ε (x→∞,x∈/ G), ρ 7X<ρ<1 (cid:16) (cid:17) 10 where ε>0 is arbitrarily small. Proof. As the starting point, we shalltake Hejhal’s explicit formula for ψ with an 1 error term [9, Th. 6.16. on p. 110] 1 ψ (x)=α x+β xlogx+α +β logx+F 1 0 0 1 1 (cid:18)x(cid:19) x2 xρ+1 x2logx + + +O (x→∞), 2 ρ(ρ+1) (cid:18) T (cid:19) Xρ |γ|<T ∞ where F(x)=(2g−2) 2k+1 x1−k. k(k−1) kP=2 The asymptoticsofψ is convenientlyderivedfromthe asymptoticsofψ viathe 1 relation x x+h f(t)dt≤f(x)h≤ f(t)dt Z Z x−h x valid for any non-decreasing function f, where h>0. PRIME GEODESIC THEOREM 3 We have x+h 1 xρ ψ(x)≤ ψ(t)dt=x+ +O(logx)+O(h) h Z ρ x 12<Xρ<1 (1) 1 (cid:12) (x+h)ρ+1−xρ+1(cid:12) x2logx + (cid:12) (cid:12)+O . (cid:12) (cid:12) h(cid:12)(cid:12)ReX(ρ)=1 ρ(ρ+1) (cid:12)(cid:12) (cid:18) hT (cid:19) (cid:12) |γ|≤T2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Now, for Y <T, (cid:12) (cid:12) (x+h)ρ+1−xρ+1 (x+h)ρ+1−xρ+1 (x+h)ρ+1−xρ+1 = + . ρ(ρ+1) ρ(ρ+1) ρ(ρ+1) ReX(ρ)=1 ReX(ρ)=1 ReX(ρ)=1 2 2 2 |γ|≤T |γ|≤Y Y<|γ|≤T The trivial bound for the first sum on the right hand side is given by 1 (cid:12) (x+h)ρ+1−xρ+1(cid:12) 1 (2) (cid:12)(cid:12) (cid:12)(cid:12)=O x21 =O x21Y . h(cid:12)(cid:12)ReX(ρ)=1 ρ(ρ+1) (cid:12)(cid:12) ReX(ρ)=1 |ρ| (cid:16) (cid:17) (cid:12) |γ|≤Y2 (cid:12) |γ|≤Y2 (cid:12) (cid:12) (cid:12) (cid:12) The second(cid:12) sum is split into (cid:12) (x+h)ρ+1 xρ+1 − . ρ(ρ+1) ρ(ρ+1) ReX(ρ)=1 ReX(ρ)=1 2 2 Y<|γ|≤T Y<|γ|≤T Let (cid:12) xρ+1 (cid:12) 3 DYT =x∈[T,eT):(cid:12)(cid:12)(cid:12) X ρ(ρ+1)(cid:12)(cid:12)(cid:12)>xα(logx)β(loglogx)β, 1<α< 2, β >0. (cid:12)Re(ρ)=1 (cid:12) (cid:12) 2 (cid:12) Then, (cid:12)(cid:12)(cid:12)Y<|γ|≤T (cid:12)(cid:12)(cid:12) dt dt µ×DT = = t2α(logt)2β(loglogt)2β Y Z t Z t1+2α(logt)2β(loglogt)2β DT DT Y Y 2 1 (cid:12) tρ+1 (cid:12) t3−2α ≤ (cid:12) (cid:12) dt (logT)2β(loglogT)2βDZYT (cid:12)(cid:12)(cid:12)(cid:12)YR<eX(|ργ)|=≤2T1 ρ(ρ+1)(cid:12)(cid:12)(cid:12)(cid:12) t4 (cid:12) (cid:12) (cid:12) (cid:12) 2 (cid:12) (cid:12) eT T3−2α (cid:12) tρ+1 (cid:12) dt = O (cid:12) (cid:12) . (cid:18)(logT)2β(loglogT)2β(cid:19)ZT (cid:12)(cid:12)(cid:12)(cid:12)YR<eX(|ργ)|=≤2T1 ρ(ρ+1)(cid:12)(cid:12)(cid:12)(cid:12) t4 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 4 MUHAREMAVDISPAHIC´ According to Koyama [14, p. 79], 2 eT (cid:12) tρ+1 (cid:12) dt 1 (cid:12) (cid:12) =O . ZT (cid:12)(cid:12)(cid:12)(cid:12)YR<eX(|ργ)|=≤1T2 ρ(ρ+1)(cid:12)(cid:12)(cid:12)(cid:12) t4 (cid:18)Y (cid:19) (cid:12) (cid:12) (cid:12) (cid:12) Taking Y =T3−2α(logT)(cid:12)1−2β(loglogT)1−2(cid:12)β+ε, we obtain 1 µ×DT ≪ . Y logT(loglogT)1+ε For n = ⌊logx⌋, T = en, denote E = DT. Then, µ×E ≪ 1 and n Y n n(logn)1+ε µ×∪E ≪ 1 <∞. n n(logn)1+ε If x∈ enP,en+1 \E , one gets n (cid:2) (cid:1) (cid:12) xρ+1 (cid:12) (3) (cid:12) (cid:12)≤xα(logx)β(loglogx)β. (cid:12) (cid:12) (cid:12) X ρ(ρ+1)(cid:12) (cid:12)Re(ρ)=1 (cid:12) (cid:12) 2 (cid:12) (cid:12)Y<|γ|≤T (cid:12) (cid:12) (cid:12) We are interested in(cid:12)achieving h<x43(cid:12). If it happens that x+h∈ en,en+1 \En, one shall have (cid:2) (cid:1) (x+h)ρ+1 =O xα(logx)β(loglogx)β ρ(ρ+1) X (cid:0) (cid:1) Re(ρ)=1 2 Y<|γ|≤T as well, since x+h<2x. The other possibility is that x+h ∈ en+1,en+2 . In that case, we proceed as follows (cid:2) (cid:1) (x+h)ρ+1 (x+h)ρ+1 (x+h)ρ+1 = − . ρ(ρ+1) ρ(ρ+1) ρ(ρ+1) X X X Re(ρ)=1 Re(ρ)=1 Re(ρ)=1 2 2 2 Y<|γ|≤T Y<|γ|≤eT T<|γ|≤eT For x+h∈ en+1,en+2 \E , we get n+1 (cid:2) (cid:1) (x+h)ρ+1 (4) =O xα(logx)β(loglogx)β . ρ(ρ+1) X (cid:0) (cid:1) Re(ρ)=1 2 Y<|γ|≤eT To estimate (x+h)ρ+1, we shall consider ρ(ρ+1) Re(Pρ)=1 2 T<|γ|≤eT (cid:12) xρ+1 (cid:12) DTeT =x∈(cid:2)eT,e2T(cid:1):(cid:12)(cid:12)(cid:12)(cid:12)ReX(ρ)=1 ρ(ρ+1)(cid:12)(cid:12)(cid:12)(cid:12)>xα(logx)β(loglogx)β. (cid:12) 2 (cid:12) (cid:12)(cid:12)(cid:12)T<|γ|≤eT (cid:12)(cid:12)(cid:12) PRIME GEODESIC THEOREM 5 By the argumentation above leading to the estimate of µ×DT, we get Y T3−2α 1 1 µ×DeT ≪ · ≪ . T (logT)2β(loglogT)2β T T2α−2 Recall that n = ⌊logx⌋, T = en and denote F = DeT. Notice that µ×F < n+1 T n+1 1 and the series 1 converges since α > 1. Thus, if we additionally e(2α−2)n e(2α−2)n assume x+h∈ en+1,ePn+2 \F , we get n+1 (cid:2) (x(cid:1)+h)ρ+1 (5) =O xα(logx)β(loglogx)β . ρ(ρ+1) X (cid:0) (cid:1) Re(ρ)=1 2 T<|γ|≤eT Looking back at (1), and taking into account the relations (2), (3), (4) and (5), we are left to optimize h, xlohgx, x12Y and xα(logx)βh(loglogx)β, i.e., h, x21 ·x3−2α(logx)1−2β(loglogx)1−2β and xα(logx)βh(loglogx)β since α>1, T ≈x and Y =O x3−2α(logx)1−2β(loglogx)1−2β+ε . Choosing h ≈ xα2(logx)β2(lo(cid:0)glogx)β2, we get 1 +3−2α = α (cid:1)and 1−2β = β. 2 2 2 Hence, α = 7 and β = 2. This completes the proof since the sets E = ∪E and 5 5 n F =∪F have finite logarithmic measure. n (cid:3) References [1] M.Avdispahi´c,OnKoyama’srefinementoftheprimegeodesictheorem,arXiv:1701.01642 [2] M.Avdispahi´candDˇz.Guˇsi´c,Ontheerrortermintheprimegeodesictheorem,Bull.Korean Math.Soc.49(2012), no.2,367–372. [3] M.Avdispahi´candL.Smajlovi´c,AnexplicitformulaanditsapplicationtotheSelbergtrace formula,Monatsh.Math.147(2006), no.3,183–198. [4] Y.Cai,Primegeodesictheorem,J.Th´eor.NombresBordeaux14(2002), no.1,59–72. [5] D.L. DeGeorge, Length spectrum for compact locally symmetric spaces of strictly negative curvature,Ann.Sci.EcoleNorm.Sup.10(1977), 133–152. [6] A.Deitmar,Aprimegeodesictheorem forhigherrankspaces.Geom FunctAnal.14(2004) 1238–1266 [7] P.X.Gallagher,SomeconsequencesoftheRiemannhypothesis,ActaArith.37(1980),339– 343. [8] R.GangolliandG.Warner,ZetafunctionsofSelberg’stypeforsomenoncompact quotients ofsymmetricspacesofrankone,NagoyaMath.J.78(1980), 1–44. [9] D.A.Hejhal,TheSelbergtraceformulaforPSL(2,R).VolI,LectureNotesinMathematics, Vol548,Springer,Berlin1976. [10] H.Huber,ZuranalytischenTheoriehyperbolischerRaumformenundBewegungsgruppen II, Math.Ann.142(1961), 385–398. [11] H.Huber,Nachtragzu[10],Math.Ann.143(1961), 463–464. [12] H.Iwaniec,Primegeodesictheorem,J.ReineAngew.Math.349(1984), 136–159. [13] H.Iwaniec,SpectralMethodsofAutomorphicForms(2nded.).Amer.Math.Soc.,Providence 2002. [14] S. Koyama, Refinement of primegeodesic theorem, Proc. Japan Acad. Ser A Math. Sci. 92 (2016), no.7,77–81. [15] W.LuoandP.Sarnak,QuantumergodicityofeigenfunctionsonPSL2(Z)\Hˆ2,Inst.Hautes EtudesSci.Publ.Math.no.81(1995), 207–237. [16] G. A. Margulis, Certain applications of ergodic theory to the investigation of manifolds of negativecurvature,Funkcional. Anal.iPrilozhen.3(1969), no.4,89–90. 6 MUHAREMAVDISPAHIC´ [17] J.Park,Ruellezetafunctionandprimegeodesictheoremforhyperbolicmanifoldswithcusps, in: G. vanDijk, M.Wakayama (eds.), Casimir Force, Casimir Operators and the Riemann Hypothesis, 9-13 November 2009, Kyushu University, Fukuoka, Japan, Walter de Gruyter 2010. [18] W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of AxiomAflows,Ann.ofMath.(2)118(1983), no.3,573–591. [19] M. Pollicott and M. Sharp, Length asymptotics in higher Teichmu¨ller theory, Proc. Amer. Math.Soc.142(2014), 101–112. [20] B.Randol,OntheasymptoticdistributionofclosedgeodesicsoncompactRiemannsurfaces, Trans.Amer.Math.Soc.233(1977), 241–247. [21] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaceswithapplicationstoDirichletseries,J.IndianMath.Soc.B.20(1956), 47–87. [22] K. Soundararajan and M. P. Young, The prime geodesic theorem, J. Reine Angew. Math. 676(2013), 105–120. University of Sarajevo, Department of Mathematics, Zmaja od Bosne 33-35, 71000 Sarajevo,Bosnia andHerzegovina E-mail address: [email protected]