ebook img

Prime divisors and noncommutative valuation theory PDF

225 Pages·2012·1.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Prime divisors and noncommutative valuation theory

Lecture Notes in Mathematics 2059 Editors: J.-M.Morel,Cachan B.Teissier,Paris Forfurthervolumes: http://www.springer.com/series/304 (cid:127) Hidetoshi Marubayashi Fred Van Oystaeyen (cid:2) Prime Divisors and Noncommutative Valuation Theory 123 HidetoshiMarubayashi FredVanOystaeyen TokushimaBunriUniversity UniversityofAntwerp FacultyofScienceandEngineering MathematicsandComputerScience Shido,SanukiCity,Kagawa,Japan Antwerp,Belgium ISBN978-3-642-31151-2 ISBN978-3-642-31152-9(eBook) DOI10.1007/978-3-642-31152-9 SpringerHeidelbergNewYorkDordrechtLondon LectureNotesinMathematicsISSNprintedition:0075-8434 ISSNelectronicedition:1617-9692 LibraryofCongressControlNumber:2012945522 MathematicsSubjectClassification(2010):16W40,16W70,16S38,16H10,13J20,16T05 (cid:2)c Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Introduction Theclassicaltheoryofvaluationringsinfieldshasnaturalapplicationsinalgebraic geometryas well as in numbertheory,e.g. as local ringsof nonsingularpointsof curvesor,respectively,asprimelocalizationsofringsofintegersinnumberfields. IntheseapplicationstheringsareNoetherianandthevaluationsarediscrete,thatis the valuegroupis the additivegroupof the integers,Z. The factthatnon-discrete valuationringsarenotNoetherianmaybethereasonthatgeneral(cid:2)-valuationswith totally ordered value group (cid:2), which need not be discrete, have not been used to the same extent as discrete ones in the aforementioned branches of classical mathematics. However, function field extensions of arbitrary transcendence degree have been considered; the transcendence degree is recorded as the dimension of some correspondingalgebraicvariety,butitisalsothemaximalrankofavaluationring in the function field. Algebraic geometry easily survives by using the theory of local Noetherian rings, avoiding the non-Noetherian valuation rings dominating them. The algebraic theory in this book deals with generalized (cid:2)-valuations, often related to (cid:2)-filtrations, for totally ordered groups (cid:2), at places even totally ordered semigroups appear. A source of problems and new ideas is the extension theory for valuations from a subfield to the field. This theory is well developed for number fields in connection with Galois theory, but is perhaps less used for field extensions of finite transcendence degree probably because the (Noetherian) geometric approach is more popular. We want to consider more general algebra extensionsincludingskewfields,matrixrings,etc. ThereforewedevelopinChap.1thegeneraltheorystartingfromanoncommuta- tivebackground,expoundingaminimalcommutativebackgroundwhennecessary. The primes or prime places introduced provide a very general approach to a valuationtheoryforassociative ringsand algebras;this originatesin the theoryof pseudoplacesasin[70,71]andtheworkofVanGeel[68,69].Thetheoryisrelated to the considerationof filtrations and gradationsby totally orderedgroups;this is thetopicofSect.1.3(andSect.1.8).Originallypseudoplacesweredevelopedwith the aim to apply themto the constructionof genericcrossed productsandgeneric skewfields, hence it is not really surprising that an interesting class of algebras v vi Introduction inviting the development of a generalized valuation theory is the class of central simple algebras, or more generally finitely dimensionalalgebras overfields. Thus ourtheoryhasdirectlinkstothetheoryofordersandmaximalorders;thiswillbethe subjectofChap.2.ThesecondpartofChap.1isdevotedtosomeparticularprimes: Dubrovinrings.AfterthebasictheoryinSect.1.4andtheidealtheoryinSect.1.5 wefocusonDubrovinvaluationsoffinitedimensional(simple)algebrasinSect.1.6 andonGaussextensionsinSect.1.7.Toageneralizedvaluationringcorrespondsa reductionoftheoriginalalgebraandtherelationbetweenpropertiesofthereduced algebraandtheoriginaloneshouldbeclarified.Therearepropertiesofhomological type or of (noncommutative) geometric type; in Appendix 1.9 we provide some theoryrelatedtoAuslanderregularityofthealgebrasunderconsideration. Chapter 2 deals with orders. It is not our aim to provide a complete theory of ordersin(semisimple)Artinianalgebras,butweincludeashortintroductiontothis importantrootofthetheoryrelatingtothefundamentalworkofAuslander,Reiner andothers(see[57]). ArithmeticalringswithsuitabledivisorialpropertiesandnoncommutativeKrull rings are amongst the natural study objects here (Sects.2.1 and 2.2). Then we consider Ore extensionsover Krullordersand noncommutativevaluationringsof Ore extensions of simple Artinian rings in Sects.2.3 and 2.4. To end the chapter we arrive at an arithmetical divisor theory, a noncommutative divisor calculus, leading to a noncommutative Riemann–Roch theorem over a central curve. The latter result fits in the geometry of rings with polynomial identities, cf. [76]; it also fits in this book because it provides a good example of a concrete, almost calculative, application of noncommutative valuation theory, even if here only discretevaluationsappear. InChap.3weleavethebiotopeoffinitedimensionalalgebrasandturnattention to a recently popular class of infinite dimensional algebras containing quantum groups,quantizedalgebrasanddeformations.Usuallyexamplesofsuchalgebrasare givenby generatorsand relationsand thereforethey are equippedwith a standard filtration. The reduction of such an algebra at a central valuation can be “good” or “bad” depending on how the defining relations reduce modulo the maximal idealofthe centralvaluationring.Similar phenomenaexistin algebraicgeometry relatedtogoodreductionof(elliptic)curvesbutnowthereducing“equations”are elementsoftheidealofrelationsinthefreealgebra.Thepropertyofgoodreduction allows the extension of the central valuation to the (skewfield of fractions of the) noncommutativealgebra;thisisthetopicofSect.3.1.Toestablishacasewherewe cancompletelycalculateallvaluationswefocusontheWeylfieldinSect.3.2and providesomedivisortheoryrelatedtoaverypeculiarsubringinSect.3.3. Finally we consider finite dimensional Hopf algebras in the last section and extend the valuation filtration of a central valuation to a Hopf filtration on the Hopfalgebra.Thefiltration partof degreezerois a Hopf orderand we show how certain Hopf orders, generalizing Larson orders in the case of finite group rings, maybeexplicitlyconstructed.Theexplicitexamplesovernumberringsexhibitthe importance of ramification properties of the value function corresponding to the Hopforder. Introduction vii In our opinion noncommutative extensions of valuation theory deserve to be furtherintegratedinnoncommutativealgebra(andnoncommutativegeometrytoo). We do realize that this book does not provide a finished picture of possible noncommutativeextensionsofvaluationtheory,butwehopetohaveopenedafew doors for possible new developmentspointing at interesting directions for further research. (cid:127) Contents 1 GeneralTheoryofPrimes................................................... 1 1.1 PrimePlacesofAssociativeRings.................................... 1 1.2 PrimesinAlgebras..................................................... 8 1.3 ValueFunctionsandPrimeFiltration................................. 19 1.4 DubrovinValuations................................................... 33 1.5 IdealTheoryofDubrovinValuationRings........................... 42 1.6 DubrovinValuationRingsofQwithFiniteDimension OverItsCenter......................................................... 58 1.7 GaussExtensions...................................................... 70 1.8 FiltrationsbyTotallyOrderedGroups................................ 88 1.9 ReductionsofAlgebrasandFiltrations............................... 96 1.10 Appendix:GlobalDimensionandRegularityofReductions........ 101 2 MaximalOrdersandPrimes ............................................... 109 2.1 MaximalOrders........................................................ 109 2.2 KrullOrders............................................................ 115 2.3 OreExtensionsOverKrullOrders.................................... 132 2.4 Non-commutativeValuationRingsinK.XI(cid:3);ı/.................... 144 2.5 ArithmeticalPseudovaluationsandDivisors......................... 153 2.6 The Riemann–RochTheoremfor Central Simple AlgebrasOverFunctionFieldsofCurves............................ 164 3 ExtensionsofValuationstoQuantizedAlgebras......................... 175 3.1 ExtensionofCentralValuations ...................................... 175 3.2 DiscreteValuationsontheWeylSkewfield .......................... 183 3.3 SomeDivisorTheoryforWeylFieldsOverFunctionFields........ 193 3.4 HopfValuationFiltration.............................................. 197 Bibliography...................................................................... 213 Index............................................................................... 217 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.