ebook img

Pricing a basket option when volatility is capped using affine jump-diffusion models PDF

88 Pages·2013·1.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pricing a basket option when volatility is capped using affine jump-diffusion models

Pricing a basket option when volatility is capped using affine jump-diffusion models D A N I E L K R E B S Master of Science Thesis Stockholm, Sweden 2013 Pricing a basket option when volatility is capped using affine jump-diffusion models D A N I E L K R E B S Degree Project in Mathematical Statistics (30 ECTS credits) Degree Programme in Engineering Physics (270 credits) Royal Institute of Technology year 2013 Supervisor at KTH was Camilla Johansson Landén Examiner was Boualem Djehiche TRITA-MAT-E 2013:27 ISRN-KTH/MAT/E--13/27--SE Royal Institute of Technology School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci Abstract Thisthesisconsidersthepriceandcharacteristicsofanexoticoptioncalledthe Volatility-Cap-Target-Level(VCTL)option. ThepayofffunctionisasimpleEuro- peanoptionstylebuttheunderlyingvalueisadynamicportfoliowhichiscom- prisedoftwocomponents:Ariskyassetandanon-riskyasset.Thenon-riskyasset isabondandtheriskyassetcanbeafundoranindexrelatedtoanyassetcategory suchasequities,commodities,realestate,etc. Themainpurposeofusingadynamicportfolioistokeeptherealizedvolatil- ityoftheportfolioundercontrolandpreferablybelowacertainmaximumlevel, denotedastheVolatility-Cap-Target-Level(VCTL).Thisisattainedbyavariable allocationbetweentheriskyassetandthenon-riskyassetduringthematurityofthe VCTL-option.Theallocationisreviewedandifnecessaryadjustedevery15thday. Adjustmentdependsentirelyupontherealizedhistoricalvolatilityoftheriskyasset. Moreover, it is assumed that the risky asset is governed by a certain group ofstochasticdifferentialequationscalledaffinejump-diffusionmodels. Allmod- elswillbecalibratedusingout-of-themoneyEuropeancalloptionsbasedonthe Deutsche-Aktien-Index(DAX). ThenumericalimplementationoftheportfoliodiffusionsandtheuseofMonte CarlomethodswillresultindifferentVCTL-optionprices. Thus,topriceanon- standardproductandtocomplywithgoodriskmanagement,itisadvocatedthatthe financialinstitutionuseseveralresearchmodelssuchastheSVSJ-andtheSepp- modelinadditiontotheBlack-Scholesmodel. Keywords: Exoticoption, basketoption, riskmanagement, greeks, affinejump- diffusions, the Black-Scholes model, the Heston model, Bates model with log- normal jumps, the Bates model with log-asymmetric double exponential jumps, theStochastic-Volatility-Simultaneous-Jumps(SVSJ)-model,theSepp-model. Acknowledgements IwouldliketothankmysupervisoratRoyalInstituteofTechnology,Dr. CamillaLandénforexcellentguid- anceintheworldofderivativesandsuperbfeedback. IwouldalsoliketoacknowledgeDr. ArturSepp,Vice PresidentEquityDerivativesAnalytics,BankofAmericaMerrillLynch,forfruitfuldiscussionsaboutaffine jump-diffusions and Professor Kenneth Holmström, Tomlab for insightful comments about calibration. I’m alsogratefultoDubravkoSalcic,TomAndersson,NelaCekredziandRobertAxelssonatSEB,forhighlight- ingthepracticalaspectsofstructuredderivatives. Finally,IwouldliketothankmymentorDr. Christianvon Ledebur,andmyfamilyandfriendsfortheirvaluablesupportandencouragement. DanielKrebs ([email protected]) Contents 1 Introduction 1 2 Thedynamicportfolio 3 2.1 Theself-financingportfolio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 TheVCTL-option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Mathematicsbehindtherelativeweights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Theannualizedrealizedhistoricalvolatilityandthediscretizedportfolio . . . . . . . . . . . . 6 2.5 Avolatilitycaptargetlevelandthecorrespondingallocationtable . . . . . . . . . . . . . . . 7 3 UsingFouriertransformforoptionpricingwheretheriskyassetsatisfiesdifferentaffinejump- diffusions 9 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 ThegeneralandtransformedpricedynamicfortheriskyassetS . . . . . . . . . . . . . . . . 9 3.2.1 TheoptionpriceformulausingtheinverseandforwardFouriertransform . . . . . . . 10 3.2.2 Thecharacteristicformula: ExplicitexpressionscorrespondingtotheBlack-Scholes model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.3 Thecharacteristicformula:ExplicitexpressionscorrespondingtotheHestonmodel . 12 3.2.4 Thecharacteristicformula:ExplicitexpressionscorrespondingtotheBatesmodel . . 12 3.2.5 Thecharacteristicformula:ExplicitexpressionscorrespondingtotheSVSJmodel . . 13 3.2.6 Thecharacteristicformula:ExplicitexpressionscorrespondingtotheSEPPmodel . . 14 4 Modelcalibration 15 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Amulti-variatefunctionandestimationprocedure. . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.1 Severalerrormeasuresandthechoiceoferrorfunctional. . . . . . . . . . . . . . . . 16 4.2.2 Themarketdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Boundariesandestimatedparametervalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 Simulationofthetransformedportfolioaffinejump-diffusions 19 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Simple Euler discretization of the transformed portfolio dynamic: The risky asset evolves accordingtotheBlack-Scholesmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 Full truncation Euler discretization of the transformed portfolio dynamics: The risky asset evolvesaccordingtotheHestonmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.4 Full truncation Euler discretization of the transformed portfolio dynamics: The risky asset evolvesaccordingtotheBatesLNmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.5 Full truncation Euler discretization of the transformed portfolio dynamics: The risky asset evolvesaccordingtotheBatesLDEmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.6 Full truncation Euler discretization of the transformed portfolio dynamics: The risky asset evolvesaccordingtotheSVSJmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.7 Full truncation Euler discretization of the transformed portfolio dynamics: The risky asset evolvesaccordingtotheSeppmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6 Thedistributionalfeaturesoftheportfolio 27 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2 ThemeanoftheportfolioX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 vi 6.2.1 Themeanversusvolatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2.2 ThemeanversusVCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.3 ThevarianceoftheportfolioX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.1 Thestandarddeviationoflog(X)versusmaturityfordifferentvolatilities . . . . . . . 30 6.4 Thestandarddeviationoflog(X)versusVCTL . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.5 MeasuringskewnessandkurtosisoftheVolatilityCapPortfolio . . . . . . . . . . . . . . . . 32 6.6 ThekurtosisandskewnessoftheVolatilityCapPortfolio . . . . . . . . . . . . . . . . . . . . 33 7 TheVCTL-optionprice 37 7.1 TheVCTL-optionpriceversusVCTLundertheBS-model . . . . . . . . . . . . . . . . . . . 37 7.2 The VCTL-option price versus VCTL under the Heston-, BatesLN-,BatesLDE-,SVSJ- and Sepp-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.3 TheVCTL-optionpriceversusvolatilitywhenVCTL=15% . . . . . . . . . . . . . . . . . . 41 7.4 TheVCTL-optionpriceversusvolatilitywhenVCTL=10% . . . . . . . . . . . . . . . . . . 44 7.5 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8 ThesensitivemeasuresoftheVCTL-option 49 8.1 TheGreeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.2 Greeks for a European call option when the risky asset S evolves according to the Black- Scholesmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.2.1 Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.2.2 Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.2.3 Vega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.3 GreeksfortheVCTL-option,whentheriskyassetSevolvesaccordingtotheBlack-Scholes model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.4 GreeksfortheVCTL-option,whentheriskyassetSevolvesaccordingtotheHeston-model . 53 8.5 Greeks for the VCTL-option, when the risky asset S evolves according to the BatesLN-, BatesLDE-,SVSJ-andSepp-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.6 DeltaforVCTL-optionversusvolatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.7 VegaforVCTL-optionversusvolatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9 Impliedvolatilityandskeweffects 55 9.1 Impliedvolatilityversusthevolatilityofvolatilityε . . . . . . . . . . . . . . . . . . . . . . . 56 9.2 Impliedvolatilityversusthecorrelationρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10 Conclusions 59 A Appendix 61 A.1 Allocationtableandrelativeweights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 A.2 Standarddeviationoflog(S)versusmaturity. . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A.3 Thedrift(riskyassetS)versusvolatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 A.4 Thestandardvariationoflog(X)versusVCTL,maturity1year . . . . . . . . . . . . . . . . . 64 A.5 Thestandardvariationoflog(X)versusVOLATILITY.Maturity1year.VCTL=15% . . . . . 64 A.5.1 Kurtosisandskewnessforlog(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 A.6 Thestandardvariationoflog(X)versusVCTL,maturity1year . . . . . . . . . . . . . . . . . 65 A.7 Momentsforlog(X)versusVCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 A.8 GreeksfortheVCTL-option,whentheriskyassetSevolveseitheraccordingtotheBatesLN- modelandBatesLDE-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 A.9 GreeksfortheVCTL-option,whentheriskyassetSevolvesaccordingtotheSVSJ-model . . 69 A.10 GreeksfortheVCTL-option,whentheriskyassetSevolvesaccordingtotheSepp-model . . 69 A.11 GreeksforasimpleEuropeancalloptionunderaffinejump-diffusions . . . . . . . . . . . . . 70 A.12 Momentsfordifferentε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.13 Impliedvolatility,3-dimensional,differentrho:s . . . . . . . . . . . . . . . . . . . . . . . . . 72 Bibliography 75

Description:
This thesis considers the price and characteristics of an exotic option called the. Volatility-Cap-Target-Level(VCTL) option. The payoff function is a simple Euro- pean option style but the underlying value is a dynamic portfolio which is com- prised of two components: A risky asset and a non-risky
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.