“Pretty strong” converse for the private capacity of degraded quantum wiretap channels Andreas Winter ICREA and Departament de F´ısica, Grup d’Informacio´ Qua`ntica Universitat Auto`noma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain. Abstract—In the vein of the recent “pretty strong” converse of [15], we do not reach a complete understanding of the full for the quantum and private capacity of degradable quantum tradeoff between decoding error and privacy. channels [Morgan/Winter, IEEE Trans. Inf. Theory 60(1):317- 333,2014],weusethesametechniques,inparticularthecalculus II. CQQ-WIRETAPCHANNELANDSTRONGCONVERSE ofmin-entropies,toshowaprettystrongconversefortheprivate The model we consider is that of a discrete memoryless capacity of degraded classical-quantum-quantum (cqq-)wiretap cqq-wiretap channel: channels, which generalize Wyner’s model of the degraded 6 classical wiretap channel. 1 W :X −→S(B⊗E) 0 While the result is not completely tight, leaving some gap 2 between the region of error and privacy parameters for which x(cid:55)−→ρBxE, theconverseboundholds,andalargerno-goregion,itrepresents r a further step towards an understanding of strong converses of with a finite set X and finite dimensional Hilbert spaces B p wiretap channels [cf. Hayashi/Tyagi/Watanabe, arXiv:1410.0443 and E, of legal user and eavesdropper, respectively. Further- A for the classical case]. more, we shall assume most of the time that the channel is Index Terms—quantum information, private capacity, strong 6 degraded, meaning that there exists a quantum channel (cptp converse, smooth min-entropies. 2 map) D : L(B) → L(E) such that ρE = D(ρB) for all x x x∈X.IntroducingaStinespringdilationofD byanisometry h] I. INTRODUCTION V :B (cid:44)→E(cid:48)⊗F, we have ρE(cid:48) =Tr VρBV†. x F x p One of the most outstanding successes of Shannon the- The objective of wiretap coding is for Alice to encode - ory [23] is Shannon’s information theoretic treatment of messages in such a way that Bob can decode with small error t n cryptography [24], and the further development at the hands probability, and that Eve cannot distinguish messages except a of Wyner, who introduced the wiretap channel model [36]. with small probability. To quantify errors, we use the purified u q While the achievability part for the wiretap channel is a well- distance (cid:112) [ understoodcombinationofchannelcodingandprivacyampli- P(ρ,σ)= 1−F(ρ,σ)2, fication techniques, the converse, even the weak converse, of √ √ 2 with the fidelity F(ρ,σ) = (cid:107) ρ σ(cid:107) between quantum thegeneralizedwiretapchannelrequiredanewideainCsisza´r 1 v states [16], [30], see [27]. 1 and Ko¨rner’s contribution [3]. An n-block code of transmission error (cid:15) and privacy error 1 Characteristically, for multi-user scenarios strong converses 6 are hard to come by and not known in many instances. The δ for W consists of a stochastic map E :[M]−→Xn and a 6 POVM D =(D )M on Bn, such that for presenceofanadversaryinthewiretapsetting,albeitapassive u u=1 0 . one, makes the wiretap capacity a multi-user problem, and ρUU(cid:98)En = 1 (cid:88) E(xn|u)|u(cid:105)(cid:104)u|U ⊗|uˆ(cid:105)(cid:104)uˆ|U(cid:98) 1 until recently only weak converses were known for Wyner’s M 0 u,uˆ,xn originalproblem[3],[36].Thesamewasistrueforthe“static” 16 versionsofdistillationofsharedsecretkeybetweenAliceand ⊗TrBn(cid:2)ρBxnnEn(Duˆ⊗11)(cid:3), : Bob from a prior three-way correlation with Eve [1], [18], the following hold: v where Tyagi and Narayan [28], Tyagi and Watanabe [29], Xi and Watanabe and Hayashi [33] made progress only recently. P(ρUU(cid:98),∆UU(cid:98))≤(cid:15), (1) r Most recently, Hayashi, Tyagi and Watanabe [15] (see also P(ρUEn,∆U ⊗ρEn)≤δ. (2) (cid:101) a their [14]) have given an elegant, very insightful analysis of strong converse rates for general classical wiretap channels, Here, ∆UU(cid:98) = M1 (cid:80)u|u(cid:105)(cid:104)u|U ⊗ |u(cid:105)(cid:104)u|U(cid:98), so that ∆U is the yielding the complete strong converse in the degraded case. maximally mixed state, and ρ(cid:101)En is a suitable state on En. Here,weextendtheirresultssomewhattothequantumcase, ThelargestnumberM ofmessagesundertheseconditionsis looking at wiretap channels with classical input but quantum denotedM(n,(cid:15),δ).Then,theprivatecapacityisdefinedasthe outputs,so-calledcqq-wiretapchannels.Insteadoftheelegant largest asymptotically achievable rate such that transmission hypothesis testing method developed in [15], we use a rather error and privacy error vanish in the limit, i.e. more blunt tool, the min-entropy calculus [22], [27]. Hence, 1 P(W):= inf liminf logM(n,(cid:15),δ). while we can treat channels not amenable to the method (cid:15),δ>0 n→∞ n Theorem 1 (Devetak [6]; Cai/Winter/Yeung [2]) LetW be Its proof relies on the calculus of min- and max-entropies, a cqq-wiretap channel. Then its private capacity is given by of which we will briefly review the necessary definitions and P(W)=sup 1P(1)(W⊗n), where properties; cf. [27] for more details. n n P(1)(W)=maxI(U :B)−I(U :E). Definition 3 (Min- and max-entropy) For ρAB ∈S (AB), ≤ Here, the maximum is over joint distributions P of the the min-entropy of A conditioned on B is defined as UX channel input X and an auxiliary variable U, and the mutual H (A|B) := max max{λ∈R:ρAB ≤2−λ11⊗σB}. min ρ informations are with respect to the state σB∈S(B) ρUXBE =(cid:88)P (u,x)|u(cid:105)(cid:104)u|U ⊗|x(cid:105)(cid:104)x|X ⊗ρBE. With a purification |ψ(cid:105)ABC of ρ, we define UX x u,x H (A|B) :=−H (A|C) , max ρ min ψAC For degraded channels, it is given by the single-letter formula with the reduced state ψAC =Tr ψ. B P(W)=P(1)(W)=maxI(X :F|E(cid:48)), Definition 4 (Smooth min- and max-entropy) Let (cid:15) ≥ 0 where the maximum is over distributions P of the channel X and ρ ∈ S(AB). The (cid:15)-smooth min-entropy of A con- input, and the conditional mutual information is with respect AB ditioned on B is defined as to the state ρXE(cid:48)FE =(cid:88)PX(x)|x(cid:105)(cid:104)x|X(V ⊗11)ρBxE(V ⊗11)†. Hm(cid:15)in(A|B)ρ :=ρm(cid:48)≈a(cid:15)xρHmin(A|B)ρ(cid:48), x where ρ(cid:48) ≈ ρ means P(ρ(cid:48),ρ)≤(cid:15) for ρ(cid:48) ∈S (AB). (cid:15) ≤ In other words, w.l.o.g. one may assume U = X, and the Similarly, regularization is not necessary [13, Appendix A]. (cid:4) H(cid:15) (A|B) := min H (A|B) max ψ max ρ(cid:48) ρ(cid:48)≈(cid:15)ρ For completeness, we recall here the definition of the =−H(cid:15) (A|C) , min ψ quantum information quantities: For a state ρ on a quantum system X, the entropy is S(X) = S(ρX) = −Trρlogρ, with a purification ψ ∈S(ABC) of ρ. the mutual information for a bipartite state ρXY is I(X : All min- and max-entropies, smoothed or not, are invariant Y) = S(X)+S(Y)−S(XY), and the conditional mutual under local unitaries and local isometries. information for a tripartite state ρXYZ is I(X : Y|Z) = The following two lemmas show that min- and max- S(XZ)+S(YZ)−S(Z)−S(XYZ). entropies have properties close to those of the von Neumann Itseemstobeunknownwhetherinthecqq-wiretapchannel entropy. setting the regularization above is necessary, but it is quite clear that the single-letterization in the classical case, by Lemma 5 (Data processing) For ρ∈S(ABC) and (cid:15)≥0, Csiszar and Ko¨rner [3], does not work, due to the use of H(cid:15) (A|BC)≤H(cid:15) (A|B), chain rules, we would get information quantities conditioned min min onquantumregisters.Furthermore,theresultsofSmith,Renes Hm(cid:15)ax(A|BC)≤Hm(cid:15)ax(A|B). (cid:4) and Smolin [26] suggest that P(1) does not give the private capacity. On the other hand, in the general quantum channel Lemma 6 (Chain rules [10], [31]) Let (cid:15),δ ≥ 0, η > 0. case [2] it is well-known that the regularization is necessary: Then, with respect to the same state ρ∈S(ABC), Foranisometry,suchthatEve’schannelisthecomplementary 2 H(cid:15)+2δ+η(AB|C)≤Hδ (B|C)+H(cid:15) (A|BC)+log , channel to Bob’s, there are instances where P(1) is strictly max max max η2 smallerthanP [11],[17],[25],[26].Alsoiftheeavesdropper’s (3) channelisadegradedversion(eventrivially)oftheauthorized 2 channel,andthelatterisquantum,P(1) canbestrictlysmaller H(cid:15) (AB|C)≥Hδ (B|C)+H(cid:15)+2δ+2η(A|BC)−3log .(cid:4) max min max η2 than P, as observed in [13]. (4) Here we show the following pretty strong converse: Proof of Theorem 2: We follow closely the initial Theorem 2 Let W : X → S(B ⊗E) be a degraded cqq- steps of the analysis in [19, Thm. 14]. Consider an n-block wiretap channel and (cid:15),δ ≥0 such that (cid:15)+2δ <1, then code with M messages, and transmission and privacy error (cid:0)(cid:112) (cid:1) (cid:15) and is δ: message u (chosen uniformly) is encoded by a logM(n,(cid:15),δ)≤nP(W)+O nlogn , distributionE(xn|u)andsentthroughthechannel,givingrise where the implicit constant only depends on 1−(cid:15)−2δ. In to a ccqq-state between message U, input Xn, output Bn and particular, under the above assumptions, environment En: nl→im∞n1 logM(n,(cid:15),δ)=P(W). ρUXnBnEn = M1 u(cid:88),xnE(xn|u)|u(cid:105)(cid:104)u|U⊗|xn(cid:105)(cid:104)xn|Xn⊗ρBxnnEn. The “trivial” converse shows that (asymptotic equipartition property) to a product of blocks of i.i.d. states ρ⊗nP0(x). On the other hand, going to the S - logM ≤Hδ (U|En)−H(cid:15) (U|Bn), x n min max symmetrized state cf. Renes and Renner [21]. Namely, according to the def- inition of privacy given above, the reduced state ρUEn is ΩXnE(cid:48)nFnEn = 1 (cid:88) |xn(cid:105)(cid:104)xn|Xn⊗V⊗nρBnEnV†⊗n, |τ(P )| xn w1it(cid:80)hin |puu(cid:105)(cid:104)riufi|eUd⊗diρsEtann,ceheδncoefHaδpr(oUdu|Ectn)sta≥teloogf Mthe. Lfoikrme- 0 xn∈τ(P0) M u (cid:101) min wise, there exists a decoding cptp map D : L(Bn) → U(cid:98) we have, once more invoking Lemma 7, such that (id ⊗ D)ρUBn is within (cid:15) purified distance from √ the perfectly correlated state 1 (cid:80) |u(cid:105)(cid:104)u|U ⊗|u(cid:105)(cid:104)u|U(cid:98), hence Hmηax(Fn|E(cid:48)n)ω ≤Hmη/ax2(Fn|E(cid:48)n)Ω H(cid:15) (U|Bn)≤0. M u ≤H1−18η2(Fn|E(cid:48)n) , max min Ω We apply the Stinespring dilation of the degrading map to ρ, yielding where in the second line we have used Lemma 10. Now, the uniform distribution Υ on the type class τ(P ) has the ωUXnE(cid:48)nFnEn property Υ ≤ (n+1)|XP|P0⊗n, because it is on P0 that the P0 0 0 = 1 (cid:88)E(xn|u)|u(cid:105)(cid:104)u|U ⊗|xn(cid:105)(cid:104)xn|Xn ⊗V⊗nρBnEnV†⊗n. probability weight of type classes of P0⊗n peaks, and so M xn u,xn Ω≤(n+1)|X|(cid:0)ΘXE(cid:48)FE(cid:1)⊗n, With respect to this state, we now have (cf. Eq. (18) of [19]), logM ≤Hδ (U|En)−H(cid:15) (U|E(cid:48)nFn) with =Hmδin(U|E(cid:48)n)−Hm(cid:15)ax (U|E(cid:48)nFn) ΘXE(cid:48)FE =(cid:88)P0(x)|x(cid:105)(cid:104)x|X ⊗VρBxEV†. min max x 2 ≤Hη (Fn|E(cid:48)n)−H(cid:15)+2δ+5η(Fn|E(cid:48)nU)+4log max max η2 Thus,usingthesamereasoningasintheproofof[19,Thm.2], 2 we get ≤Hη (Fn|E(cid:48)n)−Hλ (Fn|E(cid:48)nXn)+4log , max max η2 (5) Hmηax(Fn|E(cid:48)n)ω ≤Hm1−in116η2(n+1)−|X|(Fn|E(cid:48)n)Θ⊗n with λ := (cid:15)+2δ+5η. Here we have used the degradability ≤Hm312aηx2(n+1)−|X|(Fn|E(cid:48)n)Θ⊗n property of the channel in the second line, in the third ≤nS(F|E(cid:48)) +O(cid:0)(cid:112)nlogn(cid:1), Θ line twice the chain rule for min-/max-entropies [Lemma 6, Eqs. (3) and (4)], and in the last line data processing where we have once more invoked the AEP, Proposition 8. (Lemma 5) for the max-entropy. Indeed, InsertingtheseupperandlowerboundsintoEq.(5),wefind 2 Hm(cid:15)+a3xη(AB|C)≤Hmηax(A|C)+Hm(cid:15)ax(B|AC)+logη2 logM ≤nI(X :F|E(cid:48))+O(cid:0)(cid:112)nlogn(cid:1). (cid:107) 2 Nowwefacethecaseofgeneralencodings,andreduceitto Hκ (AB|C)≥Hδ (B|C)+Hκ+2δ+2η(A|BC)−3log , max min max η2 the above form of constant type. Introduce another register T holding the type t(xn) of xn, of dimension |T|≤(n+1)|X|, which we apply with Fn ≡ A, U ≡ B and E(cid:48)n ≡ C, and so that we have an extended joint state with κ=(cid:15)+3η. i.e.Ntohwe,daesnssuitmyeωXfonr,siismspulpicpiotyrtetdhaotntahesindgislteritbyuptieonclaosfs Xn, ρUXnBnEnT = M1 (cid:88)E(xn|u)|u(cid:105)(cid:104)u|U ⊗|xn(cid:105)(cid:104)xn|Xn u,xn τ(P0)=(cid:8)xn :∀x F(x|xn)=P0(x)(cid:9), ⊗ρBnEn ⊗|t(xn)(cid:105)(cid:104)t(xn)|T. xn where F(x|xn) is the relative requency of the letter x occur- Imagine that T is handed to the eavesdropper; this clearly ring in xn. With this assumption we show how to bound the doesn’t increase Bob’s decoding error, but it can affect the max-entropy terms on the r.h.s. of Eq. (5). Namely, all xn privacyofthecode.Theideais,however,thatsincelog|T|≤ having non-zero probability are permutations of a fiducial xn. 0 O(logn), we can rectify this by hashing out O(logn) of the Hence, on the one hand, we have message, and the remainder will be almost as private as the Hλ (Fn|E(cid:48)nXn) ≥Hλ(cid:98) (Fn|E(cid:48)n) original code: Indeed, let (cid:15)(cid:48) = (cid:15)+2ϑ and δ = δ+2ϑ, such max ω ≥n(cid:88)maxP0(x)S(Fρ|xEn0(cid:48))ρx −O(cid:0)√n(cid:1), Nthat=st(cid:4)ilMlL(cid:15)(cid:5)(cid:48)+set2sδ(cid:48)L<u(cid:48) 1o,fheoqwueavlesri.zPeaLrtit=ionpo[Mly(cid:0)]lorgannd,oϑm−l1y(cid:1),inutop x to a rest of size smaller than L, so that we can label the by Lemma 7 (quasi-concavity of max-entropy) below, with elementsof(cid:83) L bypairs(u(cid:48),v)∈[N]×[L].ComputeU(cid:48) √ u(cid:48) u(cid:48) λ(cid:98) = λ 2−λ2 < 1, and a simple extension of Proposition 8 as a function of U (except for an event of probability ≤ 1), N so that we obtain a joint state Proposition 8 (Min- and max-entropy AEP [22], [27]) ρU(cid:48)XnBnEnT = 1 (cid:88) 1E(xn|u(cid:48),v)|u(cid:48)(cid:105)(cid:104)u(cid:48)|U(cid:48) ⊗|xn(cid:105)(cid:104)xn|Xn Let ρ∈S(HAB) and 0<(cid:15)<1. Then, (cid:101) N L 1 u(cid:48),v,xn ⊗ρBxnnEn ⊗|t(xn)(cid:105)(cid:104)t(xn)|T nl→im∞nHm(cid:15)in(An|Bn)ρ⊗n ==Sli(mA|B1)Hρ (cid:15) (An|Bn) . = 1 (cid:88)E(cid:101)(xn|u(cid:48))|u(cid:48)(cid:105)(cid:104)u(cid:48)|U(cid:48) ⊗|xn(cid:105)(cid:104)xn|Xn n→∞n max ρ⊗n N More precisely, for a purification |ψ(cid:105)∈ABC of ρ, denote u(cid:48),xn (cid:13) (cid:13) ⊗ρBnEn ⊗|t(xn)T(cid:105)(cid:104)t(xn)T|, µX := log(cid:13)(ψX)−1(cid:13), where the inverse is the generalized xn inverse (restricted to the support), for X = B,C. Then, for where E(cid:101)(xn|u(cid:48)) = 1 (cid:80) E(xn|u(cid:48),v). This is a new code: every n, L v By the properties of random hashing, with high probability, (cid:114) 2 Bob can apply the same decoding as in the original code H(cid:15) (An|Bn)≥nS(A|B)−(µ +µ ) nln , min B C (cid:15) to obtain an error ≤ (cid:15) + ϑ, and the privacy error for the (cid:114) combined register EnT is ≤δ+ϑ. Furthermore, the privacy 2 H(cid:15) (An|Bn)≤nS(A|B)+(µ +µ ) nln , error of the register T alone is ≤ ϑ. This has the important max B C (cid:15) consequence that we can modify the encoding E(cid:101)(xn|u(cid:48)) to a and similar opposite bounds via Lemma 9. (cid:4) slightly different one E(cid:48)(xn|u(cid:48))=Q(t(xn))E(cid:48)(xn|u(cid:48),t(xn)), with a universal distribution Q over the types, such that Lemma 9 (Proposition 5.5 in [27]) Let ρ ∈ S(AB) and ρ(cid:48)U(cid:48)XnBnEnT = 1 (cid:88)E(cid:48)(xn|u(cid:48))|u(cid:48)(cid:105)(cid:104)u(cid:48)|U(cid:48) ⊗|xn(cid:105)(cid:104)xn|Xn α,β ≥0 such that α+β < π2. Then, N 1 u(cid:48),xn Hsinα(A|B) ≤Hsinβ(A|B) +log . ⊗ρBnEn ⊗|t(xn)(cid:105)(cid:104)t(xn)| min ρ max ρ cos2(α+β) xn = 1 (cid:88) (cid:88) E(cid:48)(xn|u(cid:48),P )|u(cid:48)(cid:105)(cid:104)u(cid:48)|U(cid:48) ⊗|xn(cid:105)(cid:104)xn|Xn For(cid:15),δ ≥0,(cid:15)+δ <1thiscanberelaxedtothesimplerform N 0 1 P0typeu(cid:48),xn∈τ(P0) Hm(cid:15)in(A|B)ρ ≤Hmδax(A|B)ρ+log1−((cid:15)+δ)2. (cid:4) ⊗ρBnEn ⊗Q(P )|P (cid:105)(cid:104)P |T xn 0 0 0 fulfills the decoding and eavesdropper constraints with trans- Lemma 10 (Dupuis [9]) Let ρ ∈ S(AB) and 0 ≤ (cid:15) ≤ 1. mission error (cid:15)(cid:48) and privacy error δ(cid:48), and has a perfectly Then, √ independent type-register T. Hma1x−(cid:15)4(A|B)ρ ≤Hm(cid:15)in(A|B)ρ, Consider now the codes obtained by using E(cid:48)(·|·,P ) for a 0 which can be rewritten and relaxed into the form (0≤δ ≤1) fixed P (but always the same decoder for Bob). These have transmi0ssion errors (cid:15)(P0) and privacy errors δ(P0). By the Hmδax(A|B)ρ ≤Hm√4i1n−δ2(A|B)ρ ≤Hm1−in14δ2(A|B)ρ. (cid:4) direct sum over types P – with probability Q(P ) –, and the √ 0 0 concavity of 1−x2, one can see that III. DISCUSSION (cid:88) (cid:88) We showed that the min-entropic machinery employed in (cid:15)(cid:48) ≥ Q(P )(cid:15)(P ), δ(cid:48) ≥ Q(P )δ(P ), 0 0 0 0 theanalysisofdegradablequantumchannels[4],[7],[19],can P0type P0type be used equally, if not more easily, to obtain a pretty strong and so converse for degraded quantum wiretap channels of the cqq (cid:88) Q(P )[(cid:15)(P )+2δ(P )]≤(cid:15)(cid:48)+2δ(cid:48) <1, kind; the reason for focusing on this class of channels lies in 0 0 0 the availability of a single-letter formula. P0type For degraded ccc-wiretap channels, i.e. the original Wyner and so there must exist a type P such that the encoding 0 model, Hayashi, Tyagi and Watanabe [15] have found a very E(cid:48)(·|·,P ) has (cid:15)(P )+2δ(P )≤(cid:15)(cid:48)+2δ(cid:48) <1. But this code 0 0 0 elegantargument,viahypothesistesting,togivethetighterre- has only O(logn) less information in the message, and has sultthatif(cid:15)+δ <1,thenlim 1 logM(n,(cid:15),δ)=P(W). the property that the encoder maps only into the type class n→∞ n In fact, by phrasing error and privacy in terms of the trace τ(P ), hence can use the previous bound: 0 distance D(ρ,σ) = 1(cid:107)ρ − σ(cid:107) ≤ P(ρ,σ), they show that logM ≤logN +O(logn)≤nI(X :F|E(cid:48))+O(cid:0)(cid:112)nlogn(cid:1), this holds if and only2if: For 11−δ ≤ (cid:15) < 1 the above limit gives the classical capacity C(W) of the channel from Alice concluding the proof. to Bob. It seems however that their technique does not easily generalize to cqq-channels, as it exploits the classical nature Lemma 7 (Lemma 10 in [19]) Let ρ ∈ S(AB) be a state of the output signals. and consider the state family ρAB = (U ⊗V )ρ(U ⊗V )†, √ i i i i i Similarly,if(cid:15)andδare“toobig”,namely 1−δ2 ≤(cid:15)<1, with unitaries U on A and V on B, and probabilities p ; define ρ:=(cid:80) piρ . Then, withi(cid:15)=(cid:15)√2−(cid:15)2 ≤(cid:15)√2, i we can easily see that Theorem 2 breaks: In that case, i i i (cid:98) 1 Hm(cid:15)ax(A|B)ρ ≥Hm(cid:98)(cid:15)ax(A|B)ρ. (cid:4) nl→im∞nlogM(n,(cid:15),δ)=C(W), where C(W) is the classical capacity of the cq-channel [6] I. Devetak. The private classical capacity and quantum capacity of a W : x (cid:55)−→ ρB. Namely, choose any fixed xn, then for an quantumchannel.IEEETrans.Inf.Theory,51(2005),44–55. asymptoticallyxerror-free and capacity-achieving0 code xn(m), [7] I.DevetakandP.W.Shor.Thecapacityofaquantumchannelforsimul- taneous transmission of classical and quantum information. Commun. with m = 1,...,N = 2nC(W)−o(n), consider encoding mes- Math.Phys.,256(2005),287–303. sage m by the mixture (cid:15)2|x (m)(cid:105)(cid:104)x (m)|+(1−(cid:15)2)|xn(cid:105)(cid:104)xn|. [8] F. Dupuis. The decoupling approach to quantum information theory. n n 0 0 PhDthesis,Universite´ deMontre´al(2009);arXiv:1004.1641. This scheme has transmission error arbitrarily close to (cid:15) and √ [9] F.Dupuis.privatecommunication(January2013). privacy error ≤ 1−(cid:15)2 ≤δ. [10] F. Dupuis, M. Berta, J. Wullschleger and R. Renner. The decoupling By ignoring the privacy constraint, our Theorem 2 includes theorem.arXiv:1012.6044(2010). [11] D.ElkoussandS.Strelchuk.Superadditivityofprivateinformationfor a proofof the strongconverse for theclassical capacityof cq- anynumberofusesofthechannel.arXiv[quant-ph]:1502.05326(2015). channels[20],[35];simplyconsideratrivialeavesdropperand [12] C. A. Fuchs and J. van de Graaf. Cryptographic Distinguishability δ =0.Thisshowsthatfor(cid:15)<1,thelimitof 1 logM(n,(cid:15),δ) MeasuresforQuantum-MechanicalStates.IEEETrans.Inf.Theory,45 n (1999),1216–1227. is bounded by C(W); cf. Wang and Renner [32]. [13] S. Guha, P. Hayden, H. Krovi, S. Lloyd, C. Lupo, J. H. Shapiro, M. TakeokaandM.M.Wilde,“QuantumEnigmaMachinesandtheLocking Capacity of a Quantum Channel”, Phys. Rev. X 4 (2014), 011016; arXiv[quant-ph]:1307.5368. [14] M. Hayashi, H. Tyagi and S. Watanabe. Secret Key Agreement: Gen- eral Capacity and Second-Order Asymptotics. arXiv[cs.IT]:1411.0735 (2014). [15] M.Hayashi,H.TyagiandS.Watanabe.StrongConverseforaDegraded Wiretap Channel via Active Hypothesis Testing. Proc. Allerton 2014; arXiv[quant-ph]:1410.0443. [16] R. Jozsa. Fidelity for mixed quantum states. J. Mod. Opt., 41 (1994), 2315–2323. [17] K.Li,A.Winter,X.-B.ZouandG.-C.Guo.PrivateCapacityofQuantum ChannelsIsNotAdditive.Phys.Rev.Lett.,103(2009),120501. [18] U.M.Maurer.Secretkeyagreementbypublicdiscussionfromcommon information.IEEETrans.Inf.Theory,39,3(1993),733–742. [19] C. Morgan and A. Winter. “Pretty Strong” Converse for the Quantum CapacityofDegradableChannels.IEEETrans.Inf.Theory,60,1(2014), 317–333. [20] T. Ogawa and H. Nagaoka. Strong converse to the quantum channel codingtheorem.IEEETrans.Inf.Theory,45(1999),2486–2489. [21] J.M.RenesandR.Renner.Noisychannelcodingviaprivacyamplifica- tionandinformationreconciliation.IEEETrans.Inf.Theory,57(2011), 7377–7385. [22] R. Renner. Security of Quantum Key Distribution. PhD thesis, ETH Fig.1. Transmissionerror(cid:15)vs.privacyerrorδ:Belowthestraightlinewe Zu¨rich(2005);arXiv:quant-ph/0512258. haveastrongconverse,abovethecirclethestrongconversecannothold. [23] C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech.J.,27(1948),379–423&623–656. [24] C.E.Shannon.CommunicationTheoryofSecrecySystems.BellSyst. We leave it as an open problem to try and close the gap Tech.J.,28,4(1949),656–715. between the two regimes (see Fig. 1). [25] G. Smith and J. A. Smolin. Extensive Nonadditivity of Privacy. Phys. Rev.Lett.,103(2008),120503. ACKNOWLEDGMENTS [26] G.Smith,J.M.RenesandJ.A.Smolin.StructuredCodesImprovethe Bennett-Brassard-84 Quantum Key Rate. Phys. Rev. Lett., 100 (2008), It is a pleasure to thank Imre Csisza´r, Prakash Narayan, 170502. Masahito Hayashi and Shun Watanabe for various discussions [27] M. Tomamichel. Quantum Information Processing with Finite Re- sources: Mathematical Foundations. Springer Briefs in Mathematical on wiretap channels, strong converses and the history of Physics,vol.5,SpringerVerlag,HeidelbergNewYork,2016. cryptography. The author was supported by the EU (STREP [28] H. Tyagi and P. Narayan. How Many Queries Will Resolve Common “RAQUEL”), the ERC (Advanced Grant “IRQUAT”), the Randomness?IEEETrans.Inf.Theory,59,9(2013),5363–5378. [29] H. Tyagi and S. Watanabe. Converses for secret key agreement and Spanish MINECO (project project FIS2008-01236) with the securecomputing.IEEETrans.Inf.Theory,61,9(2015),4809–4827. support of FEDER funds, and the Generalitat de Catalunya [30] A. Uhlmann. The ‘Transition Probability’ in the State Space of a ∗- (CIRIT project 2014-SGR-966). Algebra.Rep.Math.Phys.,9(1976),273–279. [31] A.Vitanov,F.Dupuis,M.TomamichelandR.Renner.ChainRulesfor SmoothMin-andMax-Entropies.arXiv[quant-ph]:1205.5231(2012). REFERENCES [32] L. Wang and R. Renner. One-Shot Classical-Quantum Capacity and [1] R.AhlswedeandI.Csisza´r.Commonrandomnessininformationtheory HypothesisTesting.Phys.Rev.Lett.,108(2012),200501;arXiv[quant- and cryptography — I. Secret sharing. IEEE Trans. Inf. Theory, 39, 4 ph]:1007.5456. (1993),1121–1132. [33] S. Watanabe and M. Hayashi. Non-Asymptotic Analysis of Privacy [2] N. Cai, A. Winter and R. W. Yeung. Quantum Privacy and Quantum Amplification via Re´nyi Entropy and Inf-Spectral Entropy. Proc. ISIT WiretapChannels.ProblemsInf.Transm.,40,4(2004),318–336 2013,pp.2715–2719;arXiv[cs.IT]:1211.5252. [3] I. Csisza´r and J. Ko¨rner. Broadcast Channels with Confidential Mes- [34] A. Winter. Coding Theorems of Quantum Information Theory. PhD sages.IEEETrans.Inf.Theory,24,3(1978),339–348. thesis, Department of Mathematics, Universita¨t Bielefeld (1999). [4] T. Cubitt, M.-B. Ruskai and G. Smith. The structure of degradable arXiv:quant-ph/9907077. quantumchannels.J.Math.Phys.,49(2008),102104. [35] A.Winter.Codingtheoremandstrongconverseforquantumchannels. [5] N. Datta, M. Mosonyi, M.-H. Hsieh and F. G. S. L. Branda˜o. Strong IEEETrans.Inf.Theory,45(1999),2481–2485. conversesforclassicalinformationtransmissionandhypothesistesting. [36] A.D.Wyner.TheWire-TapChannel.BellSyst.Tech.J.,54,8(1975), arXiv:1106.3089(2011). 1355–1387.