Pretreatment of Hemp Fibers to Enhance Enzymatic Accessibility for Hemp Fibers Diogo Alexandre Santos Silva Thesis to obtain the Master of Science Degree in Biological Engineering Supervisors: Prof. Dr. Anne Strunge Meyer Prof. Dr. Pedro Carlos de Barros Fernandes Examination Committee Chairperson: Prof. Dr. Helena Maria Rodrigues Vasconcelos Pinheiro Supervisor: Prof. Dr. Pedro Carlos de Barros Fernandes Members of the Committee: Dr. Maria Teresa Ferreira Cesário Smolders October, 2015 Author: Diogo Alexandre Santos Silva 2015 Title: Pretreatment of hemp fibers to enhance enzymatic accessibility for hemp fibers Institute: Center for Bioprocess Engineering Project Period: (BioEng), Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU) 16.02.2015 – 16.07.2015 ECTS: 30 Education: Master of Science Main Supervisors: Professor Anne S. Meyer, DTU, Chemical Engineering Researcher/Assistant Professor Pedro Carlos de Barros Fernandes, IST-DBE Co-supervisors: Anders Thygesen, PhD, DTU Chemical Engineering Ming Liu, MSc, DTU Chemical Engineering Comments: This report is submitted as partial fulfillment of the requirements for graduation in the above education at Technical University of Lisbon Pages: 111 Tables: 30 Figures: 52 References: 84 Technical University of Lisbon DBE - Department of Bioengineering Torre Sul, piso 0 Avenida Rovisco Pais, N1 1049-001, Lisbon Preface The current thesis is submitted as a partial fulfilment of the requirements for obtaining the Master of Science degree in Biological Engineering at Technical University of Lisbon (IST), Portugal. The studies were conducted from the 16th of February 2015 to the 16th of July 2015, at the Center of Bioprocess Engineering (BioEng), Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Denmark. The carried out investigation was part of the plan of studies of PhD student Ming Liu and it is integrated in CelfiMat project, with the aim of using high quality cellulosic fibers as reinforcements in the production of strong biocomposite materials. The project counts with the partnership of the Departments of Wind Energy, Chemistry and Chemical Engineering of the Technical University of Denmark, the Department of Forest Products of the Swedish Agricultural University, the German company Bafa Neu GmbH and the French company Planète Chanvre. The master thesis has been supervised by: Anne S. Meyer, Professor, DTU Chemical Engineering Main supervisor Pedro Fernandes, Assistant Professor, IST Department of Bioengineering Main supervisor Anders Thygesen, PhD and Project Leader, DTU Chemical Engineering Co-supervisor Ming Liu, PhD Student, DTU Chemical Engineering Co-supervisor I would like to acknowledge my supervisor Anne S. Meyer, first for accepting me at BioEng as a guest student, providing all the fundamental conditions to develop my investigation. Then, for all the confidence, enthusiastic encouragement and invaluable feedback in our frequent meetings throughout my period of studies. Furthermore I would like to extend my thanks to my local supervisor Pedro Fernandes for his availability, spent time, advices and nearness to my project. A special acknowledgment goes to Ming Liu, with whom I share my project results. Most of all, it was an honor and a privilege to have the opportunity to work with Ming, to whom I deeply thank for the insight into this project and the constant guidance, inspiration, friendship and gaiety. Annette Eva Jensen, Mikkel Justesen, Rikke Nielsen, Jonas Kreutzfeldt Heininge and Jan Sjølin are acknowledged for technical support and also Michael K. Nielsen, in the condition of Project Manager at BioEng. i I have to highlight the importance of my parents Natália and Fernando and my brother Fábio, during these 6 months abroad, for undoubted support and encouragement to embrace this crusade. Then, because “behind a great man there is always a great woman”, I deeply thank Laura for unconditional love and support in the most difficult times. Lastly I would like to express my gratitude to some people, who somehow contributed to my academic path, which is now ending, by writing their names: Alberto Santos, Maria Eduarda Teles, Fernanda Marques, Isabel Marques, Mário Estevens, Dulce Simão, Joaquim Simão. Diogo Alexandre Santos Silva Lisbon, Portugal October, 2015 ii Abstract Hemp (Cannabis sativa) fibers have been considered as a sustainable biomaterial to replace man-made fibers in composite applications, due to their low cost and density, good mechanical properties and biodegradability. However, for high-grade composites, the cementing materials from middle lamella (ML) regions must be degraded to obtain individual fibers or small fiber bundles, in order to create a strong interface and reduce void space between fibers (or fiber and matrix). In this context, an enzymatic treatment is one of the most promising and ecological methods, but the process is not efficient because enzymes are too large to penetrate the well lignified ML region, and thus requires an auxiliary pretreatment. Among the conducted experiments, a fungal pretreatment at controlled conditions for half a week, a hydrothermal pretreatment in an autoclave at 1 bar (121 ºC) for 30 min and a chemical pretreatment with NaOH at 60ºC for 4 h were shown to be the best solutions, by allowing partial degradation of pectin (decrease of 55, 41 and 67% in galacturonic acid content, respectively) and subsequently enhancing the accessibility of pectinases for said substrate, indicated by the final low content of GalA in final treated fibers. The direct combination of EDTA-2Na (0.5%) with endopolygalacturonase was also demonstrated as a time saving option. However, significant negative effects (p<0.05) in the mechanical performance of pretreated hemp fibers were noted, except for hydrothermally pretreated, for which only strain significantly (p<0.05) decreased by 40% and no apparent effects on stiffness and Ultimate Tensile Strength were recorded. Keywords: Hemp fibers; Enzyme; Hydrothermal pretreatment; Biological pretreatment; Chemical Pretreatment; Mechanical Properties iii Resumo As fibras de cânhamo (Cannabis sativa) têm sido reconhecidas como uma alternativa sustentável às fibras sintéticas para aplicações com materiais compósitos, devido ao seu baixo custo e densidade, boas propriedades mecânicas e biodegradabilidade. No entanto, para fabricação de compósitos de alta qualidade, os materiais de cimentação da lamela média (LM) devem ser degradados a fim de se obter fibras individuais ou pequenos feixes de fibras, criando uma interface forte e reduzindo o espaço vazio entre as fibras (ou entre fibras e matriz). Neste contexto, um tratamento enzimático é um dos métodos mais promissores e ecológicos, mas o processo não é eficiente porque as enzimas são demasiado grandes para penetrar a bem lignificada LM, e, portanto, exige-se um pré-tratamento auxiliar. Entre as experiências realizadas, um pré-tratamento fúngico em condições controladas durante meia semana, um pré-tratamento hidrotérmico numa autoclave a 1 bar (121 ºC) durante 30 min e um pré- tratamento químico com NaOH a 60 °C durante 4 h, mostraram ser as melhores soluções, permitindo a degradação parcial de pectina (diminuição de 55, 41 e 67% do teor de ácido galacturónico, respectivamente) e aumentando posteriormente a acessibilidade de pectinases para o referido substrato, resultando num baixo teor de ácido galacturónico nas fibras finais. A combinação direta de EDTA-2Na (0,5%) com endopoligalacturonase demonstrou ser também uma alternativa rápida. No entanto, foram registados efeitos negativos significativos (p<0.05) no desempenho mecânico das fibras de cânhamo pré-tratadas, excepto quando pré-tratadas hidrotermicamente, para as quais apenas a deformação diminui significativamente (p< 0,05) em 40% e não foram registados efeitos aparentes sobre a rigidez e limite de resistência à tração. Palavras-chave: Fibras de Cânhamo; Enzimas; Pretratamento Hidrotérmico; Pretratmento Biológico; Pretratamento Químico; Propriedades mecânicas. iv Table of Contents PREFACE................................................................................................................................................ I ABSTRACT ........................................................................................................................................... III RESUMO ............................................................................................................................................. IV TABLE OF CONTENTS ............................................................................................................................... V INDEX OF FIGURES ................................................................................................................................ VII INDEX OF TABLES ................................................................................................................................... XI INDEX OF ABBREVIATIONS ...................................................................................................................... XIII 1. INTRODUCTION ........................................................................................................................... 1 1.1 NATURAL FIBERS ............................................................................................................................ 1 1.1.1 HEMP FIBERS ........................................................................................................................................ 3 1.2 HEMP FIBERS STRUCTURE ................................................................................................................. 7 1.3 CHEMICAL COMPOSITION OF HEMP FIBERS ............................................................................................ 8 1.3.1 CELLULOSE ............................................................................................................................................ 9 1.3.2 HEMICELLULOSE .................................................................................................................................. 10 1.3.3 LIGNIN ............................................................................................................................................... 11 1.3.4 PECTIN ............................................................................................................................................... 12 1.3.5 WAXES AND ASHES............................................................................................................................... 14 1.4 HEMP FIBERS APPLICATIONS ............................................................................................................ 15 1.4.1 HEMP FIBERS AS REINFORCEMENTS FOR COMPOSITES ................................................................................. 15 1.5 PROCESSING OF HEMP FIBERS .......................................................................................................... 17 1.5.1 FIELD RETTING ..................................................................................................................................... 17 1.5.2 WATER RETTING .................................................................................................................................. 18 1.5.3 FUNGAL TREATMENT ............................................................................................................................ 18 1.5.4 CHEMICAL TREATMENT ......................................................................................................................... 19 1.5.5 ENZYMATIC TREATMENT........................................................................................................................ 22 2. AIM OF STUDIES ........................................................................................................................ 25 3. MATERIALS AND METHODS........................................................................................................ 26 3.1 MATERIALS ................................................................................................................................. 26 3.2 METHODS .................................................................................................................................. 26 3.2.1 FUNGAL PRETREATMENT ....................................................................................................................... 27 3.2.2 HYDROTHERMAL PRETREATMENT ........................................................................................................... 28 3.2.3 CHEMICAL PRETREATMENT .................................................................................................................... 28 3.2.4 ENZYMATIC TREATMENT........................................................................................................................ 29 3.2.5 CHEMICAL COMPOSITION ANALYSIS ......................................................................................................... 30 v 3.2.6 TENSILE STRENGTH TESTING OF FIBER BUNDLES ......................................................................................... 35 3.2.7 WATER RETENTION DETERMINATION ....................................................................................................... 38 3.2.8 TOTAL PROTEIN CONCENTRATION DETERMINATION .................................................................................... 39 3.2.9 STATISTICAL ANALYSIS ........................................................................................................................... 40 4. PRETREATMENT OF HEMP FIBERS TO ENHANCE ENZYME ACCESSIBILITY FOR HEMP FIBERS ......... 41 4.1 BIOLOGICAL PRETREATMENT OF HEMP FIBERS TO ENHANCE ACCESSIBILITY OF PECTINASES .............................. 41 4.1.1 EXPERIMENTAL DESIGN ......................................................................................................................... 41 4.1.1 RESULTS AND DISCUSSION ..................................................................................................................... 42 4.2 HYDROTHERMAL PRETREATMENT OF HEMP FIBERS TO ENHANCE ACCESSIBILITY OF PECTINASES ........................ 52 4.2.1 EXPERIMENTAL DESIGN ......................................................................................................................... 53 4.2.2 RESULTS AND DISCUSSION ..................................................................................................................... 54 4.3 CHEMICAL PRETREATMENT OF HEMP FIBERS TO ENHANCE ACCESSIBILITY OF ENZYMES .................................... 64 4.3.1 EXPERIMENTAL DESIGN ......................................................................................................................... 65 4.3.2 RESULTS AND DISCUSSION ..................................................................................................................... 66 4.4 A COMPARISON OF DIFFERENT PRETREATMENTS .................................................................................. 75 5. CONCLUSIONS AND FUTURE PROSPECTS .................................................................................... 78 6. BIBLIOGRAPHY .......................................................................................................................... 81 7. APPENDIXES .............................................................................................................................. 88 7.1 EFFECT OF DIFFERENT CHEMICAL AGENTS ON HEMP FIBERS ...................................................................... 88 7.1.1 EFFECT OF EDTA ON HEMP FIBERS .......................................................................................................... 88 7.1.2 EFFECT OF ACID-CHLORITE ON HEMP FIBERS ............................................................................................. 93 7.1.3 EFFECT OF SODIUM HYDROXIDE ON HEMP FIBERS ...................................................................................... 97 7.1.4 CONCLUSION ..................................................................................................................................... 105 7.2 ENZYMATIC ACTIVITY ASSAYS ........................................................................................................ 106 7.2.1 ENDOPOLYGALACTURONASE ACTIVITY ASSAY .......................................................................................... 106 7.2.2 PECTIN LYASE ACTIVITY ASSAY .............................................................................................................. 107 7.2.3 XYLANASE ACTIVITY ASSAY ................................................................................................................... 108 7.2.4 XYLOGLUCANASE ACTIVITY ASSAY .......................................................................................................... 109 7.2.5 LACCASE ACTIVITY ASSAY ..................................................................................................................... 109 7.3 EXAMPLE OF HPLC CHROMATOGRAPH FOR STANDARD MOTHER SOLUTION .............................................. 111 vi
Description: