Mon.Not.R.Astron.Soc.000,1–??(2009) Printed25January2010 (MNLATEXstylefilev2.2) α Pressure Support vs. Thermal Broadening in the Lyman- Forest II: Effects of the Equation of State on Transverse Structure 0 Molly S. Peeples1⋆, David H. Weinberg1, Romeel Davé2, Mark A. Fardal3, Neal Katz3 1 0 1DepartmentofAstronomyandtheCenterforCosmologyandAstro-ParticlePhysics,TheOhioStateUniversity,Columbus,OH43210 2 2UniversityofArizona,StewardObservatory,Tucson,AZ85721 3DepartmentofAstronomy,UniversityofMassachusetts,Amherst,MA01003 n a J 3 25January2010 2 ] ABSTRACT O Weexaminetheimpactofgaspressureonthetransversecoherenceofhigh-redshift(26z64) C Lyman-αforestabsorptionalongneighboringlinesofsightthatprobethegasJeansscale(pro- . jected separation∆rp 6500h- 1kpccomoving;angularseparation∆θ.30′′). We compare h predictionsfrom two smoothed particle hydrodynamics(SPH) simulations that have differ- p ent photoionization heating rates and thus different temperature-densityrelations in the in- - o tergalacticmedium(IGM).We alsocomparespectracomputedfromthegasdistributionsto r thosecomputedfromthepressurelessdarkmatter.Thecoherencealongneighboringsightlines t s is markedlyhigher for the hotter, higher pressure simulation, and lower for the dark matter a spectra. We quantifythis coherenceusingthe flux cross-correlationfunctionand the condi- [ tionaldistributionoffluxdecrementsasa functionoftransverseandline-of-sight(velocity) 2 separation.Sightlinesseparatedby∆θ.15′′areidealforprobingthistransversecoherence. v Higherpressuredecreasestheredshift-spaceanisotropyofthefluxcorrelationfunction,while 0 higher thermal broadeningincreases the anisotropy. In contrast to the longitudinal(line-of- 5 sight) structure of the Lyα forest, the transverse structure on these scales is dominated by 2 pressureeffectsratherthanthermalbroadening.Withtherapidrecentgrowthinthenumber 0 ofknownclosequasarpairs,pairedline-of-sightobservationsofferapromisingnewrouteto . 0 probetheIGMtemperature-densityrelationandtesttheunexpectedlyhightemperaturesthat 1 havebeeninferredfromsinglesightlineanalyses. 9 0 Keywords: cosmology:miscellaneous—intergalacticmedium—methods:numerical : v i X r 1 INTRODUCTION 1995; Hernquistetal. 1996) and associated analytic descriptions a (Rauch&Haehnelt 1995; Reisenegger&Miralda-Escude 1995; The 1.5.z.6 intergalactic medium (IGM) is most commonly Bi&Davidsen1997;Huietal.1997),inwhichmostLyαabsorp- studied via the Lyman-α forest, which arises from Lyα absorp- tionarisesinacontinuouslyfluctuatingmediumoflowdensitygas tion of neutral hydrogen along the line of sight to some dis- ratherthaninasystemofdiscreteclouds.Morerecently,observa- tant source (e.g., a quasar). Most of the information we have on tionsofpairshavebeensuggestedaswaysofinvestigatingmeasur- the nature of the IGM is from sightlines piercing physically dis- ingthecosmological constantviatheAlcock&Paczynski(1979) tinct regions of the IGM. Absorption features have finite widths, effect(McDonald&Miralda-Escudé1999),thematterpowerspec- but from individual sightlines it is difficult to separate the con- trumonsmallscales(Vieletal.2002),andtheIGMtemperature- tribution of bulk velocities (Hubble flow and peculiar velocities) densityrelation.Itisonthelastofthesethatwefocusinthispaper. from those of thermal broadening. Close quasar pairs can break Theoretical models predict that the low density IGM should this degeneracy by probing the transverse structure of the IGM. haveapower-law“equationofstate,” In the mid-1990s, several studies of quasar groups and lensed quasars definitively showed that the absorbing structures are co- T =T(1+δ)α, (1) 0 herent over hundreds of kpc(Bechtoldetal. 1994; Dinshawetal. 1994; Fangetal. 1996;Charltonetal.1997;Crotts&Fang1998; withdensergasbeinghotterthanlessdensegas(α>0,Katzetal. D’Odoricoetal. 1998). These observations provided critical sup- 1996;Miralda-Escudéetal.1996;Hui&Gnedin1997).Although port for the physical picture of the Lyα forest then emerg- thistemperature-density(T-ρ)relationisdifficulttomeasure,mul- ing from cosmological simulations (Cenetal. 1994; Zhangetal. tipleobservationssuggestthatithasahighernormalizationanda shallowerslopethanthatexpectedusingthemoststraightforward assumptions about photoionization heating (Schayeetal. 2000; ⋆ E-mail:[email protected] McDonaldetal.2001;Theunsetal.2002;Boltonetal.2008).Be- 2 Peeples et al. causethedegreeofsmall-scaletransversecoherenceissetbythe Jeans length, andtheJeans length depends on thetemperatureof thegas,studying thetransversestructureof theLyαforest might giveinsightintotheIGMT-ρrelation(J.Hennawi,privatecommu- nication,2007).InPeeplesetal.(2009,hereafterPaperI),weshow thatwhilethermalbroadeningandpressuresupportbothaffectthe longitudinalstructureoftheLyαforest,thermalbroadeningdom- inates.Inthispaperweinvestigatetheeffectsofthetemperature- densityrelationviapressuresupportandthermalbroadeningonthe transversesmall-scalestructureoftheLyαforest. ThegastemperatureaffectstheJeanslengthλ (andtheco- J movingJeanslengthλ )via J,comv π λ ≡ c (2) J srGρ ⇒λ = (1+z)σ H- 1 5π 3 Ω (1+z)3(1+δ) - 1/2 J,comv th 0 r 3 (cid:20)8π m,0 (cid:21) = 782h- 1kpc (3) σ Ω (1+δ) 1+z - 1/2 × th m,0 , (cid:16)11.8kms- 1(cid:17)(cid:20)(cid:18)0.25×(1+0)(cid:19)(cid:18)1+3(cid:19)(cid:21) where 1 + δ ≡ ρ /ρ¯ is the gas overdensity and c = gas b s [5kT]/[3m] =σ 5/3 is the speed of sound in an ideal gas th Figure1.Distributionofparticlesinthetemperature-overdensityplanefor pexpressed as a multpiple of the 1-D thermal velocity σth, which thefiducialsimulationatz=2.4,withthreeimposedtemperature-density wehavenormalizedtocorrespondto104K(Miralda-Escudéetal. relationsover-plottedaslabelled,aswellasthetemperatureandoverden- 1996; Schaye 2001; Desjacques&Nusser 2005). While thermal sitydistributionsforthefiducialandH4simulations.ThehotterH4gasis broadeningaffectstheobservedIGMbysmoothingtheLyαforest preferentiallylessdensethanthelowerpressurefiducialgasandpressure- in one-dimension (namely, along the line of sight), pressure sup- lessdarkmatter. portsmoothsthephysicalgasdistributioninallthreedimensions. Therefore,whilewefoundinPaperIthatσ dominatesthelongitu- th analyses.WenotethatPaperIincludesanextensivediscussionof dinalLyαforeststructure,weexpectλ todominatethetransverse J thephysicalstructureoftheLyαforestinthesesimulations,soin structure.Oursimulationsindicatethatthe“effective”Jeanslength this paper we will focus only on those issues relevant to quasar intheLyαforestissmallerthanthatgiveninEquation(3)byafac- pairobservations.Alldistancesaregivenincomovingcoordinates torofafew,probablyowingtoacombinationofgeometricfactors, unlessotherwisestated. theuniverseexpanding onthesametimescaleasthegasevolves, andthecontributionofdarkmattertothegravitationalforces(see alsoGnedin&Hui1998). For Ωm =0.25 and ΩΛ =0.75, the relation between angular 2 SIMULATIONS separation∆θandcomovingtransverseseparationRatz=2–4is approximately We use the same 2×2883 particle 12.5h- 1Mpc comoving smoothed particlehydrodynamic (SPH)simulationsevolved with 1+z 0.6 R ∆θ≈4.4′′ × . (4) GADGET-2(Springel2005)asinPaperI;henceweonlypresenta (cid:18) 4 (cid:19) (cid:18)100h- 1kpc(cid:19) basicdescriptionhere.ThroughoutweadoptaΛCDMcosmology Lines of sight with angular separations of 3–10′′ are needed to of(Ωm,ΩΛ,Ωb,h,σ8,ns)=(0.25,0.75,0.044,0.7,0.8,0.95),which probe the Jeans scale of the IGM. While this scale is just larger is in good agreement with the Wilkinson Microwave Anisotropy than the cutoff for the typical Einstein radius of galaxy lenses Probe5-yearresults(Hinshawetal.2009).Thiscosmology leads (Schneider,Kochanek,&Wambsganss2006),newsearchesforbi- toagasparticlemassof1.426×106M⊙,whichismuchlessthan naryquasarsarerevealingsamplesofafewtodozenswith∆θ. the expected typical Jeans mass of ∼7×109M⊙. As a conver- 10′′(Hennawietal.2006,2009). gence test, we use a 2×1443 particle simulation that is other- Thispaperisorganizedasfollows.In§2,wedescribetheSPH wise identical to our fiducial simulation. The distribution of par- simulationsused,aswellastheartificialtemperature-densityrela- ticles in the temperature-density plane for our “fiducial” simula- tionsweimposeonthegastoisolatetheeffectsofpressuresupport tion at z=3 is shown in Figure 1. The “H4” simulation has the and thermal broadening. In §3 we discuss how the temperature- sameinitialconditionsasthefiducialone,buttheheatingratefrom densityrelationaffectsthetransversecoherenceoftheLyαforest, photoionization by the UV background is four times higher than withparticularfocusonfluxcross-correlationfunctionsandcondi- inthefiducialsimulation.Anobvious consequence ofthishigher tionalfluxprobabilitydistributions.Wefindthat,asexpected,the heating rate is that the H4 gas has higher temperatures than the transversecoherenceoftheLyαforestacrosscloselypairedsight- fiducialgas. Amoresubtleeffect,alsoshowninFigure1,isthat linesisdominatedbytheamountofpressuresupportintheabsorb- the hotter gas has a larger Jeans length and is hence smoother, inggas.Theseconclusionsaresummarizedin§4.InanAppendix with a smaller fraction of the gas at high overdensity. We there- andassociatedelectronictables,weprovideLyαforestspectraex- fore adopt three artificial temperature-density relations to isolate tractedfromoursimulationsatseveraltransverseseparationsthat theeffectsofpressuresupport,thermalbroadening,andtheunder- canbeusedtocreatepredictionstailoredtospecificobservational lying overdensity distribution. As in Paper I, the fiducial and H4 Scaleof theTransverseLyman-α Forest 3 Figure2.A12.5×1×1h- 1Mpccomovingsectionofthefiducialsimulation,inHIdensity,with- 8<lognHI<0(notethattheaspectratiohasnotbeen preserved).Thethreegreensightlinesareseparatedby100h- 1kpccomoving;atz=2.4,correspondingtoaprojectedseparationof4.9′′. Figure3.Samplepaired lines ofsightatz=2.4separated by∆r=50,100,150,200,and250h- 1kpccomoving, fromtoptobottom,withthefiducial simulationontheleftandtheH4simulationontheright.Withineachcolumn,theblackspectraarethesame(r=0).Thetop,middle,andbottomgreenspectra correspondtothethreegreensightlinesinFig.2,withv=0correspondingtotheleft-handsideofFig.2. temperature-density relationsmimictheonesfound inthose sim- whilefortheflatrelationwesetallthegastoT=2×104K,regard- ulations, while the flat T =2×104K relation is used so that we lessofdensity. can study the effects of thermally-broadened pressure support in Ateachredshift—z=2,2.4,3,and4—weconsider200lines theabsenceofoverdensity-dependentthermalbroadening.Weim- ofsightwithpairedsightlinesseparatedby∆r=50,100,125,150, posethesetemperature-densityrelationsonthefiducialandH4gas 175, 200, 250, 300, 400, and 500h- 1kpc comoving for a total of distributions,aswellasthefiducialdarkmatter,byassigningtem- 2200sightlinesperredshiftforeachoftheoverdensity–T-ρcom- peraturesbasedsolelyonthelocalgas(ordarkmatter)overdensity, binationsdiscussedabove.Inallcasesweadjusttheintensityofthe asdemonstratedinFigure1.ForthefiducialandH4relations,we UVbackgroundsothatthemeanfluxdecrementmatchesobserva- setallgaswith1+δ>10toa“shocked”temperatureT=5×105K, tional estimates (see Paper I for details). In Table 1, we list the 4 Peeples et al. Table 1. Observed mean flux decrements hDi ≡ h1- e- τi at z = 2.4,3, and 4 are from McDonaldetal. (2000); the z = 2 measurement is from Faucher-Giguèreetal.(2008)withoutcorrectingformetalabsorption. Theobservedtemperature-density relations (T =T0[1+δ]α)atz=2.4,3,and4are fromMcDonaldetal.(2001),withthez∼2measurementfromRicottietal.(2000). z hDi observedT0[K] observedα fiducialT0[K] fiducialα H4T0[K] H4α ∆θat 100h- 1kpc 4.0 0.525±0.012 17400±3900 0.43±0.45 11700 0.54 28200 0.55 3.9′′ 3.0 0.316±0.023 18300±1800 0.33±0.26 11000 0.57 25000 0.57 4.4′′ or18400±2100 0.29±0.30 2.4 0.182±0.021 17400±1900 0.52±0.14 10000 0.56 23000 0.57 4.9′′ or19200±2000 0.51±0.14 2.0 0.144±0.024 17700 0.32±0.30 8913 0.56 21380 0.57 5.4′′ adopted mean decrements and parameters for the observed, fidu- inherently smoother because they have more thermal broadening cial,andH4temperature-densityrelations,aswellastheprojected thanthefiducialspectra. angularseparationat100h- 1kpccomoving. 3.2 Cross-CorrelationFunctions 3 STRUCTUREOFTHEIGM&TRANSVERSELyα AcommonmethodforstudyingthetransversestructureoftheIGM COHERENCE istolookatthefluxdecrementcross-correlationfunction, hD (v)D (v+∆v)i Togaininsightintotheeffectsoftemperatureonthetransverseco- ξ ≡ 1 2 , (7) cross hDi2 herenceoftheLyαforest,welookathowpairedsightlinesdiffer inthefiducialandH4simulationsin§3.1.Wethenquantifythese where D ≡ 1- F =1- exp(- τ) and the two sightlines are sep- differencesbyexaminingtherelativechangesinthefluxdecrement arated by some ∆r (Miralda-Escudéetal. 1996; Rollindeetal. cross-correlationfunctionin§3.2andtherelativetransversecoher- 2003). At ∆r=0, ξ is just the auto-correlation function. The cross ence of the conditional flux decrement probability distribution in cross-correlation functions for the z=2.4 fiducial and H4 sim- §3.3. ulations at a range of ∆r are shown in the left-hand panels of Figure 4. At small ∆r and ∆v, the gas in the fiducial simula- tionhas ahigher ξ than thegasinthe H4simulation because cross 3.1 Spectra thesmoother gasdistribution has lessrms density fluctuation. At larger ∆r and ∆v, the H4 gas has a higher ξ owing to its BeforedelvingintostatisticalmeasuresofthetransverseLyαfor- cross greater coherence, as is visually evident in Figure 3. To quan- est, it will be instructive to first consider the underlying physical tify this relative change, ξ /ξ for the same selection of ∆r structures.InFigure2,weshowasmallsectionofthefiducialsim- cross auto is plotted in the right-hand panels of Figure 4. Although in real ulationatz=2.4,wherebrighterregionscorrespondtohigherHI spaceξ (∆r)=ξ (H∆r),invelocityspaceredshiftdistortions densities.Theobservedtransmittedfluxiscalculatedassimply cross auto preferentiallysuppresstheauto-correlationfunctionrelativetothe F=e- τLyα, (5) cross-correlationfunction,causingξ >ξ forsomeregionsof cross auto parameterspace(McDonald&Miralda-Escudé1999;Marbleetal. where τLyα is the optical depth to Lyα photons. As discussed in 2008b).Thehotter,higherpressure,H4simulationhasahigherrel- detailinPaperI, ativecoherence(largerξ /ξ )atsmall∆vthanthecolderfidu- cross auto τLyα ∝ nHI (6) cialsimulation. ∝ T0 - 0.7(1+δ)2- 0.7α. plot ξWec/oξmparaesaawfuindcetriorannogfe∆ofrmaotd∆elvs=in2F0ikgmures-51,awthze=re2w.4e; (cid:18)104K(cid:19) this cocrrorsesspaountods to taking a slice at ∆v=20kms- 1 in the right- The three sightlines in Figure 2 give rise to the top, middle, and handpanelsofFigure4.ToelucidatewhethertheH4gasismore bottomgreenspectraatz=2.4intheleft-handpanelofFigure3. strongly correlated because it has higher pressure, or because, as Figure 3 shows how pairs of spectra become more dissimilar as shownindetailinPaperI,hottergashasmorethermalbroadening theirtransverseseparation,∆r,increases,andhowthisdissimilar- andthereforelesssmall-scalestructure,wealsolookatarangeof ity differs between the fiducial and H4 simulations. Spectral fea- T-ρrelationsandoverdensityfields.Inthisandinseveralofthefol- turesremainingcoherent over largescalescorrespond tophysical lowingfiguresthelinetype(solid,dashed,ordotted)corresponds structures that are parallel to the plane of the sky (see, e.g., the totheadoptedoverdensityfield,eitherthegasoverdensitiesfrom structuresat400<v<600kms- 1),whilespectralfeaturesdisap- thefiducialsimulation(solidlines),thegasoverdensitiesfromthe pearingfromonesightlinetothenextcorrespondtophysicalstruc- H4simulation(dashedlines)orthedarkmatteroverdensitiesfrom turesthat aremore parallel tothelineof sight (see, e.g.,thefea- thefiducialsimulations.Thelinecolorcorrespondstotheadopted tures at v<300kms- 1). In general, the H4 spectra remain more equationofstate,i.e.theT-ρrelation,eithertheartificialfittothe similarthanthefiducialonesas∆rincreases;weaimtodetermine relationfromthefiducialsimulation(greenlines),thefittothere- to what extent this relatively higher coherence owes to pressure lationfromtheH4simulation(redlines),or assuming aconstant supportratherthantothefactthattheH4spectraareindividually temperatureofT =2×104K(bluelines). Scaleof theTransverseLyman-α Forest 5 Figure4.Thecross-correlationfunctionξcross≡hD1(v)D2(v+∆v)i/hDi2 (left)andξcross/ξauto(right)forthefiducial(top)andH4(bottom)simula- tionsforsixdifferent transverseseparations ∆r=50,100,150,200,and 250h- 1kpccomoving.Notethatthevertical scaleintheleftpanels does notextendto0. InFigure5,thethreechoicesfortheoverdensityfieldclearly oFfigthueretr5a.nNsvoerrmsealsiezpeadractrioosns-∆corrrfeolrat∆iovn=fu2n0ctkimonss-,1ξcartoszs/=ξ2au.4to.,Tahsealfiunnecttyiopne separate into three distinct groups, with the highest-pressure H4 (solid,dashed,ordotted)denotestheadoptedoverdensityfieldandtheline gas having the most transverse coherence and the zero-pressure colortheadoptedT-ρrelation(see§2fordetails).Thethickblacktickmark darkmatterhavingtheleast.Evennon-thermallybroadenedspec- denotes∆r=H∆v. tra(whichwehavenotplottedtoavoidvisualconfusion)showthe samerelativedecreaseincoherencewithincreaseintransversesep- arationasotherspectrawiththesameunderlyinggasdistributions. theresultsforthedarkmatter,fiducial,andH4overdensityfields. Withineachoverdensity group,ξ /ξ increaseswithincreas- ForH∆r.20kms- 1(∆θ.10′′),theimpactofthermalbroaden- cross auto ingthermal broadening (e.g.,the imposed H4T-ρrelationyields ingonanisotropyisgenerallysmallerthantheimpactofpressure. higherξ /ξ atall∆rthanimposingthefiducialT-ρ).How- cross auto ever,loweringtheresolutionleadstooffsetsfromthefiducialcase byaboutthesameamountasimposingdifferentT-ρrelations.The same trends are seen at z=2,3, and 4, as shown in Figure 6. In general,wefindthisdelineationisclearerat10.∆v.30kms- 1 3.3 ConditionalFluxProbabilityDistributions thanat∆v=0oratlargervelocityseparations.Thestarksepara- tionbyoverdensitydistributionofthenormalizedcross-correlation The structure of one-point flux probability distribution function functionasafunctionoftransverseseparationisaclearsignthat (PDF) depends on both the thermal history and current thermal pressureplaysanimportant roleinthetransversestructureofthe state of the gas, leading to a complex relationship between the Lyαforest. effects of pressure support and thermal broadening on the PDF A common use for the flux decrement cross-correlation (Paper I). On the other hand, the interpretation of the condi- function is to measure the anisotropy in the Lyα forest tional probability distribution function between paired sightlines causedbyline-of-sightvelocitydistortions(Coppolanietal.2006; (Miralda-Escudéetal.1997)isrelativelystraightforward. Forex- D’Odoricoetal.2006),suchasfortheAlcock&Paczynski(1979) ample, if for strongly absorbed pixels with 0.86D <1.0, the 1 test(Huietal.1999;McDonald&Miralda-Escudé1999).InFig- pixelsseparatedby∆vonasightline∆rawayaremorestrongly ure 7, wecompare ξ (∆v=0,∆r) to the autocorrelation func- absorbed than randomly expected, then this might be a signature cross tionatthesamescale,ξ (H∆r),atz=2.4;highervaluesindicate of strong transverse coherence and thus a large Jeans length. In auto higher levels of anisotropy. As in Figure 5, the models separate Figure9 we plot the flux decrement difference probability distri- into groups of overdensity, and the differences between our low- butions, p(D - D ),for∆v=0and∆r=150h- 1kpcand several 2 1 resolution and fiducial cases are comparable with imposing dif- binsofD ,forthefiducial,H4,andlowresolutiongasatz=2.4. 1 ferent T-ρ relationson thefiducial gas. Figure8 shows thesame BylookingatthePDFofthedecrementdifferences,wecaneasily statistic for a smaller set of models at z=2, 3, and 4. As men- quantifythesimilarityoffluxdecrementpairs.Themorestrongly tioned above, in real space ξ (∆r) = ξ (H∆r), but in (ob- thedistribution peaks around D =D , themore coherent are the cross auto 2 1 served) velocity space, redshift distortions introduce anisotropy transversestructures.Whilethedifferencesbetweenthetwosimu- (Marbleetal.2008b).Becausethermalbroadeningisaninherently lationsarenotdramatic,theH4modelisconsistentlymorestrongly one-dimensionalanisotropicphenomenon,higherthermalbroaden- peaked around D =D , witha stronger signature at low D . For 2 1 1 ingleadstohigheranisotropy;weseethiseffectforeachoverden- mostchoicesofD ,thisdifferenceismuchmorepronouncedthan 1 sitydistributioninFigures7and8.Pressure,ontheotherhand,is thedifferencebetweenthefiducialandlow-resolutionsimulations, athree-dimensionalinherentlyisotropicphenomenon:higherpres- indicatingthatour2883 particlesimulationsgiverobustresultsfor surethereforeleadstolessanisotropy, asweseefromcomparing thisstatistic. 6 Peeples et al. Figure8.Normalized cross-correlation functions showingtheanisotropy oftheLyαforest,ξcross/ξauto,asafunctionof∆v=H∆r,atz=4,3,and 2.ThemodelsaredenotedasinFig.5 InPaperIweshowedthatthefluxdecrementPDFsforeachof theseT-ρrelationsarefairlydistinct,sosomeofthemodeldiffer- encesin p(D - D )couldreflectdifferencesintheunderlyingflux 2 1 PDFs. We can remove this effect by converting from flux decre- ment D to pixel rank R≡ p(<D), the fraction of pixels with a fluxdecrement lowerthanD.Ofcourse, afullysuccessfulmodel shouldreproducetheobservedPDF,butherewewishtofocuson transversecoherenceand,therefore,removeanydifferencesinthe PDFcaused by different temperature-density relations. Figure 10 showsthatspectrageneratedfromtheH4gashaverankdifference distributionsmore strongly peaked around R - R =0 than spec- 2 1 Figure6.Normalizedcross-correlationfunctions,ξcross/ξauto,asafunction trafromthelowerpressure,fiducialgasspectra.Changingtheim- ofthetransverseseparation∆rfor∆v=20kms- 1atz=4,3,and2,from posedtemperature-density relationhaslesseffect onthedistribu- toptobottom.ThemodelsaredenotedasinFig.5.Thethickblacktickmark denotes∆r=H∆v. tionsthanchanging theunderlyinggasdistribution,implyingthat (asexpected)pressureratherthanthermalbroadeningaccountsfor the larger transverse coherence. In general, the larger coherence appears at all redshifts, but it weakens with increasing ∆r. Non- thermallybroadenedspectra(notshown)havebroaderR - R dis- 2 1 tributions,sothermalbroadeningdoesplaysomeroleintransverse coherence. As with previous statistics, however, the lower reso- lution spectra differ from the fiducial case by about as much as spectrageneratedfromdifferentimposedT-ρrelations.Figure11 presentsthez=2.4predictionsingreaterdetailforthefiducialand H4gas only, plottingfive ranges of R and comparing ∆v=0 to 1 ∆v∼20kms- 1.Themodelsaremosteasilydistinguishedatsmall ∆vandatsmall∆r. In general, the slope of the temperature-density relation is much more difficult to observationally constrain than T because 0 mostmethodsformeasuringtheT-ρrelationaresensitivetoonlya limitedrangeofτ andhence1+δ.Because(uptosaturation)we HI canlimitourselvestoaparticularrangeofopticaldepthandthus 1+δ whenusingconditionalrankdistributions,itmightbepossi- bletousethistechniquetoconstraintheslopeofthetemperature- density relation. We cannot test this possibility using our current simulationsbecausethefiducialandH4temperature-densityrela- tionshavesimilarslopesatallredshifts(seeTable1). Figure7.Normalized cross-correlation functions showingtheanisotropy 4 CONCLUSIONS oftheLyαforest,ξcross/ξauto,asafunctionof∆v=H∆r,atz=2.4.The Recentefficientsearchesforbinaryquasarshaveyieldedlargesam- modelsaredenotedasinFig.5 plesofquasarswithangularseparationsof.10′′ (Hennawietal. 2006, 2009). The closely paired Lyman-α forest sightlines from Scaleof theTransverseLyman-α Forest 7 Figure 9. Flux decrement difference probability distributions, p(D2- D1) v. (D2- D1), at z=2.4, for ∆v=0 and ∆r=150. The three columns show D1∈[0.2,0.4)(left),D1∈[0.4,0.6)(middle),andD1∈[0.8,1.0](right),withfiducialinblack,H4inpurple(dotted),andthelowresolutionsimulationin grey. suchquasarpairsareidealforstudyingthesmall-scaletransverse investigation; we also thank Joe Hennawi and Eduardo Rozo for structureoftheintergalacticmedium.Wehaveshownusingasetof helpful discussions and comments. Weare grateful to the anony- smoothed particlehydrodynamic simulationswithdifferent equa- mousrefereeforthoughtfulsuggestionsonthetext.Thisworkhas tions of state that the coherence of transverse structure at these been supported in part by NSF grant AST-0707985 and NASA scalesisdeterminedprimarilybythelevelofpressuresupport,i.e. ADPgrantNNX08AJ44G. theJeanslength,oftheabsorbinggasandisrelativelyinsensitive totheamountofthermalbroadeningalongthelineofsight.Given thesurprisinglyhightemperaturesimpliedbysingle-sightlineanal- REFERENCES yses(seediscussionsin§1andPaperI),itwouldbevaluabletoin- Alcock,C.&Paczynski,B.1979,Nature,281,358 vestigatethethermalstateoftheIGMbythislargelyindependent Bechtold, J., Crotts, A. P. S., Duncan, R. C., & Fang, Y. 1994, method. ApJL,437,L83 Flux correlation functions (measured by, e.g., Rollindeetal. Bi,H.&Davidsen,A.F.1997,ApJ,479,523 2003; Coppolanietal. 2006; D’Odoricoetal. 2006; Marbleetal. Bolton,J.S.,Viel,M.,Kim,T.-S.,Haehnelt,M.G.,&Carswell, 2008a)andthetwo-pointdistributionsoffluxdecrementsorpixel R.F.2008,MNRAS,386,1131 ranks can allbe used todistinguish among gasdistributions with Cen, R., Miralda-Escudé, J., Ostriker, J. P., & Rauch, M. 1994, differenttemperatureslikethefiducialandH4modelsconsidered ApJL,437,L9 here.Becausetheredshiftrangesandpairseparationswillbedic- Charlton,J.C.,Anninos, P.,Zhang,Y.,&Norman,M. L.1997, tatedbythespecificsoftheavailabledatasample,weprovideinthe ApJ,485,26 formofelectronic tablesour simulatedspectra alongpairedlines Coppolani, F., Petitjean, P., Stoehr, F., Rollinde, E., Pichon, C., of sightfromthetwosimulations,whichcanbeused togenerate Colombi,S.,Haehnelt,M.G.,Carswell,B.,&Teyssier,R.2006, predictionstailoredtoaparticulardatasample. Thesesamplesof MNRAS,370,1804 spectraaredescribedin§2andthecaptiontoTable1.Wecaution Crotts,A.P.S.&Fang,Y.1998,ApJ,502,16 thatthefinitesizeofoursimulationvolumecouldcausestatistical Desjacques,V.&Nusser,A.2005,MNRAS,361,1257 fluctuationsandsystematiceffectsonourpredictions,especiallyat large∆rand∆v;wewillinvestigatethispointinfutureworkwith Dinshaw,N.,Impey,C.D.,Foltz,C.B.,Weymann,R.J.,&Chaf- fee,F.H.1994,ApJL,437,L87 larger simulations. The large increase in known quasar pairs, the D’Odorico, V., Cristiani, S., D’Odorico, S., Fontana, A., Gial- abilityoflargetelescopestomeasureLyman-αabsorptionspectra longo,E.,&Shaver,P.1998,A&A,339,678 ofrelativelyfaintbackground sources, whichhaveahighsurface D’Odorico, V., Viel, M., Saitta, F., Cristiani, S., Bianchi, S., densityonthesky, andthemassivequasar sampleexpectedfrom Boyle, B., Lopez, S., Maza, J., & Outram, P. 2006, MNRAS, theBaryonOscillationSpectroscopicSurvey(Schlegeletal.2009) 372,1333 will change the Lyα forest from a one-dimensional phenomenon Fang, Y., Duncan, R. C., Crotts, A. P. S., & Bechtold, J. 1996, toathree-dimensionalphenomenon,openingnewopportunitiesto ApJ,462,77 constrain cosmology and the physics of the diffuse intergalactic Faucher-Giguère,C.-A.,Prochaska,J.X.,Lidz,A.,Hernquist,L., medium. &Zaldarriaga,M.2008,ApJ,681,831 Gnedin,N.Y.&Hui,L.1998,MNRAS,296,44 Hennawi, J. F., Myers, A. D., Shen, Y., Strauss, M. A., Djor- ACKNOWLEDGMENTS govski, S. G., Fan, X., Glikman, E., Mahabal, A., Martin, WeacknowledgeaseminarbyJoeHennawiattheOhioStateCen- C. L., Richards, G. T., Schneider, D. P., & Shankar, F. 2009, terforCosmologyandAstro-ParticlePhysics,whichinspiredthis arXiv:0908.3907 8 Peeples et al. Figure10.Probabilitydistributionsfordifferencesinfluxdecrementrank, p(R2- R1)vs.(R2- R1)for∆v=0,0.46R160.6,andz=4,3,and2.0(top tobottom).Thethreecolumnsshowcomovingtransverseseparations∆r=100,200,and300h- 1kpc(lefttoright).Regardlessoftheimposedtemperature- densityrelation(indicatedbylinecolor),theH4gas(dottedlines)ismorestronglypeakedaroundR2=R1thanthefiducialgas(solidlines)becausethehotter gashaslongerJeanslengthsandthushighertransversecoherence. Scaleof theTransverseLyman-α Forest 9 Figure11.Probabilitydistributionsfordifferencesinfluxdecrementrank,p(R2- R1)v.(R2- R1)for∆r=100,200,and300h- 1kpccomovingand∆v=0 and20kms- 1aslabelled,forarangeofR1atz=2.4.TheH4gas(purple,dotted)ismorestronglypeakedaroundR2=R1thanthefiducialgas(black,solid) becausethehottergashaslongerJeanslengthsandthusahighertransversecoherence. 10 Peeples et al. Hennawi, J. F., Strauss, M. A., Oguri, M., Inada, N., Richards, atz=2,2.4,3,and4.WeshowinTable??aportionofthespectra G.T.,Pindor,B.,Schneider,D.P.,Becker,R.H.,Gregg,M.D., fromthefiducialsimulationatz=2. Hall,P.B.,Johnston,D.E.,Fan,X.,Burles,S.,Schlegel,D.J., Gunn, J. E., Lupton, R. H., Bahcall, N. A., Brunner, R. J., & Brinkmann,J.2006,AJ,131,1 Hernquist, L., Katz, N., Weinberg, D. H., & Miralda-Escudé, J. 1996,ApJL,457,L51+ Hinshaw,G.,Weiland,J.L.,Hill,R.S.,Odegard,N.,Larson,D., Bennett,C. L.,Dunkley, J.,Gold, B.,Greason, M.R.,Jarosik, N.,Komatsu,E.,Nolta,M.R.,Page,L.,Spergel,D.N.,Wollack, E., Halpern, M., Kogut, A., Limon, M., Meyer, S. S., Tucker, G.S.,&Wright,E.L.2009,ApJS,180,225 Hui,L.&Gnedin,N.Y.1997,MNRAS,292,27 Hui,L.,Gnedin,N.Y.,&Zhang,Y.1997,ApJ,486,599 Hui,L.,Stebbins,A.,&Burles,S.1999,ApJL,511,L5 Katz,N.,Weinberg,D.H.,&Hernquist,L.1996,ApJS,105,19 Marble,A.R.,Eriksen,K.A.,Impey,C.D.,Bai,L.,&Miller,L. 2008a,ApJS,175,29 Marble,A.R.,Eriksen,K.A.,Impey,C.D.,Oppenheimer,B.D., &Davé,R.2008b,ApJ,675,946 McDonald,P.&Miralda-Escudé,J.1999,ApJ,518,24 McDonald,P.,Miralda-Escudé,J.,Rauch,M.,Sargent,W.L.W., Barlow,T.A.,&Cen,R.2001,ApJ,562,52 McDonald,P.,Miralda-Escudé,J.,Rauch,M.,Sargent,W.L.W., Barlow,T.A.,Cen,R.,&Ostriker,J.P.2000,ApJ,543,1 Miralda-Escudé, J., Cen, R., Ostriker, J. P.,& Rauch, M. 1996, ApJ,471,582 Miralda-Escudé,J.,Rauch,M.,Sargent,W.L.W.,Barlow,T.A., Weinberg, D. H., Hernquist, L., Katz, N., Cen, R., & Os- triker,J.P.1997,inStructureandEvolutionoftheIntergalactic MediumfromQSOAbsorptionLineSystem,ed.P.Petitjean& S.Charlot,155–+ Rauch,M.&Haehnelt,M.G.1995,MNRAS,275,L76 Reisenegger,A.&Miralda-Escude,J.1995,ApJ,449,476 Ricotti,M.,Gnedin,N.Y.,&Shull,J.M.2000,ApJ,534,41 Rollinde, E., Petitjean, P., Pichon, C., Colombi, S., Aracil, B., D’Odorico,V.,&Haehnelt,M.G.2003,MNRAS,341,1279 Schaye,J.2001,ApJ,559,507 Schaye, J., Theuns, T., Rauch, M., Efstathiou, G., & Sargent, W.L.W.2000,MNRAS,318,817 Schlegel, D., White, M., & Eisenstein, D. 2009, in Astronomy, Vol.2010,AGBStarsandRelatedPhenomenastro2010:TheAs- tronomyandAstrophysicsDecadalSurvey,314–+ Schneider,P.,Kochanek,C.S.,&Wambsganss,J.2006,Gravita- tionalLensing:Strong,WeakandMicro(GravitationalLensing: Strong, Weak and Micro: , Saas-Fee Advanced Courses, Vol- ume33.ISBN978-3-540-30309-1. Springer-VerlagBerlinHei- delberg,2006) Springel,V.2005,MNRAS,364,1105 Theuns,T.,Schaye,J.,Zaroubi,S.,Kim,T.-S.,Tzanavaris,P.,& Carswell,B.2002,ApJL,567,L103 Viel,M.,Matarrese,S.,Mo,H.J.,Haehnelt,M.G.,&Theuns,T. 2002,MNRAS,329,848 Zhang,Y.,Anninos,P.,&Norman,M.L.1995,ApJL,453,L57+ APPENDIXA: FORMATOFASSOCIATEDELECTRONIC TABLES Weprovideintheformofelectronictablesoursimulatedspectra, theHIopticaldepthasafunctionofvelocityandtransversesepa- ration,alongpairedsightlinesfromthefiducialandH4simulations