Pressure-Induced0−πTransitionsandSupercurrentCrossoverinAntiferromagneticWeakLinks Henrik Enoksen,1 Jacob Linder,1 and Asle Sudbø1 1DepartmentofPhysics,NorwegianUniversityofScienceandTechnology,N-7491Trondheim,Norway (Dated:January17,2014) We compute self-consistently the Josephson current in a superconductor-antiferromagnet-superconductor junction using a lattice model, focusing on 0−π transitions occurring when the width of the antiferromag- neticregionchangesfromaneventoanoddnumberoflatticesites.Previousstudiespredicted0−πtransitions whenalternatingbetweenanevenandanoddnumberofsitesforsufficientlystrongantiferromagneticorder. Westudynumericallythemagnitudeofthethresholdvalueforthistooccur,andalsoexplainthephysicsbehind its existence in terms of the phase-shifts picked up by the quasiparticles constituting the supercurrent in the 4 antiferromagnet. Moreover,weshowthatthisthresholdvalueallowsforpressure-induced0−πtransitionsby 1 destroyingtheantiferromagneticnestingpropertiesoftheFermisurface,aphenomenonwhichhasnocounter- 0 partinferromagneticJosephsonjunctions,offeringanewwaytotunethequantumgroundstateofaJosephson 2 junctionwithouttheneedofmultiplesamples. n a PACSnumbers:73.20.-r73.40.Gk74.25.F-85.25.Cp J 5 1 Introduction. Thestudyoftheinterplaybetweensupercon- antiferromagnetism in the first place. In this way, the pres- ductivityandmagnetismhasbeenofconsiderableinterestin surecontrolsthemagnitudeofthestaggeredorderparameter ] condensed matter physics over the last decades. Phenomena whichtriggersa0−πtransitiononceitdropsbelowtheafore- n o suchasthe0−π-transition1inferromagneticJosephsonjunc- mentionedthresholdvalue. Thiseffecthasnocounterpartin c tions has received much attention both from a fundamental conventional SFS junctions, since ferromagnetism does not - quantumphysicspointofviewinadditiontobeingsuggested rely on Fermi-surface nesting. The antiferromagnetic order r p as a potential basis for qubits.2. While most of the focus in thus offers a novel mechanism for controlling the quantum u the above context has been on ferromagnetic (F) order, an- mechanicalgroundstateofaJosephsonjunction. s tiferromagnetic (AF) Josephson junctions are also of funda- Theory. OurapproachcloselyfollowsthatofRef. 10. The . t mentalinterest, duetothecloserelationshipbetweenthesu- system in question consists of an itinerant antiferromagnet a m perconducting (S) phase and the antiferromagnetic phase in sandwiched between two conventional s-wave superconduc- forinstancehigh-temperaturecuprateandiron-pnictidesuper- tors. Theinterfacesarecutinthe(110)directionandarecon- - d conductors. Superconductivity and antiferromagnetism spin- sidered transparent. We model the antiferromagnetic region n density wave states may even coexist in the superconduct- asconsistingoftwosquaresublatticesshowninFig.1,where o ing pnictides.3 Similar to SFS junctions, antiferromagnetic theA-andB-latticehaveoppositelypreferredspindirections. c Josephson junctions (SAFS) have been predicted to display Themean-fieldHamiltonianthenreads(seeforinstanceRef. [ 0−π-transitions4. However, for SAFS these transitions dis- 4) 1 play a high sensitivity to the exact number of atomic layers (cid:16) (cid:17) v (evenvs. oddnumber)intheantiferromagnet. Ref.5reported Hˆ =−t ∑ cˆ†iσcˆjσ+∑ ∆icˆ†i↑cˆ†i↓+H.c. −µ∑cˆ†iσcˆiσ 3 that an antiferromagnetic Josephson junction is in a π-state (cid:104)ij(cid:105)σ i iσ 76 for an odd number of layers, while it is in the 0-state for an +∑m (cid:16)cˆ†cˆ −cˆ†cˆ (cid:17), (1) evennumberoflayersprovidedthattheantiferromagneticor- i i↑ i↑ i↓ i↓ 3 i . derismuchstrongerthanthesuperconductingorder.Aneven- 1 oddeffecthasalsobeenobservedinJosephsonjunctionswith wherecˆ† createsanelectronwithspinσonlatticesitei,µis 0 iσ magneticimpuritiesinthemiddlelayer.6 thechemicalpotential,tdenotesthenearest-neighborhopping 4 1 In this Rapid Communication, we report on a novel as- integral,andmi and∆i arethemagneticandsuperconducting : pect of antiferromagnetic Josephson junctions which allows orderparameters,respectively. v We use the Bogoliubov-Valatin transformations c = i for control over 0−π transitions within a single sample in a (cid:16) (cid:17) iσ X waywhichhasnocounterpartinSFSstructures.Wefirstcom- ∑n unσ(i)γnσ−σv∗nσ(i)γ†nσ¯ , where σ¯ = −σ, to obtain the ar putenumericallythethresholdvaluefortheantiferromagnetic standardBogoliubov-deGennesequations(BdG)10 order parameter at which the even-odd effect occurs. Below (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) this threshold, even and odd junctions behave qualitatively ∑ Hijσ ∆ijσ unσ(j) =E unσ(i) . (2) similar, both displaying a monotonic decay of the supercur- j ∆∗jiσ −Hi∗jσ vnσ¯(j) n vnσ¯(i) rent with superimposed small-scale oscillations, but without any sign-change of the critical current. As a result of this, Here,H σ=−tδ −µδ +σmδ whereσ=±1forspin ij (cid:104)i,j(cid:105) ij i ij we show that it is possible to obtain pressure-induced 0−π up and down, and δ and δ are the Kroenecker deltas ij (cid:104)i,j(cid:105) transitionsinantiferromagneticJosephsonjunctions.Namely, for onsite and nearest-neighbor sites, respectively. The off- applying pressure alters the Fermi level by moving it away diagonalblock∆ =−∆δ fors-wavesymmetry. ijσ i ij from the van Hove singularity of the system, which simulta- Due to the crystal periodicity along the interface, we can neously destroys the Fermi surface nesting properties giving Fourier transform the BdG-equations to make the problem 2 0.35 100 0.3 0.25 10−1 mc 0.2 g o mc l10−2 0.15 0.1 10−3 FIG. 1: Left panel: A model of the Josephson junction in (110)- 101 logL 102 direction. Red(blue)dotsdenotetheA(B)-lattice. Thedashedver- 0.05 ticallineistheinterfaceforanevenjunction, whiletherightsolid line is the interface for an odd junction. The left solid line is the 0 20 40 60 80 100 120 140 160 sameforbothevenandoddjunctions. Rightpanel: Criticalcurrent L asafunctionoflengthLfordifferentvaluesofthemagneticcoupling constantU. ThedataarenormalizedtotheL=4valuetosimplify comparison.WehaveusedV =1.9. FIG. 2: (Color online) Critical value of the magnetic moment mc asafunctionofjunctionwidthLforanantiferromagneticjunction (bluecircles/diamonds)andaferromagneticjunction(redsquares). Intheinset,theresultsplottedonalog-logscalefortheferromag- effectively one-dimensional. Using the method described in netic case fall on a straight line corresponding to 1/L. The results Ref. 10, we get the one-dimensional BdG-equations for the fortheantiferromagneticcase,however,saturateatlargeL. Forthe (110)-direction10 ferromagneticcase,theresultsshowthatforawideenoughSFSjunc- k √ (cid:104) (cid:105) tion,anyamountoforderingsufficestoproducea0−πtransitionin −µuAi,σ(B)(ky)−2tcos√y2e±iky/ 2 uiB,σ(A)(ky)+uBi∓(A1,)σ(ky) thejunction.FortheantiferromagneticSAFScase,athresholdvalue isneededforthistooccur,sinceonlyedgespinsareuncompensated. +σmA(B)uA(B)(k )−∆A(B)vA(B)(k )=EuA(B)(k ), (3) WehaveusedV =1.9. i i,σ y j i,σ¯ y i,σ y k √ (cid:104) (cid:105) µvA(B)(k )+2tcos√y e±iky/ 2 vB(A)(k )+vB(A) (k ) i,σ¯ y 2 i,σ¯ y i∓1,σ¯ y Wefixthephaseattheendofeachsuperconductor,obtain +σmA(B)vA(B)(k )−∆A(B)∗uA(B)(k )=EvA(B)(k ). (4) self-consistent solutions from the above equations, and use i i,σ¯ y j i,σ y i,σ¯ y Eq. (7) to calculate the Josephson current for that particular The A(B) denotes the A(B) sublattice while the order phase difference. We set µ=0 throughout, and t is used as parameters are defined as ∆ = −V(cid:104)cˆ cˆ (cid:105) and mA(B) = theunitofenergyinallcalculations. i i i↓ i↑ i (U/2)((cid:104)nˆA(B)(cid:105) − (cid:104)nˆA(B)(cid:105)). These are determined self- Results and Discussion. In the right panel of Fig. 1 we i i↑ i↓ showresultsforthecriticalcurrentasafunctionofthenum- consistentlythrough10 ber of AF-layers in the junction, for various values of the nA(B)= ∑(cid:104)|uA(B)(k )|2f(E ) magnetization coupling constantU. The main point to note iσ n,i,σ y n,ky,σ is that the even-odd effect (sign-change for the current) ap- n,ky pearsonlyprovidedthatU exceedsathresholdvalue. Below (cid:105) +|vA(B)(k )|2f(−E ) , (5) this threshold, the critical current displays no change of sign n,i,σ y n,ky,σ withincreasingL,althoughtherearesmalloscillationsinthe (cid:18)βE (cid:19) ∆A(B)=−V ∑ u (k )v∗ (k )tanh n,ky,σ , (6) quantity superimposed on a monotonic decay. However, in- i i n,i,σ y n,i,σ¯ y 2 creasing U sufficiently will induce 0−π-transitions for odd n,ky,σ junctions,whileonlydecreasingtheeffectiveinterfacetrans- where f(E)=(1+exp(βE))−1 is the Fermi-Dirac distribu- parency for even junctions, as seen in Fig. 1. Note that for tion. Here, Ui and Vi denote the spatially dependent cou- L=5, thethresholdvalueforobservinga0−π-transitionin pling constants for the magnetization and superconducting the critical current is above U = 1.4, while for L = 7, the pairing, respectively. We model the coupling contants as threshold value is below U =1.4. Since the magnitude of U =UΘ(i−i )Θ(i −i),V =VΘ(i −i)+VΘ(i−i ),where the staggered magnetic order parameter increases monotoni- i L R i L R Θ(x) is the Heaviside step function, and i denote the left callywithU,thisindicatesthatlongeroddjunctionsrequirea L,R andrightinterfacecoordinates,respectively. weakermagnetizationtoundergo0−πtransitions.Thisresult ThedcJosephsoncurrentisobtainedfrom4,5 hassomeresemblancetothecaseofaferromagneticjunction, (cid:18) (cid:19) wheresuchtransitionscanoccurregardlessofthemagnitude J=−8te ∑ cos √ky (cid:2)Im(u (x)u∗ (x(cid:48)))f(E ) oftheexchangefieldprovidedthatthejunctionissufficiently h¯Nkn,ky,σ 2 nσ n,σ nσ long. Wewilldiscussthispointinmoredetailbelow. +Im(v (x)v∗ (x(cid:48)))f(−E )(cid:3), (7) Inordertounderstandthephysicsbehindtheseresults,note nσ n,σ nσ that even junctions have a vanishing total magnetic moment whereeistheelectroncharge,andxandx(cid:48)denoteneighboring as there is an equal number of spins with opposite direction. pointsintheantiferromagnet. An even junction is essentially an SNS junction with the ex- 3 traeffectthatincreasedstaggeringincreasestheresistanceof cal magnetic moment is defined as the value where the crit- thejunction. Thismaybeunderstoodinsimpletermsbynot- ical current changes sign for a given value of the junction ingthatanincreasingstaggeringprovidesanincreasingspin- length L. Although the fits appear to be quite similar on a dependentpotentialthatscattersthecurrent-carryingstatesin linear scale, they are significantly different when viewed on theAF-junctionforlowvaluesofU. a log-log scale. The results for the SFS-junction follows the Odd junctions, on the other hand, have a finite magnetic intuitiononegetsbasedonthebound-stateenergyandphase- moment due to the uncompensated spin at one of the edges shiftsshownabove,namelythatthecriticalvalueofthemag- of the AF region. The layers adjacent to the interfaces have netic moment density, which is proportional to a threshold parallelspinsforoddjunctions,whileevenjunctionshavean- value of Eex in order to get a 0−π transition, scales as 1/L. tiparallelspins. Thisresemblesthesituationin, forinstance, ThisisnotsofortheSAFS-case. Rather, sinceEex∼1/Lin SFIFSjunctionswithparalleloranti-parallelalignmentofthe this case, one expects the critical value of the magnetic mo- exchangefieldsofthetwoferromagnets,8 orSIFISjunctions ment density to be non-zero also for long junctions. This is where the interfaces are spin-active.9 In odd junctions, the indeedseeninthelog-logplot,wheretheresultsfortheSFS- subgapstatesarespin-split,whileforevenjunctions,thestates junctionfallsonalinearcurve,whiletheresultsfortheSAFS- are spin degenerate. Naively, odd junctions are thus equiva- junctionreachesaconstantvalueasymptotically. lenttoferromagneticjunctions,asthereisanetmagneticmo- Furthermore, we have considered the crossing of the ment (albeit weak) if one averages over the junction length. energy-levels of the current-carrying states as the strength Onenotabledifferenceis,however,thattheaveragemagnetic of the antiferromagnetic ordering, parametrized byU, is in- momentdensityintheSAFS-casescaleswith1/L,whileitis creased. ThisisshowninFig. 3. Levelcrossingsofspin-up constant in the SFS-case. Moreover, it is known in the SFS statesandspin-downstates,withoppositeφ-dispersion,occur case that, provided the junctions are wide enough, any finite forlargeenoughvalueofU,i.e. asthemagnitudeofthemag- amountofmagneticmomentdensitysufficestoinducea0−π neticorderingincreases. Suchlevelcrossingstendtoreverse transition. FortheSAFScase,itisfarfromobviousthatone thesignofthecurrent,whichisessentiallydeterminedbythe shouldgetthesamebehavior,duetotheeffective1/L-scaling φ-derivativeofthelevels. Thelevelsthatcontributemostsig- of the average magnetic moment density. It is therefore of nificantlytothecurrentsareseentobethelevelsclosetozero someimportancetoinvestigatethescalingwithLofthecriti- energy,asthelevelsfurtherawayareφ-independentandthere- calmomentdensityrequiredtoinduce0−πoscillationsinthe fore carry little current. The main difference between such SAFS-case,andcompareitwiththebehavioroftheSFS-case. spectrafortheSAFS-junctionsandthecorrespondingonesfor Todoso,itisinstructivetoconsiderananalogywithafer- SFS-junctions, is that complete level-reversion of near-zero romagnetic junction, where the Andreev-bound state energy energy states occurs much more easily in the SFS-case than in the ballistic limit reads11: εσ(ϕ)=∆(cid:12)(cid:12)cos(cid:0)ϕ+2σα(cid:1)(cid:12)(cid:12). Here, the SAFS case, since the total magnetic moment scales with α= 2EexL, where E is the ferromagnetic exchange energy, thewidthofthejunctionintheSFS-case,whileitdoesnotin andvh¯viFstheFermievxelocity. Wehaveassumedthattheinter- theSAFS-case. Hence,theenergybandswithadefinitespin- F facetransparencyisperfectinordertouseasimpleanalytical content are much more susceptible to a Zeeman effect in the expressionfortheensuingdiscussion. Now,forevenLtheto- SFS-case,comparedtotheSAFS-case. Inparticular,onefea- talmagneticmomentoftheantiferromagnetiszero,hencewe ture of the SAFS-spectra shown below is that there is essen- getno0−πtransitioninevenjunctions. Fortheoddjunction tiallyonlyonelevel-reversionbetweenspin-upandspin-down in question we can relate the finite magnetic moment to an subgapstatesbeforethebandsflattenout,thusnolongercon- effectiveferromagneticexchangefield. Thetwofactorscon- tributing to the currents. For the SFS-case (not shown here), tributing to this extra phase is the magnetic moment and the there are several level-inversions of subgap-states with only widthofthejunction,byanalogytoaneffectiveferromagnet minorflatteningofthe bandsasthemagnetizationincreases, foroddL. Alongjunctioncandisplaya0−πtransitionfora thusprovidingamuchmoreefficientwayofreversingthesign smallermagneticmomentmagnitudethanashortjunction,as ofthecurrentsoverthejunction. seenintherightpanelofFig.1. ForU =1.4, L=5hasnot Itisclearthatantiferromagneticorderisnotinitselfsuffi- undergonethetransitionyet,whileithasundergoneatransi- cient to induce 0−π transitions in the supercurrent. Ref. 4 tionforL=7andlongerjunctions.This,superficiallyatleast, showedthatforasufficientlystrongstaggeredorderparame- seemstoindicatethatthebehaviorissimilartothatofanSFS- ter,thecurrent-phaserelationofanantiferromagneticJoseph- junction. Note however, that in the SFS-case, the parameter sonjunctionrevealeda0-orπ-statedependingonwhetherthe α increases linearly with L and will exceed any prescribed antiferromagnethadanevenoroddnumberofatomiclayers. threshold value, provided L is large enough. For an SAFS- Wehaveaboveexplicitlystudiedtheactualthresholdvalueof junction,however,whereonenaivelyexpectsEex∼1/Lsuch themagnitudeofthestaggeredorderparameterwheretransi- thatEexL∼1,athresholdvalueforthemagnitudeofthestag- tions cease to occur, regardless of whether the interlayer has geredorderparameterwouldberequiredinordertoobservea an odd or even number of lattice sites. To observe the even- 0−πoscillation. oddeffect(anditsabsenceaspredictedhereforweakantifer- To investigate this further, we have numerically compared romagnets),itwouldbenecessarytoexertsatisfactorycontrol an SFS-junction with an odd SAFS-junction. Fig. 2 shows ofthejunctionlength(oforderlatticespacing). Itwouldcer- thecriticalmagneticmomentasafunctionofjunctionwidth tainly be an experimental challenge to tailor the junctions in for both kinds of junctions, SFS and SAFS. Here, the criti- thisway12. Nevertheless,previousstudieshavedemonstrated 4 1.0 values in candidate systems. That would require a more re- fined approach including non-ideal effects such as disorder 0.5 both in terms of non-magnetic impurities and with regard to ∆ themagneticsublattices. ε/ 0.0 The threshold value predicted here has an interesting con- 0.5 sequence, namely that it becomes possible to induce a 0−π 1.0 transitioninantiferromagnetsviapressure. Thereasoningis asfollows. Foranodd-LjunctionwithsufficientlystrongAF 1.0 order,thejunctionisintheπ-state.Wereonetobringthemag- 0.5 nitude of the AF order back down below the threshold value ∆ for the 0−π transition, one would effectively have reversed ε/ 0.0 thedcJosephson-currentacrossthejunction. Suppressionof 0.5 the AF order may effectively be obtained by destroying the Fermi-surfacenesting,somethingthatcanbeachievedbyap- 1.0 plying pressure to the sample. The pressure may be induced 0 1 2 3 4 5 6 0 1 2 3 4 5 6 ϕ ϕ via an electric mechanism, such that one effectively is using electric means to control magnetic order, and by that in turn FIG.3:(Coloronline)Energy-levelsofcurrent-carryingstatesofthe current-switching. This effect has no counterpart in an SFS- systemasafunctionofsuperconductingphase-twistacrossthejunc- junction,sinceferromagnetismdoesnotrelyonFermisurface tion. Red lines denote spin-up states, blue lines denote spin-down nesting. The combination of a threshold value for the stag- states.Asthestrengthoftheantiferromagneticorderingincreases(U gered order parameter at which one may have 0−π oscilla- increases), spin-downstatesareloweredinenergybytheZeeman- effectduetotheuncompensatedspin,whilespin-upstatesincrease tions,andthepossibilitytodestroynestingandthusAFMor- in energy. Upper left panel: U =0.5. Upper right panelU =1.2. derviapressure,amountstoelectricallycontrolled0−πtran- Lowerleftpanel:U=1.545. Lowerrightpanel:U=2.0Thecon- sitionsinasinglesample. ThissetstheresultsforanSAFS- tributionstothecurrentareessentiallydeterminedbytheφ-derivative junctionapartfromwhatisfoundfortheferromagneticSFS- ofeachofthecurves.Asthelevelscross,thelevelscontributingmost case,whereanyamountofmagneticorderinprinciplesuffices significantlytothecurrentchangessign,leadingtothe0−πtransi- toinduce0−πtransitions.Suchtransitionstypicallyoccurby tion. This requires a threshold value, unlike in the ferromagnetic changingthejunctionlength, requiringmultiplesamples(al- case.Otherparametervaluesare:V =1.9,µ=0,L=5. though temperature-dependent transitions are also possible). TheAFMorderthusoffersanovelmechanismforcontrolling thequantummechanicalgroundstateofaJosephsonjunction. thatitispossibletofabricateultrathinfilmswithatomic-scale control over the thickness13,14, which would allow for a test H.E. thanks NTNU for financial support. JL and AS ac- ofourpredictions. Itisdifficultwithintheframeworkofour knowledge support from the Norwegian Research Council, model to make quantitative predictions for actual parameter throughGrants205591/V20and216700/F20. 1 V.V.Ryazanov,V.A.Oboznov,A.Yu.Rusanov,A.V.Vereten- 8 Yu. S. Barash, I. V. Bobkova, and T. Kopp, Phys. Rev. B 66, nikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 140503(R)(2002). (2001). 9 H. Enoksen, J. Linder, and A. Sudbø, Phys. Rev. B 85, 014512 2 E.Terzioglu,andM.R.Beasley,IEEETrans.Appl.Supercond. (2012). 8,48(1998). 10 B. M. Andersen, I. V. Bobkova, P. J. Hirschfeld, and Yu. S. 3 I.I.Mazin,Nature464,183(2010). Barash,Phys.Rev.B72,184510(2005). 4 B. M. Andersen, I. V. Bobkova, P. J. Hirschfeld, and Yu. S. 11 J.Cayssol,andG.Montambaux,Phys.Rev.B70,224520(2004). Barash,Phys.Rev.Lett.96,117005(2006). 12 J.W.A.Robinson,G.B.Hala´sz,A.I.Buzdin,andM.G.Blamire, 5 B. M. Andersen, Yu. S. Barash, S. Graser, and P. J. Hirschfeld, Phys.Rev.Lett.104,207001(2010). Phys.Rev.B77,054501(2008). 13 Y.Guoetal.,Science306,1915(2004). 6 J.-C.Wang,G,-Q.Zha,andS.-P.Zhou,PhysicaC483,79(2012). 14 D.Eometal.,Phys.Rev.Lett.96,027005(2006). 7 M.Weides,M.Disch,H.Kohlstedt,andD.E.Bu¨rgler,Phys.Rev. B80,064508(2009).