ebook img

Preparation of Protein Molecular-Imprinted Polysiloxane Membrane Using Calcium Alginate Film PDF

14 Pages·2017·7.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Preparation of Protein Molecular-Imprinted Polysiloxane Membrane Using Calcium Alginate Film

polymers Article Preparation of Protein Molecular-Imprinted Polysiloxane Membrane Using Calcium Alginate Film as Matrix and Its Application for Cell Culture DongLiu1,KongyinZhao1,2,* ID,MengQi2,ShuwenLi2,GuoqingXu2,JunfuWei1,2 andXiaolingHe2 1 StateKeyLaboratoryofSeparationMembranesandMembraneProcesses,TianjinPolytechnicUniversity, Tianjin300387,China;[email protected](D.L.);[email protected](J.W.) 2 SchoolofMaterialScienceandEngineering,TianjinPolytechnicUniversity,Tianjin300387,China; [email protected](M.Q.);[email protected](S.L.);[email protected](G.X.); [email protected](X.H.) * Correspondence:[email protected];Tel.:+86-22-83955362 Received:18January2018;Accepted:9February2018;Published:10February2018 Abstract: Bovine serum albumin (BSA) molecular-imprinted polysiloxane (MIP) membrane was prepared by sol-gel technology, using silanes as the functional monomers, BSA as the template and CaAlg hydrogel film as the matrix. The stress-strain curves of wet CaAlg membrane and molecular-imprinted polysiloxane membrane were investigated. We evaluate the adsorption and recognition properties of MIP membrane. Results showed that the adsorption capacity of BSA-imprintedpolysiloxaneforBSAreached28.83mg/g,whichwas2.18timesthenon-imprinted polysiloxane(NIP)membrane. Theadsorptionratewashigherthanthatoftheprotein-imprinted hydrogel. BSA-imprinted polysiloxane membrane could identify the protein template from competitive proteins such as bovine hemoglobin, ovalbumin and bovine γ-globulin. In order to obtainthebiomaterialthatcanpromotecelladhesionandproliferation,fibronectin(FN)-imprinted polysiloxane (FN-MIP) membrane was obtained by using fibronectin as the template, silanes as functional monomers, and CaAlg hydrogel membrane as the substrate or matrix. The FN-MIP adsorbed more FN than NIP. The FN-imprinted polysiloxane membrane was applied to culture mouse fibroblast cells (L929) and the results proved that the FN-MIP had a better effect on cell adhesionthanNIP. Keywords: calciumalginate;polysiloxane;molecular-imprintedpolymer;bovineserumalbumin adsorption;fibronectin;cellculture 1. Introduction Biomaterialscaffoldmimicstheextracellularmatrixandservesasatemporaryskeletonforcell growth[1],migration,proliferation,differentiationandfinallymaturation[2–4]. Biomaterialsthat identifyspecificmolecularpotentialhaveattractedalotofattentiontoallowadsorptionandadhesion of proteins that properly accommodate and rebuild the target tissue [5]. The studies on protein adsorption,proteinrecognitionaswellastheinteractionbetweenproteinsandbiomaterialshavebeen widelystudied[6–8]. Molecular imprinting technique is an effective method for the establishment of specific identification sites for target molecules in synthetic materials [9–13]. The obtained molecularly-imprintedpolymershavecomplementarybindingsitesandtemplate-specificrecognition cavities,whichcanserveasrepositoriesofdrugmoleculesandimprovedrugresidencetime[14–17]. Molecular imprinting technology has been widely used in various small molecules and made an Polymers2018,10,170;doi:10.3390/polym10020170 www.mdpi.com/journal/polymers Polymers2018,10,170 2of14 excellentprogress.However,theimprintingofproteinisstillamajorchallengeowingtothecomplexity ofsurfacestructures,thehighflexibilityofconformationanddiversityofproteinsequences[18,19]. One of the interesting biomaterials is polyacrylamide, which is always used to prepare cross-linkinghydrogelsexistingproteinrecognitionsites[20–23]. Althoughpolyacrylamidehydrogels havehighselectivitytotemplateproteins,theyareshortofamplethermostabilityandmechanical strength. In addition, the diffusion of protein in the hydrogel is quite slow. Surface imprinting techniquecanbeappliedtosolvetheproblemofproteindiffusion[24–26]. Asfunctionalmonomers, silanes and its derivatives were employed to synthetize molecular-imprinted polysiloxane on the surfaceofsolidsubstrate. Organicsilaneiseasytopolymerizebysol-gelprocesstocreatepolysiloxane, which has high and low temperature resistance, hydrophobicity and physiological inertia. Most silanescontainfunctionalgroupsthatreactwithproteins. Mosbachetal. discussedthepreparation of protein molecular imprinting polymers by organic silane monomers [27]. There were multiple hydrogenbondsbetweenthesilanolgroupsofpolysiloxaneandsurfacepolarresiduesofproteins. Theresultsshowthatthesilicondioxidecoatedwithpolysiloxanehasaffinityfortheglycoprotein transferrin. ToruShiomietal.[28]synthesizedproteinmolecular-imprintedpolymeronsilicausing 3-aminopropyltrimethoxysilane and trimethoxypropylsilane as the functional monomers for the determinationofhemoglobin(Hb). Twokindsoforganicsilaneswerepolymerizedonasurfaceof poroussilicaaftertheHbtemplatewascovalentlyimmobilizedbyformingiminebonds. Asensitive silicagelmicrospherecaptureproteinwaspreparedbyKyokoFukazawaetal.[29]. Itwasusedfor highselectiveidentificationofbovineserumalbumin(BSA).Theimprintedproteinwasimmobilizedto silicabeadsbyusingaphospholipidpolymercontainingbothactiveestergroupsandsilanecoupling groups. ZianLinetal.[30]fabricatedamacroporoussilicamonolithforproteinmolecularimprinting. Inour previous work, BSAmolecular-imprinted polysiloxane(MIP) waspreparedwith silanesas functional monomers, BSA as templates and calcium silicate containing mesoporous SiO on the 2 surface(CaSiO @SiO )asthematrix[31].However,theabove-preparedMIPparticlesareinconvenient 3 2 insomeapplications,especiallyincellculture. As one of the biological materials extracted from brown algae, calcium alginate has been successfully used in food, drug delivery, tissue engineering and beverages because of its biocompatibility[32].Alginate-basedhydrogelshavebeenwidelyusedforcellmicroencapsulation[33]. BSA-imprintedcalciumalginatemembranehasbeenpreparedforthereleaseofBSAfromthealginate matrix[34]. OurpreviousworkwastoprepareBSA-imprintedpolymersbasedoncalciumalginate hydrogelmicrospheres[35]. However,theprotein-imprintedmicrospheresareinconvenientincell culture,especiallywhenacellsheetisrequired. Inthispaper,calciumalginate(CaAlg)hydrogelmembranesweresynthesizedbycross-linking sodium alginate (SA) in CaCl solution. BSA molecular-imprinted polysiloxane polymer was 2 preparedusingβ-methoxyethylenetriethyoxysilane(KH-570)andγ-amidopropyltriethyoxysilane (KH-550)asfunctionalmonomers, BSAastemplateandCaAlghydrogelmembraneasthematrix. The molecular-imprinted polysiloxane (MIP) membrane was analyzed by means of transmission electronmicroscope(TEM),scanningelectronicmicroscopy(SEM),andFouriertransforminfrared spectroscopy(FT-IR).TheadsorptionandrecognitionpropertiesofMIPmembranewereevaluated. In order to obtain the biomaterial that can promote cell adhesion and proliferation, fibronectin (FN)-imprintedpolysiloxanewaspreparedbyusingFNastemplate,silanesasfunctionalmonomers, andCaAlghydrogelmembraneasthematrix. TheresultsofcellcultureshowedthattheFN-imprinted polysiloxanehadabettereffectoncelladhesionthanNIP. 2. MaterialsandMethods 2.1. Materials Sodiumalginate(SA,chemicalgrade,M =3.1×105)wasboughtfromTianjinNorthernChina W MedicalChemicalReagent(Tianjin,China). Oxalicacidandcalciumchloride(CaCl ,analyticalgrade) 2 Polymers2018,10,170 3of14 was obtained from Shanghai Shen Xiang Chemical Reagent Co., Ltd. (Shanghai, China). Tianjin Shengbin Chemical Plant (Tianjin, China) supplied β-methoxyethylene triethyoxysilane (KH-570) and γ-amidopropyl triethyoxysilane (KH-550). Bovine serum albumin (BSA, M 67 kDa, pI 4.9), W ovalbumin (Ova, M 43 kDa, pI 4.7), bovine hemoglobin (Hb, M 64.0 kDa, pI 6.9) and bovine W W γ-globulin(Glo, M 160kDa, pI7.1)wereboughtfrom LanjiofShanghaiScience andTechnology W DevelopmentCompany(Shanghai,China). TheCellularBiologyInstituteoftheChineseAcademy ofSciences(Shanghai,China)suppliedmousefibroblastcells(L929). Fibronectin(FN,440KD)was boughtfromQianchenBiologicalTechnologyCompany(Shanghai,China). MTTCellProliferation CytotoxicityAssayKitwasfromWuhandoctorDEbioengineeringCo.,LTD. 2.2. Apparatus Ultraviolet spectrophotometer (TU-1901) was offered by Beijing Puxi general instrument Co., Ltd.,Beijing,China. Thefulltemperatureoscillationincubator(HZQ-F)wasfromDonglianelectronic technologydevelopmentCo.,Ltd.,Harbin,China. Electronicbalance(FA2004N)wasachievedfrom ShanghaiprecisionscienceinstrumentCo.,Ltd.,Shanghai,China. Fieldemissionelectronmicroscope (S-4800)wasfromHitachiCo.,Ltd.,Tokyo,Japan. Constanttemperaturemagneticstirrer(85-2)was suppliedbyShanghaiSileinstrumentfactory,Shanghai,China. Theinfraredspectrometer(Nicolet iS50)wasformThermoScientificCorp. NewYork,NY,USA.Integratedthermalanalyzer(SDTQ600) wasachievedfromTAInstruments-WatersLtd.,Shanghai,China. Singlefibertensiletestingdevice (LLY-06F)wassuppliedbyLaizhouelectronicinstrumentCo.,Ltd.,Laizhou,China. 2.3. PreparationofCalciumAlginate(CaAlg)HydrogelMembranes The calcium alginate (CaAlg) hydrogel membranes were prepared according to the literature[36,37]. Firstly,differentamountsofSApowders(0.3046,0.4082,0.5128,0.6186and0.7254g) wereaddedindividuallyintofivebeakersthatcontained20mLwaterandthemixturewasstirred for2h. ThenSAsolutionswiththeSAcontentof1.5%, 2.0%, 2.5%, 3.0%and3.5%wereobtained respectively. WeputasidetheSAsolutionsfor12htoeliminatebubblesafterultrasonicprocessing for5min. Thenwescraped3–10goftheviscousSAsolutionintomembranesonaglassplateusing aglassrodtwinedcopperwirewiththediameterof0.4mm. TheglassplatewiththeSAsolution wasputintoCaCl solutionswiththeconcentrationof1.5%, 2.5%, 3.5%and5.0%respectivelyfor 2 cross-linking5h. TheresultingCaAlghydrogelmembraneswerestoredinCaCl aqueoussolution 2 (1%)forfutureuse. 2.4. PreparationofCaAlgHydrogelBasedMIPandNIPMembranes Approximately0.100g CaAlgmembranewasplacedinvialsand10mLof1.34mg/mLBSA solutionwasadded. After12h0.050mLKH-570and0.050mLKH-550silaneswereaddedintothe vials. Thevialswereincubatedat20◦Cfor48hforthehydrolysisandcondensationpolymerizationof twosilanes. ThenthesupernatantwasremovedandtheCaAlgmembranecoatedwithpolysiloxane werewashedwith10mLoxalicacidsolution(0.5mol/L)toremovethetemplateBSA.Afterwashing themembranewithdistilledwaterforremovalofoxalicacid,BSAmolecular-imprintedpolysiloxane membranewaspreparedandwasnotedasMIP(BSA-MIP). Simultaneously, non-imprinted polysiloxane was also fabricated according to the above proceduresandnamedasNIPwhentheBSAsolutionwasreplacedwithdistilledwater. Fibronectin(FN)-imprintedpolysiloxanemembranewaspreparedbyusingFNasthetemplate accordingtotheabovemethod,andtheresultingimprintedpolysiloxanewasnamedasFN-MIP. 2.5. Characterizations TheCaAlgmembranespreparedwith3.0wt%SA,2.5wt%CaCl andtheMIPmembranesby 2 usingtheCaAlgmembranesasthematrixwereusedforcharacterization.Wemeasuredthethicknesses Polymers2018,10,170 4of14 of CaAlg and MIP membranes in wet form with a digital display micrometer gauge provided by ShanghaiLuchuanCo.,LTD. We examined the morphologies of CaAlg and MIP membranes by using a scanning electron microscope(SEM).Transmissionelectronmicroscopy(TEM)wasusedtoinvestigatethemicroscopic morphologyofMIPmembraneat200kVacceleratingvoltage. Epoxyresinembeddingandultrathin sectioningwereusedtoprepareTEMsamplesonaLeicaUltracutUCTultramicrotomer. We investigated the chemical structures of CaAlg and MIP membranes by Fourier transform infraredspectrometry(FT-IR). WetestedthemechanicalpropertiesoftheCaAlgandMIPmembranesinwetformbyusinga tensiletestingmachine(LLY-06F). 2.6. AdsorptionofBSAonBSA-MIPandNIPMembranes About100mgMIPandNIPmembraneswereputintotheglassbottlecontaining0–2.00mg/mL BSAaqueoussolutiontodeterminetheadsorptionisotherms,respectively. Onordertodeterminethe adsorptiondynamicsandtheimprintingefficiency(IE)ofMIPandNIPmembranes,1.36mg/mLBSA aqueoussolutionwasused. Anultravioletspectrophotometerwasusedtomeasuretheconcentration oftheaboveBSAaqueoussolutionatcertaintimeintervals. AccordingtoEquation(1),theequilibrium adsorptioncapacity(Q )(mg/g)ofproteinontheMIPandNIPmembranewasdetermined. e Q =(C −C )V/W (1) e 0 e where V (mL) is the volume of BSA solution, C and C (mg/mL) is the initial and final BSA 0 e concentration(mg/mL),andW(g)isthemassofdriedMIPorNIPmembrane. Theimprintingefficiency(IE)ofMIPmembranewasdefinedasfollows: IE=Q /Q (2) MIP NIP whereQ andQ aretheadsorptioncapacityofMIPmembraneandNIPmembrane,respectively. MIP NIP 2.7. RecognitionPerformanceofBSA-MIPMembrane TheMIPandNIPmembraneswereputintoeachglassbottle,whichcontains10mL1.36mg/mL Hb,Ova,GloandBSAsolutionstoassesstherecognitionperformancesofMIP[26]. 2.8. AdsorptionofFNonFN-MIPandNIPMembrane About 20 mg of FN-MIP or NIP membrane was placed in a glass bottle containing 1 mL 0.10 mg/mL FN solution at room temperature. Then the Bradford method was used for protein quantitation at specific time intervals [38]. The adsorption capacity (mg/g) and the imprinting efficiency(IE)ofFN-MIPmembranewascalculatedaccordingtoSection2.6. 2.9. CellCulture Westerilizedthefibronectin(FN)-imprintedpolysiloxane(FN-MIP)andNIPmembranesby70% (v/v)ethanolandwashedthemwithsterilewater. TheFN-MIPandNIPmembraneswereplaced intoaglassbottlecontaining5mL0.2mg/mLFNaqueoussolutionforadsorption2h. ThentheFN adsorbedFN-MIPandNIPmembraneswereplacedintoacultureplate(96-well). WeseededL929 cellsontheFN-MIPandNIPmembranesatadensityof2×104 cells/well. Thecultureplatewas culturedunderahumidifiedatmospherecontaining5%CO at37◦C.ThemorphologiesofL929cells 2 culturedonNIPandFN-MIPmembraneswereexaminedbyamicroscopeandtheadhesionbehavior ofthecellswasinvestigatedaccordingtotheliterature[39]. The growth of cells on the membranes was checked by the MTT assay. The culture medium wasreplacedwith1mL0.5mg/mLfreshculturemediumcontainingMTT.Theexcessmediumwas Polymers2018,10,170 5of14 Polymers 2018, 10, x FOR PEER REVIEW 5 of 14 Polymers 2018, 10, x FOR PEER REVIEW 5 of 14 removedand500µLDMSOwasaddedinordertodissolvetheformazancrystalafterincubatingat 3377 °◦CC ffoorr 44 hh.. TThheenn 115500––220000 µμLLD DMMSSOOs soolulutitoionnssw weererep poouurerdedin itnoto9 69-6w-welellpl lpaltaetseasn adndth tehOe DODva vluaeluseosf 37 °C for 4 h. Then 150–200 μL DMSO solutions were poured into 96-well plates and the OD values of the each well were determined at 492 nm by a micro plate reader. theeachwellweredeterminedat492nmbyamicroplatereader. of the each well were determined at 492 nm by a micro plate reader. 33.. RReessuullttss aanndd DDiissccuussssiioonn 3. Results and Discussion 33..11.. CChhaarraacctteerriizzaattiioonnss ooff MMIIPP MMeemmbbrraanneess 3.1. Characterizations of MIP Membranes 33..11..11.. MMoorrpphhoollooggiieess ooff MMIIPP MMeemmbbrraanneess 3.1.1. Morphologies of MIP Membranes TThhee ddiiggiittaall iimmaaggeess ooff CCaaAAllgg aanndd MMIIPP mmeemmbbrraanneess iinn wweett ffoorrmm aarree sshhoowweedd iinn FFiigguurree 11.. TThhee ttrraannssTpphaareree ndncicgyyi tooaffl CCimaaAAagllgge smm oeefmm CbbarrAaannlgee wwanaadss hhMiiggIhhPee mrr ttehhmaannb rMManIIPPes mm inee mmwbberrtaa nnfoeer.. mTTh haeer epp oosllhyyosswiillooexxdaa nninee ooFnnig ttuhhreee s s1uu.rr ffTaahcceee otorffa MMnsIIpPPa rfifeillnmmc yiin noccfrr eCeaaassAeeddlg t thmheee tmthhibiccrkkannneeess wss oaofsf ththhiegeh mmeerem mthbbarnraa nMneeI (P(ffr rmoomemm 00b.1.r10a02n2e± ±. T00h..00e11 99p ottooly 00s.i.1l1o88x00a ±±n e00 .o.00n22 88th mme mmsu))r faaanncdde dodfee ccMrreeIaaPss eefiddlm tthh ieen ttcrrraaennasssppedaarr eethnnecc yyth ooiffc kCCnaaeAAssllgg o mmf teehmme bbmrraaennmeeb.. SrSauunrreffaa (ccfeer oSSmEEMM 0. 1iimm02aa gg±ee 0ss. 0dd1iiss9pp tlloaa yy0 .tt1hh8ee0 CC ±aa 0AA.0llgg2 8mm meemmmbb) rraaannndee ((dFFeiicggruuerraees e22daa ))t hwweaa tssr sasmmnsoopooattrhheeenrrc ttyhh oaannf CtthhaaaAtt loogff m MMeIImPP bmmraeenmmebb. rrSaaunnreefa ((cFFeii ggSuuErrMee 22ibbm)).a. gTTehhsee drrioosuupgglahhynn eethsssse ooCffa NNAIIlPPg mmmeeemmmbbbrrraaannneee ww(Faaigss ussriimme 2iillaaa)rr wttooa stthh saamtt ooooff tMMheIIPPr tmmhaeenmm tbbhrraaatnn oeef bbMeeccIaaPuu msseee tmthhbeeyyra wwneee rr(eeF ibbgoouttrhhe cc2oobaa)tt.ee Tddh wwe iirttohhu ttghhheen ppeoosllsyy ossfiill oNoxxIaaPnn mee.. eFFmiiggbuurrraeen 33e iwiss attshh ees imTTEEilMMar iitmmo aathggaeet ooofff MMMIIIPPP mmmeeemmmbbbrrraaannneee ,, biiennc awwuhhsieicc hthh memyaa wnnyye rBBeS SbAAo--tiihmm cpporraiitnnettdee ddw ppitoohll yythssiiell oopxxoaalnynesei lppoaaxrrattniiccell.ee sFs iwwguiittrhhe a3a didsii aathmmeee ttTeeErr Mooff iaamrrooauugnnedd o 22f 00M00––I33P22 m00 nnemmmb wwraeenrreee ,ii ddinee nnwttiihfifiieecddh.. many BSA-imprinted polysiloxane particles with a diameter of around 200–320 nm were identified. (a) (b) (a) (b) FFiigguurree 11.. DDiiggiittaall pphhoottooss ooff CCaaAAllgg mmeemmbbrraannee ((aa)) aanndd MMIIPP mmeemmbbrraannee ((bb)).. Figure 1. Digital photos of CaAlg membrane (a) and MIP membrane (b). (a) CaAlg membrane × 10,000 (b) MIP × 10,000 (a) CaAlg membrane × 10,000 (b) MIP × 10,000 Figure 2. SEM images of CaAlg membrane (a) and MIP membrane (b). Figure 2. SEM images of CaAlg membrane (a) and MIP membrane (b). Figure2.SEMimagesofCaAlgmembrane(a)andMIPmembrane(b). Polymers2018,10,170 6of14 Polymers 2018, 10, x FOR PEER REVIEW 6 of 14 Polymers 2018, 10, x FOR PEER REVIEW 6 of 14 Figure 3. TEM images of MIP membrane. FFiigguurree 33.. TTEEMM iimmaaggeess ooff MMIIPP mmeemmbbrraannee.. 3.1.2. Identification of the Membrane Formation 33..11..22.. IIddeennttiiffiiccaattiioonn ooff tthhee MMeemmbbrraannee FFoorrmmaattiioonn Figure 4 shows the FT-IR spectra of CaAlg membrane and MIP membrane. The –OH group of FFiigguurree 44 sshhoowwss tthhee FFTT--IIRR ssppeeccttrraa oof fCCaaAAlglg mmemembbrarnane eanadn dMMIPI Pmmemembrbarnaen. eT.hTe h–eO–HO gHrogurpou opf the CaAlg exhibited the peak at 3626 cm−1. The strong absorption of –COO− in CaAlg was observed tohfet hCeaAClagA elxgheibxihteibdi ttehde ptheeakp eaat k36a2t6 3c6m26−1.c Tmh−e 1s.trTonhge astbrsoonrgptaiobns oorfp –tiCoOnOo−f i–nC COaOA−lg iwnaCs aoAblsgerwveads at 1610~1500 and 1500~1400 cm−1. The strong absorption peak of –COO− from CaAlg was weakened aotb 1se6r1v0e~d15a0t01 6a1n0d~ 11550000~a1n4d001 5cm00−~1.1 T4h00e csmtro−n1g. Tahbesosrtprotniogna pbesaokrp otfi o–nCpOeOak− forfo–mC OCaOA−lgfr womasC waeAalkgewneads in the MIP membrane, indicating the form of cross-linked structure between CaAlg and the wine athkee nMedIPin mtheemMbrIPanme,e minbdriacantei,nign dthicea tifnogrmth eoff ocrrmosos-flcinroksesd- lisntkruecdtustrreu cbteutrweebeent wCeaeAnlCg aaAnldg atnhde polysiloxane. The MIP membranes showed strong adsorption at 922 and 1044 cm−1, which was pthoelypsoilloyxsailnoex.a nTeh.eT MheIPM mIPemmebmrabnreasn esshoshwoewd esdtrsotnrogn gadasdosroprtpiotino nata t992222 aanndd 11004444 ccmm−−11, ,wwhhiicchh wwaass attributed to the Si–O–Si stretching vibration. The significant difference between CaAlg and MIP aattttrriibbuutteedd ttoo tthhee SSii––OO––SSii ssttrreettcchhiinngg vviibbrraattiioonn.. TThhee ssiiggnniiffiiccaanntt ddiiffffeerreennccee bbeettwweeeenn CCaaAAllgg aanndd MMIIPP membranes appeared at 922 cm−1, revealing that the polysiloxane of MIP membrane was created on mmeemmbbrraanneess aappppeeaarreedd aatt 992222 ccmm−−11, ,rreevveeaalilningg tthhaatt tthhee ppoollyyssiillooxxaannee ooff MMIIPP mmeemmbbrraannee wwaass ccrreeaatteedd oonn the surface of CaAlg membrane. tthhee ssuurrffaaccee ooff CCaaAAllgg mmeemmbbrraannee.. 100 100 90 MIP membrane 1630 90 MIP membrane 1630 922 e 922 enc 80 3460 smittancansmitta787000 3460 CCaaAAllgg mmeemmbbrraannee 11004444 TranTr6600 33662266 116699331535 50 33112277 15351396 50 1396 40 40 3600 3200 2800 2400 2000 1600 1200 800 3600 3200 28W00ave2n4u0m0ber2 /0 0c0m-11600 1200 800 Wavenumber / cm-1 Figure 4. FT-IR spectra of CaAlg membrane and MIP membrane. FFiigguurree 44.. FFTT--IIRR ssppeeccttrraa ooff CCaaAAllgg mmeemmbbrraannee aanndd MMIIPP mmeemmbbrraannee.. 3.1.3. Mechanical Properties of CaAlg and MIP Membrane 3.1.3. Mechanical Properties of CaAlg and MIP Membrane 3.1.3. MechanicalPropertiesofCaAlgandMIPMembrane Figure 5 shows the stress-strain curves of CaAlg membrane and the MIP membrane in wet Figure 5 shows the stress-strain curves of CaAlg membrane and the MIP membrane in wet formF. iTghuer eM5IPs hmoewmsbtrhaenes twreasss -ssttrroaningecru trhvaens CoafAClgaA mlgemmbermanber abneceaaunsed tthhee inMteIrPacmtieomnsb braentweeiennw theet form. The MIP membrane was stronger than CaAlg membrane because the interactions between the fpoorlmys.iTlohxeanMeI Panmde malbgriannaetew. aTshset rsoinlagneer tchoaunpClinaAg lgagmenetm KbrHan-5e5b0 emcaoulseecuthleesi nhtaevraec tbioenens bdeitfwfueseendt htoe polysiloxane and alginate. The silane coupling agent KH-550 molecules have been diffused to paloglyinsailtoex aannde aanddsoarlbg ionna tCe.aTAhlge ssihlaenlles tchoruopulignhg ealgecetnrtoKstHat-i5c5 i0ntmeroalcetciuolne sbhetawveeebne ethned pifrfoutsoendattoeda lagminiantoe alginate and adsorb on CaAlg shells through electrostatic interaction between the protonated amino agnroduapdss oinrb KoHn-C5a5A0 lagnsdh etlhlse tcharrobuogxhyelaletec trgorsotuaptisc iinnt earlagcitnioatne b[e4t0w].e eTnheth ceopnrdoetonnsaattieodna omf inKoHg-r5o7u0p asnind groups in KH-550 and the carboxylate groups in alginate [40]. The condensation of KH-570 and KKHH--555500 aoncdcutrhreedca trob ocxoymlaet eingtoro buepisngin aa plgoilnyastielo[x4a0n].eT nheetwcoonrdke onnsa tthioen CoafAKlgH m-57e0mabnrdanKeH su-5r5fa0coec. cSuor rtehde KH-550 occurred to come into being a polysiloxane network on the CaAlg membrane surface. So the tMoIcPo mmeeminbtorabneeisn sghaowpoeldy siinlocrxeaanseedn emtwecohraknoicnatlh peroCpaeArltgiems. embranesurface. SotheMIPmembranes MIP membranes showed increased mechanical properties. showedincreasedmechanicalproperties. PPoollyymmeerrss 22001188,, 1100,, x1 7F0OR PEER REVIEW 77 ooff 1144 Polymers 2018, 10, x FOR PEER REVIEW 7 of 14 0.9 0.9 0.8 2 0.8 MPa)Pa)000...677 121... CMCaaIAAP llmgg emmmeebmmrbabnrraaennee 112 s (M0.6 2. MIP membrane sminal Stress,nal Stress, (000000......345345 Nomi0.2 o0.2 N0.1 0.1 0.0 0.00.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 St0r.e6tch,0λ.8 1.0 1.2 1.4 Stretch,λ Figure 5. Stress–strain curves of CaAlg membrane and MIP membrane. FFiigguurree 55.. SSttrreessss––ssttrraaiinn ccuurrvveess ooff CCaaAAllgg mmeemmbbrraannee aanndd MMIIPP mmeemmbbrraannee.. 3.2. Adsorption of MIP Membrane Prepared with Different CaCl2 and SA Concentrations 33..22.. AAddssoorrppttiioonn ooff MMIIPP MMeemmbbrraannee PPrreeppaarreedd wwiitthh DDiiffffeerreenntt CCaaCCll2 aanndd SSAA CCoonncceennttrraattiioonnss 2 Figure 6 shows the adsorption capacity and the IE of MIP membrane prepared with different Figure 6 shows the adsorption capacity and the IE of MIP membrane prepared with different CaCl2F aignudr eSA6 schoonwtesnttsh. eTahdes aodrspotiropntiocnap caacpiatyciatyn doft MheIPIE anofdM NIIPP mmeemmbbrraannee pinrcerpeaarseedd wwiitthh dthifef erraeisnet oCCfaa CCthlle22 aaSnnAdd SScAoAn cccooennnttteeranntttisso.. nTT hhbeee caaaddussosoerr ppottifio ontnh ceca apfpoaarccmitityayto iooffnM M oIPIfP am annoddrNe N IpPIoPml ymesmielmobxrbaarnnaeen eion nicn rcethraeesae ssdeudwrf iwatchietth ho etfh rCea iarsaAeislogef of the SA concentration because of the formation of more polysiloxane on the surface of CaAlg mtheemSAbrcaonnec epnrterpaatiroend bweciathu sae ohfitghheefro rSmAa tcioonntoefnmt. oTrheep ocloynsicleonxtarnaetioonn tohfe sCuarCfalc2 edoifdCn’atA wlgomrke monb rathnee ampdreesmpoarbprretaidonnwe iqpthureaapnhatiirtgeyhd eo rfw SMiAthIPc oa an nhteding Nth.eITPrh SmeAceo mncobcnernatentrneatst.. i oTTnhhoee fMcCoaInPCc lem2ndetrmiadtbnior’tannw eoo fra kdCsoaonCrbtlh2e edda imddnsoo’rtre p wptirooorntkeq iuonna tn httahitney adsorption quantity of MIP and NIP membranes. The MIP membrane adsorbed more protein than tohfeM NIPIPa mndemNbIPramnee mdbidr aanneds. tThhe eIEM rIePamcheemd borvaenre 2a.d0.s oHrobwedevmeor,r ethper ointefilnuetnhcaen othf ethNe IcPomnceemntbrraatnioend oidf the NIP membrane did and the IE reached over 2.0. However, the influence of the concentration of SaAnd atnhde ICEarCeal2c hoend tohvee rIE2. 0w. Haso wnoetv esri,gtnhieficinanfltu. eBnaceseodf tohne ctohne cmenetcrhatainoincaolf SpAerfaonrdmCanacCel 2oofn CthaAeIlgE mSwAea msanbnordat nsCiegsan,C i2fil.25c a ownntt . t%Bha eCs eIadEC olw2n aatnshd en 3mo.t0e cwshigta nn%iifc iSacAlanp wte.r efBorear msuesaden dco enfoo rft hCthea eAm plegrecmhpaaenrmaictbiaorlan np oeefsr ,fCo2ar.5mAwlagnt ac%en dCo aft hCCel2 aMAanIlPgd mm3.0eemmwbbtrr%aannSeeAss ,i wn2. e5thr ewe utf os%elld oCwfoaiCrntlgh2 esatnpudrde i3pe.sa0.r wa tito %n oSfAC waAerlge aunsdedt hfeorM thIPe mpreempbarraatnieosni noft hCeaAfollglo awnidn gthsetu MdiIePs. membranes in the following studies. 50 6 50 6 4550 MIP membrane 6 4550 MIP membrane 6 y (mg/g)mg/g)334344050505 NIMNIEEIIIPPP mmmeeemmmbbbrrraaannneee 4545 y (mg/g)mg/g)334344050505 NIMNIEEIIIPPP mmmeeemmmbbbrrraaannneee 4545 Adsorption capacitAdsorption capacity (1122112235050505050 123123IEIE Adsorption capacitAdsorption capacity (1122112235050505050 123123IEIE 5 5 0 0 0 0 01.0 1.5 2.0 2.5 3.0 3.5 4.00 01.0 1.5 2.0 2.5 3.0 3.5 4.00 1.0 1.5The co2n.c0entrati2o.n5 of SA3 .(0wt%)3.5 4.0 1.0 1.5The co2n.c0entrati2o.n5 of SA3 .(0wt%) 3.5 4.0 Th(ea c)o n1c.e5n trwatito n% o fC SaAC (wl2t %) Th(eb co) n2c.e5nt rwatito n% o fC SaAC (wl2t %) 50 (a) 1.5 wt % CaCl2 6 50 (b) 2.5 wt % CaCl2 6 4550 MIP membrane 6 4550 MIP membrane 6 45 NMIIPP mmeemmbbrraannee 5 45 NMIIPP mmeemmbbrraannee 5 y (mg/g)mg/g)3343405050 INIEEIP membrane 445 y (mg/g)mg/g)3343405050 INIEEIP membrane 445 n capacitapacity (22230550 33IEIE n capacitapacity (22230550 33IEIE AdsorptioAdsorption c11112505050 1212 AdsorptioAdsorption c11112505050 1212 5 5 0 0 0 0 01.0 1.5 2.0 2.5 3.0 3.5 4.00 01.0 1.5 2.0 2.5 3.0 3.5 4.00 1.0 1.5The co2n.c0entrati2o.n5 of SA3 .(0wt%) 3.5 4.0 1.0 1.5The co2n.c0entrati2o.n5 of SA3 .(0wt%) 3.5 4.0 Th(ec c)o n3c.e5n twrattio %n o Cf SaAC (lw2 t%) Th(ed c)o n5c.e0n twrattio %n o fC SaAC (lw2 t%) (c) 3.5 wt % CaCl2 (d) 5.0 wt % CaCl2 FFiigguurree 66.. AAddsosorprptitoino ncacpaapcaictyit yanadn dIEI Eof otfheth MeIMP ImPemmebmrabnrea npereppraerpeadr ewditwh idthiffdeirfefnert eCnatCCl2a Canld aSnAd cFoignuceren t6ra. tAiodnsso. rption capacity and IE of the MIP membrane prepared with different CaCl2 an2d SA SAconcentrations. concentrations. 3.3. Adsorption Kinetics of BSA on MIP and NIP Membrane 3.3. Adsorption Kinetics of BSA on MIP and NIP Membrane Polymers2018,10,170 8of14 Polymers 2018, 10, x FOR PEER REVIEW 8 of 14 3.3. AdsorptionKineticsofBSAonMIPandNIPMembrane FFiigguurree 77 sshhoowwss tthheeB BSSAAa addsosorprptitoionnd dynyanmamicisccsu cruvrevseosn oMn MIPIaPn adnNd INPImPe mmebmrabnrea.nWe.i tWhiinth5i.n5 5h.,5t hhe, tahdes oadrpstoiropntiroante rwataes whaigs hhiagnhd atnhde ethqeu ielqiburiiluibmriuadms oardpstoiornptcioapna ccaiptyac(Qitye) (rQeae)c rheeadch7e5d% 7f5o%rb footrh bNotIhP NanIPd aMnIdP MmIePm mbreamnbe.raTnhee. aTdhseo arpdtsioornprtaioten orfatteh eofB tShAe- BimSApr-iinmtepdripnoteldys piloolxyasnileoixnanthei sinp tahpiesr pwapaserm wuacsh mfaustcehr ftahsatnert hthaatno fthtahte oBf StAhe- iBmSpAr-iinmtepdrihnyteddr ohgyedl,rowgheilc, hwthoiochk 2to4ohk t2o4 rhe atoch rethacehe tqhuei leibqruiiulimbriaudmso ardpstioornpt[i3o7n] . [A3f7t]e. rA5f.t5erh 5.t5h eh Qthee oQfeM ofI PMmIPe mmebmrabnreanwea wsa2s.1 28.1t8im tiemsehs ihgihgehretrh tahnanN NIPIPm meemmbbrraannee,,w wiitthh aa vvaalluuee ooff 2288..8833 mmgg//gg. .TThhee aaddssoorrppttioionn ccaappaacciittyy ooff BBSSAA bbyy NNIIPP mmeemmbbrraannee aatt 55..55 hh wwaass 1133..5522 mmgg//gg.. TThhee hhiigghheerr aaddssoorrppttiioonn ccaappaacciittyy ooff BBSSAA oonn MMIIPP wwaass dduuee ttoo tthhee ffoorrmm ooff tthhee rreeaacctteedd ssiitteess aanndd tthhee ccoommpplleemmeennttaarryy ccaavviittiieess bbeettwweeeenn BBSSAA aanndd tthhee MMIIPP mmeemmbbrraannee.. BBeeccaauussee tthhee ssiitteess aanndd tthhee iimmpprriinnttiinngg ccaavviittiieess wweerree oonn tthhee ssuurrffaaccee ooff tthhee MMIIPP mmeemmbbrraannee aanndd BBSSAA ccoouulldd sspprreeaadd mmoorree eeaassiillyy,, ssoo tthhee MMIIPP mmeemmbbrraannee hhaadd aa ffaasstteerr aaddssoorrppttiioonn rraattee ffoorr iittss tteemmppllaattee.. 40 g) 35 MIP membrane g/ m NIP membrane y ( 30 acit 25 p a c n 20 o orpti 15 s d A 10 5 0 0 5 10 15 20 25 Adsorption time (h) Figure 7. Adsorption dynamics of BSA on MIP and NIP membrane. Figure7.AdsorptiondynamicsofBSAonMIPandNIPmembrane. 3.4. Adsorption Thermodynamics of BSA on MIP and NIP Membrane 3.4. AdsorptionThermodynamicsofBSAonMIPandNIPMembrane Figure 8 shows the adsorption thermodynamics of BSA on MIP and NIP membrane. With the Figure8showstheadsorptionthermodynamicsofBSAonMIPandNIPmembrane. Withthe increase of initial BSA concentration, the adsorption capacity increased rapidly and gradually increaseofinitialBSAconcentration,theadsorptioncapacityincreasedrapidlyandgraduallytended tteonbdaeldan tcoe .bTahlaenecqe.u Tilhiber ieuqmuialidbsriourmpt iaodnscoarppaticointy c(aQpa)coitfyB (SQAe)o onf MBSIPAm oenm MbIrPan meewmabsrmanoer ewthasa nm2o.0re5 e than 2.05 times than that of NIP membrane. When the concentration of BSA is low, the amount of timesthanthatofNIPmembrane. WhentheconcentrationofBSAislow,theamountofBSAisnot BsuSfAfi cisie nnottt osufifflilctiehnet stpoe fciilfil tchbe isnpdeicnigfich boilnedainndg hcaovleit ay,ndso ctahveityQ, soin tchree aQsee sinwcriethastehse winitchr ethaese inocfreBaSsAe e of BSA concentration. The adsorption capacity of MIP film tends to be stable when almost all the concentration. TheadsorptioncapacityofMIPfilmtendstobestablewhenalmostalltheimprinting imprinting sites are occupied. Psiotlyemsearsr e20o1c8,c 1u0p, xie FdO.R PEER REVIEW 9 of 14 The rebinding curves of NIP and MIP membrane can be followed by the Freundlich model equation: 50 Qe = Qf · Ce1/n (3) MIP membrane g)40 NIP membrane where Qf is the rough g/rebinding capacity (mg/g), Ce is the equilibrium concentration of BSA m (mg/mL), and 1/n is the ay(dsorption intensity. The linearized plots of lnQe versus lnCe for the NIP and MIP membrane are showacited3 0in Figure 9. The lnQe versus lnCe all exhibited good linearity with an R > p 0.98. ca n 20 o pti or s d10 A 0 0.0 0.5 1.0 1.5 2.0 2.5 The initial concentration of BSA(mg/ml) Figure 8. Curves of adsorption thermodynamics of MIP and NIP membrane. Figure8.CurvesofadsorptionthermodynamicsofMIPandNIPmembrane. 4.0 3.6 R=0.9977 3.2 2.8 2.4 Qe R=0.9863 n 2.0 l 1.6 1.2 0.8 MIP membrane NIP membrane 0.4 0.0 -2.5-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 lnC e Figure 9. Curves of lnQe to lnCe of MIP and NIP membrane. 3.5. Specific Adsorption of BSA on MIP and NIP Membrane Figure 10 shows the Qe of MIP and NIP membrane for BSA and the competitive protein Ova, Hb and Glo, respectively. It is demonstrated that the BSA-imprinted membrane showed good adsorption selectivity for the template BSA. The Qe of BSA on the MIP membrane was 2.2 times as much as that of Hb or Ova, and 5.4 times as much as that of Glo. The higher BSA adsorption capacity of the MIP membrane is due to the generation of BSA affinity sites and the complementary cavities in the polycondensation of functional silanes. The recognition sites of BSA were not complementary to the Hb, Ova and Glo. So the competitive proteins (Ova, Hb and Glo) were less likely to be adsorbed on the BSA-imprinted membrane. In contrast, the NIP membrane adsorbed much less BSA than MIP membrane because there were no specific recognition sites on NIP membrane in the absence of template proteins. The molecular volume of Glo was larger than that of BSA and the other competitive proteins, so the Qe of γ-Glo on MIP membrane was much lower than that of any other proteins. Polymers 2018, 10, x FOR PEER REVIEW 9 of 14 50 MIP membrane g)40 NIP membrane g/ m y( Polymers2018,10,170 cit30 9of14 a p a c on 20 The rebinding curvesorptiof NIP and MIP membrane can be followed by the Freundlich s modelequation: Ad10 Q =Q ·C 1/n (3) e f e 0 whereQfistheroughrebinding0c.0apacity0.(5mg/g)1,.0Ceisth1e.5equili2b.r0iumco2.n5centrationofBSA(mg/mL), and 1/n is the adsorption intensity. TThhee inlitiinale caonrcizenetrdatiponl ooft sBSoAf(lmngQ/ml)versus lnC for the NIP and MIP e e membraneareshowFiegdurien 8.F Ciguurvrees 9o.f aTdhsoerlpntiQone tvheerrmsuosdylnnaCmeiacsl loef xMhIPib aintedd NgIPo omdemlibnreanaer.i tywithanR>0.98. 4.0 3.6 R=0.9977 3.2 2.8 2.4 Qe R=0.9863 n 2.0 l 1.6 1.2 0.8 MIP membrane NIP membrane 0.4 0.0 -2.5-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 lnC e FigFuirgeu9re. C9. uCruvrevseso fofl nlnQQee ttoo llnnCCee oof fMMIPIP anadn dNINP ImPemmebmrabnrea. ne. 3.5. Specific Adsorption of BSA on MIP and NIP Membrane 3.5. SpecificAdsorptionofBSAonMIPandNIPMembrane Figure 10 shows the Qe of MIP and NIP membrane for BSA and the competitive protein Ova, Figure10showstheQ ofMIPandNIPmembraneforBSAandthecompetitiveproteinOva,Hb Hb and Glo, respectiveely. It is demonstrated that the BSA-imprinted membrane showed good andGadlos,orrepstipoenc tsievleeclyti.vIittyi sfodre tmheo tnesmtrpaltaetde BthSaAt. tThheeB QSeA o-fi mBSpAr ionnte tdhem MemIPb mraenmebsrhanoew wedasg 2o.2o dtimadess oarsp tion selectmivuicthy afso trhtaht eoft Hemb oprl aOtveaB, aSnAd. 5T.4h teimQees aosf mBuScAh aosn ththate oMf GIlPo. mTheem hbigrhaenre BwSAa sad2s.o2rtpitmioens caapsamcituyc h as thatooff Hthbe MorIPO mvae,mabnrdan5e. 4is tdimuee tsoa tshme guecnheraastiothna otf oBfSGAl aof.fiTnhitey hsiitgesh eanrdB SthAe caodmsoprlepmtieonntacrayp caacviittyieso fthe MIPmin ethme bproalnyceoinsddeunseattioonth oef gfuenncetiroantiaol nsiloafnBesS. AThaef firencoitgynsitiitoens sainteds othf eBScAo mwperlee mnoetn ctoamryplceamveintiteasryin the to the Hb, Ova and Glo. So the competitive proteins (Ova, Hb and Glo) were less likely to be polycondensationoffunctionalsilanes. TherecognitionsitesofBSAwerenotcomplementarytothe adsorbed on the BSA-imprinted membrane. In contrast, the NIP membrane adsorbed much less BSA Hb, Ova and Glo. So the competitive proteins (Ova, Hb and Glo) were less likely to be adsorbed than MIP membrane because there were no specific recognition sites on NIP membrane in the on the BSA-imprinted membrane. In contrast, the NIP membrane adsorbed much less BSA than absence of template proteins. The molecular volume of Glo was larger than that of BSA and the other MIPmembranebecausetherewerenospecificrecognitionsitesonNIPmembraneintheabsenceof competitive proteins, so the Qe of γ-Glo on MIP membrane was much lower than that of any other tempplartoetepinros.t e ins. ThemolecularvolumeofGlowaslargerthanthatofBSAandtheothercompetitive protePionlysm,esros 2t0h18e, 1Q0,e x oFfORγ -PGEElRo RoEnVIMEWIP membranewasmuchlowerthanthatofanyotherpro1t0e ionf 1s4. 40 36 g/g)32 MIP membrane m NIP membrane y (28 cit24 a p ca20 g n16 di n bi12 e R 8 4 0 BSA Ova Hb Glo Proteins used in specific adsorption experiment Figure 10. Adsorption capacity of MIP membrane and NIP membrane for BSA, Ova, Hb and Glo, Figure 10. Adsorption capacity of MIP membrane and NIP membrane for BSA, Ova, Hb and respectively. Glo,respectively. 3.6. Rebinding Behavior of FN on FN-MIP and NIP Membrane Fibronectin (FN) can promote cell growth, increase cell wall rate and enhance cell metabolism. If a material can selectively bind FN, then it has better biocompatibility. However, FN is very expensive. FN molecularly imprinted polymers (FN-MIP) was prepared according to the optimum condition of BSA-imprinted polymer. The adsorption dynamic curves of FN on FN-MIP and NIP membrane are shown in Figure 11. It is found that the adsorption capacity almost reached equilibrium after 3.0 h. The FN-MIP adsorbed more FN than NIP, and the IE reached 2.3. The adsorption capacity of FN was much lower than that of BSA, because its initial concentration is only one tenth of BSA. The molecular weight of FN is 440 kD, which is significantly greater than BSA (6.8 kD). In the rebinding process, the hole in the material is more difficult to allow FN in and out. The adsorption happened mainly on the surface. So the time of adsorption equilibrium was shorter than that of BSA. 4.0 6 FN-MIP membrane 3.5 g) NIP membrane 5 mg/3.0 IE city (2.5 4 a p n ca2.0 3IE o orpti1.5 2 ds1.0 A 1 0.5 0.0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Adsorption time (h) Figure 11. The adsorption dynamic curves of FN on FN-MIP and NIP membrane. 3.7. Cell Culture on FN-MIP and NIP Membranes Fukazawa et al. [41] provided a new molecular imprinting method using fibronectin (FN) to capture cells as a template. In this paper, FN-imprinted polysiloxane membrane was prepared according to the optimum conditions of BSA molecular imprinting. After adsorption of FN, L929 cells were cultured on the FN-MIP and NIP membrane, and Figure 12 shows the morphologies of L929 cells on the FN-MIP and NIP membranes after 4 h. The amount of cells adhered to FN-MIP membrane was much more than the cells adhered to the NIP membrane, indicating that FN-MIP membrane was more appropriate for culturing cell than NIP membrane. Polymers 2018, 10, x FOR PEER REVIEW 10 of 14 40 36 g)32 MIP membrane g/ m NIP membrane y (28 cit24 a p a20 c g n16 di n bi12 e R 8 4 0 BSA Ova Hb Glo Proteins used in specific adsorption experiment Figure 10. Adsorption capacity of MIP membrane and NIP membrane for BSA, Ova, Hb and Glo, Polymerress2p0e1c8t,iv10e,ly17. 0 10of14 3.6. Rebinding Behavior of FN on FN-MIP and NIP Membrane 3.6. RebindingBehaviorofFNonFN-MIPandNIPMembrane Fibronectin (FN) can promote cell growth, increase cell wall rate and enhance cell metabolism. If a mFiabtreorniaelc tcinan(F sNel)eccatnivpelryo mbointed cFelNlg, rtohwenth i,ti nhcarse abseetcteerll wbiaolclormatpeaatnibdileitnyh. aHncoewceevllemr, eFtaNb oilsi smve.rIyf eaxmpeantesriivael.c FaNn smeloecleticvuellayrlbyi nimdpFrNin,ttehde npiotlhyamsebrest t(eFrNb-iMocIoPm) wpaatsib pilrietyp.aHreodw aecvceorr,dFiNngi stov etrhye eoxppteimnsuivme. cFoNndmitoiolenc uolfa rBlySAim-imprpinritnedtedp oplyomlyemrser(.F NTh-Me aIPd)sowrapstiporne pdayrneadmaiccc ocrudrivnegs toof tFhNeo opnti mFNum-McIoPn adnitdio NnIoPf mBSeAm-bimrapnrei natered psholoywmne ri.nT hFeigaudrseo r1p1t.i oInt disy nfaomunicdc uthrvaet stohfeF NadosonrFpNtio-Mn IcPaapnadcitNy IPalmmeomstb rraenacehaerde esqhuowilinbriinumFi gauftreer1 31..0I thi.s Tfohuen FdNth-MatIPth eadasdosrobrepdti omnocraep FaNcit ythaalnm oNsItPr,e aacnhde dtheeq uIEil irberaiuchmeda ft2e.3r.3 T.0hhe. aTdhseoFrpNt-iMonI Pcaapdascoirtyb eodf mFNo rweaFsN mthuacnh NloIwP,ear nthdatnh ethIaEt roefa BchSeAd, 2b.e3c.aTuhsee aitds sionriptitailo cnocnacpeanctirtaytioofnF iNs ownalys omnuec thenlothw oerf tBhSaAn. tThhate omfoBlSeAcu,lbaerc wauesieghitts oinf iFtNial icso 4n4c0e nktDra, twiohnicihs oisn slyigonnifeictaenntthlyo gfrBeSaAte.r Tthhaenm BoSlAec u(6la.8r kwDei)g. hInt othfeF Nrebisin4d40inkgD p,rwocheiscsh, itshsei ghnoilfie ciann tthlye gmreaatteerriatlh iasn mBoSrAe (d6i.f8fikcDul)t. tIon athlleowre bFiNnd iinn ganpdro ocuests. ,Tthhee ahdosleoripnttihoen mhaaptepreianleids mmaoirneldy ioffinc tuhlet tsouarflalocwe. FSoN tihne atnimdeo ouft .aTdhsoerapdtsioonrp etqiounilihbarpiupmen wedasm sahionrlyteor nthtahne tshuartf aocfe B.SSAo.t hetimeofadsorptionequilibriumwasshorterthanthatofBSA. 4.0 6 FN-MIP membrane 3.5 g) NIP membrane 5 mg/ 3.0 IE y ( 4 cit 2.5 a p ca 2.0 3IE n o orpti 1.5 2 ds 1.0 A 1 0.5 0.0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Adsorption time (h) FFiigguurree 1111.. TThhee aaddssoorrppttiioonn ddyynnaammiicc ccuurrvveess ooff FFNN oonn FFNN--MMIIPP aanndd NNIIPP mmeemmbbrraannee.. 3.7. Cell Culture on FN-MIP and NIP Membranes 3.7. CellCultureonFN-MIPandNIPMembranes Fukazawa et al. [41] provided a new molecular imprinting method using fibronectin (FN) to Fukazawa et al. [41] provided a new molecular imprinting method using fibronectin (FN) to capture cells as a template. In this paper, FN-imprinted polysiloxane membrane was prepared capture cells as a template. In this paper, FN-imprinted polysiloxane membrane was prepared according to the optimum conditions of BSA molecular imprinting. After adsorption of FN, L929 accordingtotheoptimumconditionsofBSAmolecularimprinting. AfteradsorptionofFN,L929cells cells were cultured on the FN-MIP and NIP membrane, and Figure 12 shows the morphologies of wereculturedontheFN-MIPandNIPmembrane,andFigure12showsthemorphologiesofL929cells L929 cells on the FN-MIP and NIP membranes after 4 h. The amount of cells adhered to FN-MIP ontheFN-MIPandNIPmembranesafter4h. TheamountofcellsadheredtoFN-MIPmembranewas membrane was much more than the cells adhered to the NIP membrane, indicating that FN-MIP muchmorethanthecellsadheredtotheNIPmembrane,indicatingthatFN-MIPmembranewasmore membrane was more appropriate for culturing cell than NIP membrane. appropriateforculturingcellthanNIPmembrane. Polymers 2018, 10, x FOR PEER REVIEW 11 of 14 (a) FN-MIP, 4 h (b) NIP, 4 h Figure 12. Photographs of adhesive L929 cells on MIP and NIP after cultured for 4 h. Figure12.PhotographsofadhesiveL929cellsonMIPandNIPafterculturedfor4h. Figure 13 shows cell-viability cultured with FN-MIP membrane, NIP membrane and tissue culture polystyrene board (TCPS) after 1, 3 and 5 days in culture, respectively. L929 cells on FN-MIP membrane grew more rapidly than those on NIP membrane during 5 days of incubation. Statistical analysis showed that the live cells on FN-MIP membrane were higher than those on NIP membrane because the FN-MIP membrane could adsorb more FN than NIP membrane, which made it was more suitable for the adhesion and growth of cells. Pan et al. [42,43] introduced the cell-adhesive peptide (RGDS) onto a thermo-responsive cell culture substrate. The substrate could be used as a highly efficient novel system. The FN-imprinted polysiloxane based on CaAlg membrane is low cost and easy to be prepared, which would show its great potential applications in cell sheet technology. 1.0 0.9 FN-MIP membrane 0.8 NIP membrane TCPS 2) 0.7 9 n (4 0.6 sio 0.5 p or 0.4 s d A 0.3 0.2 0.1 0.0 1 day 3 day 5 day Culture time Figure 13. MTT assay of L929 cell-viability on FN-MIP membrane, NIP membrane, and TCPS (*p < 0.05). 4. Conclusions Bovine serum albumin (BSA) molecular-imprinted polysiloxane (MIP) membrane was successfully synthesized using β-methoxyethylene triethyoxysilane (KH-570) and γ-amidopropyl triethyoxysilane (KH-550) as functional monomers, BSA as template and CaAlg hydrogel film as the matrix. The strength of MIP membrane was higher than that of CaAlg membrane. The stable adsorption capacity of BSA on MIP membrane was 2.18 times higher than that of non-imprinted polysiloxane (NIP) membrane, with a value of 28.83 mg/g. BSA-imprinted polysiloxane membrane could recognize BSA by using bovine hemoglobin (Hb), ovalbumin (Ova) and bovine γ-globulin (Glo) as competitive proteins. Fibronectin (FN)-imprinted polysiloxane membrane was prepared by using FN as the template according to the optimum conditions of BSA molecular imprinting. The FN-MIP adsorbed more FN than NIP, and the IE reached 2.3. After adsorption of FN, L929 cells were cultured on the FN-MIP

Description:
Tianjin 300387, China; [email protected] (D.L.); [email protected] (J.W.). 2 . using β-methoxyethylene triethyoxysilane (KH-570) and γ-amidopropyl
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.