polymers Article Preparation and Characterization of Antibacterial Polypropylene Meshes with Covalently Incorporated β-Cyclodextrins and Captured Antimicrobial Agent for Hernia Repair NoorSanbhal1,2,YingMao1,GangSun1,3,YanLi1,*,MazharPeerzada2andLuWang1,* 1 KeyLaboratoryofTextileScienceandTechnologyofMinistryofEducation,Room4023,CollegeofTextiles, DonghuaUniversity,2999NorthRenminRoad,Songjiang,Shanghai201620,China; [email protected](N.S.);[email protected](Y.M.);[email protected](G.S.) 2 DepartmentofTextileEngineering,MehranUniversityofEngineeringandTechnology, Jamshoro76062,Sindh,Pakistan;[email protected] 3 DivisionofTextilesandClothing,UniversityofCalifornia,Davis,CA95616,USA * Corresponding:[email protected](Y.L.);[email protected](L.W.);Tel./Fax:+86-(21)-67792637(L.W.) Received:28November2017;Accepted:5January2018;Published:11January2018 Abstract: Polypropylene (PP) light weight meshes are commonly used as hernioplasty implants. Nevertheless,thegrowthofbacteriawithintextileknittedmeshintersectionscanoccuraftersurgical meshimplantation,causinginfections. Thus,bacterialreproductionhastobestoppedinthevery earlystageofmeshimplantation. Herein,novelantimicrobialPPmeshesgraftedwithβ-CDand complexeswithtriclosanwerepreparedformeshinfectionprevention. Initially,PPmeshsurfaces werefunctionalizedwithsuitablecoldoxygenplasma. Then,hexamethylenediisocyanate(HDI)was successfullygraftedontheplasma-activatedPPsurfaces. Afterwards,β-CDwasconnectedwiththe alreadyHDIreactedPPmeshesandtriclosan,servingasamodelantimicrobialagent,wasloaded into the cyclodextrin (CD) cavity for desired antibacterial functions. The hydrophobic interior andhydrophilicexteriorofβ-CDarewellsuitedtoformcomplexeswithhydrophobichostguest molecules. Thus,thepreparedPPmeshsamples,CD-TCL-2andCD-TCL-6demonstratedexcellent antibacterialpropertiesagainstStaphylococcusaureusandEscherichiacolithatweresustainedupto 11and13days,respectively. ThesurfacesofchemicallymodifiedPPmeshesshoweddramatically reducedwatercontactangles.Moreover,X-raydiffractometer(XRD),differentialscanningcalorimeter (DSC), and Thermogravimetric (TGA) evidenced that there was no significant effect of grafted hexamethylenediisocyanate(HDI)andCDonthestructuralandthermalpropertiesofthePPmeshes. Keywords: antibacterial meshes; guest molecule; cyclodextrin grafting; polypropylene; oxygen plasma 1. Introduction Syntheticmesheshavebeenusedwiththeobjectiveofdeliveringlong-termreinforcementtothe damagedtissuesoftheabdominalhernia[1]. Anabdominalherniaisa“protrusionorrupture”ofan organthroughtheabdomenwall,causingdefectintheabdomen[2]. Numerousstudiesdemonstrated that,amongsyntheticmeshes,non-absorbablepolypropylene(PP)warp-knitted,lightweight,andlarge pore size meshes are the most widely used implants to reduce hernia recurrence [3–7], due to theirchemicallyinertproperty, lightweight, excellenttissueincorporationability, hydrophobicity, andstabilitythatcanwithstandamaximumabdominalpressureof170mmHg. Themaindrawback of these implants is that all synthetic devices favor infection due to the uneven topography of knitted meshes [8]. Thus, these medical mesh devices are prone to bacteria growth and biofilm Polymers2018,10,58;doi:10.3390/polym10010058 www.mdpi.com/journal/polymers Polymers2018,10,58 2of17 formation[9,10]. PPmeshinfectionisaserioussurgicalcomplicationandisoneofthemaincauses ofherniarepairfailure[11]. Themajorityofthebacteriaconcernedinsurgicalwoundinfectionsare Staphylococcusaureus(SA).Meshinfectionisdifficulttocurewhentheinfectedwoundiscolonized. Meshinfectionnotonlycausesremovalofinfectedmeshbuthealthcarecostsandrisksofmorbidity andmortalityarealsoincreasedaftermeshinfection[12]. One way to minimize mesh infection is pre-operative antibiotic prophylaxis or pre-soaking of mesh in antibiotics during hernia surgery [13]. Nevertheless, PP is a non-absorbable material; evenafterdecadesofsuchantibiotictreatments,meshinfectionhasremainedamajorproblem[14,15]. Anotherwaytocontrolsurgicalsiteinfection(SSI)maybetodeliveraheavydoseofantibioticsby injectionsororallyinclinic. However,thedistributionofsuchheavyantibioticdosestothewhole bodycausesseveresideeffects. Therefore,sustainedreleaseofantibioticsforasuitabledurationmight bethekeytoavoidingpost-operativemeshinfection[16]. The use of cyclodextrin (CD) in the designed preparation is due to its extraordinary properties of hydrophilicity, biocompatibility, and efficient sustained captive and delivery nature. Cyclodextrin monomers like β-CD are renowned as the most accessible cyclic oligosaccharides with unique properties to form complexes with drug molecules without covalent links in their hydrophobiccavities. CDscanbecommonlycross-linkedwithvariousreactantsduetotheirchemical structure,whichcontainsmultiplehydroxylgroups. Thus,theyhavetheadvantageofreactingwith hexamethylenediisocyanate(HDI)[17]. Triclosanisaprovenantibacterialagentwithpropertiessimilartoantibiotics,withlowsolubility in water [18]. However, there have been concerns about the use of triclosan in medical devices. Nevertheless,theapplicationoftriclosanasamodelantimicrobialagentcanstillpresentthedesigned functionsofthechemicallymodifiedpolymersandtriclosanhasbeenusedtobecapturedintothe system[19,20]. Inthepast,polypropylenenonwovenimplantdeviceshavebeenfinishedwithcyclodextrinat a higher temperature and loaded with antibacterial substances for mesh infection prevention [21], or surface activation of PP devices with atmospheric pressure plasma and subsequent coating of chitosan/ciprofloxacinhasbeenperformedforfourdaysofantibacterialrelease[22]. Theselectionof materialtype(lightweightknittedmeshes)isakeyfactorforherniarepairandinlatercaseschitosan coulddeliverantibacterialpropertiesforalimitedtime. Coldoxygenplasmaisasuitablesurfacetreatmentprocesstomodifythesurfacesofpolymers withoutchangingtheirbulkproperties[23]. Thus,low-pressurecoldoxygenplasmatreatmentisone ofthebestapproachesavailablesofartoincreasetheadhesionandwettabilityofpolymersurfaces[24], andalsohasgoodreproducibility[25]. GraftingreactionsontoPPfibers’surfacescouldbeintroduced bysurfaceactivationwithoxygenplasmatochangethechemistryofPPfibers’surfaces,whichcould alsoincreasethewettabilityandadhesionforgrafting[26]. Overall,thePPsurfaceispronetooxygen plasmatreatmentsandresultsinC–Hbondcleavage,whichmayleadtotheintroductionofcarboxyl andhydroxylgroups[27,28].Theseresultssuggestthatlow-pressurecoldoxygenplasmaisaneffective pretreatmentprocesstomodifythesurfacesofPPfibers. Tothebestofourknowledge,nostudyhas beenpublishedtograftβ-cyclodextrinontoPPknittedmeshdevicesformeshinfectionprevention. However,chemicalcovalentconnectionofcyclodextrinontotheinertpolypropylenemeshfibersisa keystepinthemodificationreactions. Therefore,theaimofthisstudywastopreparecyclodextrin-graftedPPmeshes,whichcouldmake complexeswithtriclosananddemonstratesustainedantibacterialreleaseformeshinfectionprevention. Forthisreason,low-pressurecoldoxygenplasmawasusedtofunctionalizethesurfacesofPPfibersto createahydroxylorcarboxylgrouponPPsurfacesbeforetwosimplegraftingstepswereperformed. Inthefirststep,hexamethylenediisocyanate(HDI)reactedwithplasma-activatedPPmeshesandin thesecondstepCDcovalentlybondedwithPP-HDImeshes. Moreover,graftedCDsampleswere loadedwithtriclosanforantibacterialreleasedfunction,asillustratedinFigure1a. Characterization of modified PP meshes such as surface morphology, element analysis, and structural, thermal, Polymers 2018, 10, 58 3 of 17 Polymers2018,10,58 3of17 Energy Despersive X-ray spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), X- aranyd dhiyfdfrraocptohmiliectietyr w(XeRreDi)n, vdeisffteigreantetdialu ssicnagnnscinagn ncianlgoreimlecettreorn (DmSicCr)o,s acnopdy T(hSeErMm)o,gErnaevrigmyeDtreics p(TerGsiAv)e. XA-dradyitsiponecatlrloys, caonptyib(aEcDteXr)i,aFl opurroipererTtriaens swfoerrme IansfsreasrseeddS puesicntrgo sac ospuyita(FbTleI Rs)u,sXt-arianyedd ifeffrfaiccatocmy etetesrt.( XTRhDus),, dreifsfuelrtesn stihaolwsceadn nthinagt cCaDlo rwimase tesurc(DceSsCsf)u,lalyn dgrTahfteerdm oognrtaov tihmee tsruicrf(aTcGesA o).f APdPd mitieosnhaelsly ,aanndt icbaapcttuerrieadl ptrriocploesratnie.s Mweorreeoavsseer,s smedoudsifiinegd aPsPu itmabelsehs udsetvaiinceesd pefrfiocvaicdyedte spt.roTlhounsg,erde suanltds sshtoawbleed atnhtaitmCicDrowbiaasl spurcocpeesrstfiuesll ywgitrhaoftuetd aoffnetcotinthge tshuer ofarcigeisnoafl PpPrompeersthieess oafn PdPc ampetushre ddetvriiccelos,s awnh.iMcho croeouvlde rb,em uosdeidfi eind tPhPe mpreesvhendteivoinc eosf pmroesvhid iendfepctrioolno.n gedandstableantimicrobialpropertieswithoutaffectingtheoriginal propertiesofPPmeshdevices,whichcouldbeusedinthepreventionofmeshinfection. . Figure 1. (a) Illustrations of experimental design for β-CD grafted antibacterial surgical PP meshes; Figure1. (a)Illustrationsofexperimentaldesignforβ-CDgraftedantibacterialsurgicalPPmeshes; Schemes (b) step-1, PP-HDI grafting; (c) step-2, PP-HDI-CD grafting; and (d) triclosan loaded meshes. Schemes(b)step-1,PP-HDIgrafting;(c)step-2,PP-HDI-CDgrafting;and(d)triclosanloadedmeshes. Polymers2018,10,58 4of17 2. MaterialsandMethods 2.1. Materials Polypropylene(PP)warp-knittedmesh,madeoffinediameter(0.1mm)monofilamentwithalarge poresize(3.5mm×2.5mm)andlightweight(27g/m2),wasreceivedfromNantongNewtecTextile andChemicalFiberCo. Ltd.,Nantong,China. Forwatercontactanglemeasurement,aPPnonwoven melt-blownfabricof23g/m2wasnselected.Hexamethylenediisocyanate(HDI)(≥98%)CAS:822-06-0 and β-Cyclodextrin (CD) (≥97%) CAS: 7585-39-9 was purchased from Sigma Aldrich, Shanghai, China. Triclosan CAS: 3380-34-5 was purchased from Aladdin Company Shanghai, China, while N-Ndimethylformamide(DMF)CaseNo. 68-12-12wasreceivedfromShanghaiLingfengCompany. Ethanol(≥99.7%)waspurchasedfromYangyuanChemicalEngineering,Changshu,Jiangsu,China. 2.2. Methods 2.2.1. ColdPlasmaSurfaceFunctionalization Acoldplasmamachine(HD-300)atlowpressurewasusedforthesurfacefunctionalizationofPP meshsamples. ThemachineisconsistedofPower(500W),radiofrequency(13.56MHz)ofplasma andavacuumreactionchamber(300cm×300cm)forthetreatmentofsamples. AllPPmeshsamples (10cm×10cm)weresurfaceactivatedatconstantpowered(40W)andpressure(10pa)ofoxygengas. Moreover,optimizedtreatmenttime(300s)wasselectedforallsamples. 2.2.2. TwoGraftingStepsandPP-HDI-CDIncorporation PlasmatreatedPPmesheswasgraftedwithβ-cyclodextrinsbysimpletwograftingstepmethod. First HDI (2–6%) was reacted with the plasma treated samples. Afterwards, the surface modified PP-HDI samples were further reacted with CD (2–8%). For both processes the liquor ratio was (mesh:solution)1:100.Thetimeandtemperaturewere30–90minand65–85◦C,respectively.Afterward, thePPsurfacemodifiedmeshes(HDI-CD)werewashedseveraltimeswithwarmdistilled(50◦C) watertoeliminateresiduesofunconnectedchemicalbeforedrying. HDIgraftedPPsampleswere namedPP-HDI-2(2%),PP-HDI-4(4%),PP-HDI-6(6%)andCD-HDImodifiedpolypropylenemesh sampleswererespectivelynamedasHDI-CD-2(2%),HDI-CD-4(4%),HDI-CD-6(6%),andHDI-CD-8 (8%)accordingtotheCDsconcentrationsinthesolutions. 2.2.3. LoadingofTriclosan Cyclodextrin (HDI-CD)-modified samples (0.5 g) were immersed in the 50 mL mixture (70% ethanol and 30% water) containing 0.6% (0.3 g) triclosan as a guest molecule. All samples weresoakedfor24hbeforedrying. Themodifiedpolypropylenesamplesaftertriclosanloadingwere namedasCD-TCL-2,CD-TCL-4,andCD-TCL-6,andCD-TCL-8,respectively. 2.3. CharacterizationTechniques 2.3.1. SEMandEDX Acoatingmachine(E-1045,Hitachi,Tokyo,Japan)wasfirstusedtocoatuntreatedandmodified samples with platinum (pt.) ion. Subsequently, all coated samples were tested by a scanning electronmicroscope(JEOLJSM6330,Tokyo,Japan)andEnergyDespersiveX-rayspectroscopy(EDX) (OxfordInstrumentISIS300,Oxfordshire,UK)connectedwithSEM. 2.3.2. FTIR ChemicalcompositionsofuntreatedandmodifiedsamplesweremeasuredbyaFourierTransform InfraredSpectroscopy(FTIR)AttenuatedTotalReflectionmode(ATR)(Nicolet6700,DownersGrove, Polymers2018,10,58 5of17 IL,USA).Allsampleswerecharacterizedwithresolutionof4.0cm−1andwavenumberrangingfrom 500to4000cm−1. 2.3.3. ContactAngle Duetothefinefilamentdiameter(0.1mm)andlargerporesizeofthePPmeshes,anonwoven PP was preferred as a model fabric to reflect the differences between the contact angles of the PP control and the modified meshes. Two methods, captive bubble (static contact angle) and sessile drop(dynamiccontactangle),wereusedtomeasurethewatercontactangle,usingWCA20software to estimate the hydrophilic/hydrophobic behavior of samples. A Teli CCD camera (Data physics instrument,SanJose,CA,USA)wasusedtocaptureimagesofwatercontactangleandatleastfive dropsof5µLforeachsamplewereaddedtogetanaveragecontactangle. 2.3.4. XRD Powders of PP control and modified samples were prepared for X-ray diffractometer (XRD) examination. AnXRDmachine(RigakuD/MAX2550/PC,Tokyo,Japan)wasusedforscanningrate of0.02/minat40kV,200mAandarangeof0◦–60◦ (2θ)tocharacterizeallsamples. 2.3.5. ThermalAnalysis PPcontrolandmodifiedmeshsampleswerescannedonadifferentialscanningcalorimeter(DSC) (PerkinElmer4000,DownersGrove,IL,USA)atarateof20◦C/minovertherangeof20–250◦C; thecoolingratewassetto20◦C/min. Thermogravimetric analysis was conducted to evaluate the percentage residual weight loss of PP control and modified samples. A Perkin Elmer thermogravimetric analyzer (TGA) 4000 (DownersGrove,IL,USA)devicewasusedtoscanallsamplesoveratemperaturerangeof250–550◦C at30 ◦C/min. Thus, nitrogengaswasusedataflowrateof20mL/minwithapressureof2bars duringcharacterization. 2.3.6. AntibacterialActivityAssessment AgarDiffusionTestMethod(QualitativeAnalysis) Antibacterial activity was conducted using the agar diffusion test method described in a previouslypublishedresearchpaper[16]. First, 400µLofbacterialsuspension(1 × 108 CFU/mL) (StaphylococcusaureusATCC25923andEscherichiacoliATCC25922)wasevenlyspreadontotheagar platewiththehelpofpre-sterilizeddisposableswabs. Then,PPcontrolandmodifiedsamplesofsize 1cm×1cmwereplacedonanagarplateandincubatedfor24hat37◦C.Thezoneofinhibitionof incubatedsampleswasmeasuredwithadigitalverniercaliperinfourdirectionsandreportedasthe meanvalue. Thezoneofinhibitiondiameterwasmeasuredbythefollowingformula: L=(D−T)/2 whereL=zoneofinhibition,T=diameteroforiginalsample,andD=inhibitionzonediameterafter 24hincubation. SustainedEfficacyTest(SerialPlateTransferTest) TheobjectiveofthistestwastoevaluatetheantibacterialactivityofCD-graftedsampleswith referencetotheantibacterialreleasetimeindays. Aftereach24h,theagarplatewaschangedand meshsamples(1cm×1cm)weretransferredtoanewagarplatecontainingsimilarcolonyforming units(1×108 CFU/mL)ofbacteria(StaphylococcusaureusATCC25923andEscherichiacoliATCC25922) aftercontactwiththepreviousone. Thetestwascontinueduntilmodifiedmeshessustainedtheir antibacterialactivity. Polymers2018,10,58 6of17 2.3.7. StatisticalAnalysis The data in the figures are described as mean and standard deviations. However, the error barsinthefiguresindicatestandarddeviations. ANOVAone-wayanalysis(single-factor)wasused to determine the differences between each sample and the data in the figures are labeled, such as p<0.001(***),p<0.01(**),andp<0.05(*). Althoughapvalueof(*)<0.05wasconsideredasthe confidenceinterval,varianceswerefirstconfirmedtobesignificant. 3. ResultsandDiscussion 3.1. CyclodextrinGraftingandLoadingofTriclosan The grafting of β-cyclodextrin (CD) onto the PP fibers was achieved by a two-step reaction, asshowninFigure1. Beforegrafting, low-pressureoxygenplasmawasusedtocreateahydroxyl grouponthesurfacesofthePPmeshes. Afterward,twograftingstepswereperformed. Infirststep hexamethylene diisocyanate (HDI) was reacted (Figure 1b) with the plasma-treated PP fibers and theninsecondstepPP-HDIsampleswerefurtherreactedwithhydroxylgroupsofβ-CD(Figure1c). However,cyclodextrinsarewellsuitedtoformcomplexeswithtriclosan. Thus,triclosanwasloaded (Figure1d)intoHDI-CDgraftedsamples. The process parameters, reaction time, and temperature of the cyclodextrin grafting reaction (Figure2)wereoptimized. TheeffectoftemperatureonCDgrafting(Figure2a)indicatesthatweight %increasedwithanincreaseintemperaturefrom65to75◦C.However,anadditionaltemperature increasefrom75to85◦Cdidnothaveanyeffectontheweightsofthetreatedsamples.Graftingreaction timewasalsooptimized,asillustratedinFigure2b,andthegraftedweightoftheproductsincreased withanincreaseinreactiontimefrom30to60min. Thus,atemperatureof75◦Candtimeof60min were considered the optimum conditions for HDI and cyclodextrin grafting. Moreover, Figure 2c displaysthetotalweightincreaseforHDI,CD,andtriclosan. HDI(6%)showedbetterresultsforthe graftingreactionontothePPmeshesanddemonstratedatotalweightincreaseof1.63%.AllCD-grafted samples were treated with the same concentration of HDI. However, it was difficult to find the real increased weight of the HDI samples due to the fact that PP-HDI samples were advanced to the second step of CD grafting without washing to save the unreacted diisocyanate group on the HDI-treated PP surface. The average weight increases of CD grafting for HDI-CD-2, HDI-CD-4, HDI-CD-6,andHDI-CD-8were5.130%,6.410%,7.27%,and7.17%,respectively. Nevertheless,after triclosanloadingtheaveragecorrespondingweightincreasedto2.025%,2.268%,2.414%,and2.40%, respectively.HDI-CD-6wasconsideredthebestsample,whichgainedmoreweightofCDandtriclosan. Thus, CD-HDI-6 and CD-TCL-6 samples were included in further testing. Moreover, PP meshes withoutplasmatreatmentwerealsousedforHDIgrafting,butunfortunatelywedidnotsucceedwith HDIgrafting. Therefore,plasmatreatmentwaskeytoincreasingthesurfaceroughnessofPPmeshes forbettergraftingofHDI. Polymers2018,10,58 7of17 Polymers 2018, 10, 58 7 of 17 FFiigguurree 22.. OOppttiimmiizzaattiioonn ooff ttwwoo--sstteepp ggrraafftteedd PPPP mmeesshheess; ;((aa)) TTeemmppeerraattuurree ffoorr ggrraaffttiinngg;; ((bb)) rreeaaccttiioonn ttiimmee;; ((cc)) wweeiigghhtt iinnccrreeaassee %% ooff HHDDII--CCDD--TTCCLL ssaammpplleess.. DDaattaa ooff eeaacchh ssaammppllee eexxpprreesssseedd aass aavveerraaggeess ((nn == 33)).. 33..22.. SSuurrffaaccee MMoorrpphhoollooggyy ooff PPPP MMeesshheess PPoollyypprrooppyylleennee ((PPPP)) kknniitttteedd mmeesshh ssuurrffaacceess bbeeffoorree ppllaassmmaa ttrreeaattmmeenntt ((FFiigguurree 33aa11,,aa22)) wweerree vveerryy ssmmooootthh,, bbuutt aaftfetrerp lpalsamsmatar etartematemnten(Fti g(uFirgeu3rbe1 ,3bb21),tbh2e) PtPhes uPrfPa cseubrefaccaem beescliagmhtel ysrlioguhgthly. Trhouegsahm. Tplhees saafmterpltehse apfltaesrm thaet rpelaatsmmean ttraenatdmreenact taionnd wreiathctHioDn Iwsihtohw HeDdIa sthhoinwleady ear tohfinc olaatyienrg o(Ff icgouartein3gc 1(F,ci2g)uorne 3thc1e,cs2u)r foanc etsheo fsPuPrfaficbeesr so.f MPPo rfeiboveresr., Mtheorseuorvfaecr,e sthoef sthuerfHacDesI -oCfD thger aHftDedI-CsaDm gprlaefste(dFi gsaumrep3leds1 ,(dF2ig)uarree 3cdov1,edr2ed) awrei tchosvmeraeldl hwililtsha snmdavlla hllielylss .aIntdc avnalbleeyosb. Iste crvaned b(eF oigbusererv3eed1 ,(eF2i)gtuhraet 3aef1te,er2t)r itchloats aanftelor atdriicnlgostahne lHoaDdIi-nCgD tghrea fHteDdI-sCamDp glerasfsthedow seadmspilmesi lashrobwutead listitmleimlaro rbeustw ao llliettnlec omaotirneg sownotlhleenP cPofiabtienrgs ,oinnd tihcaet iPnPg ftihbaetrsth, ienldoiacdaitninggo tfhtarti ctlhoes alonaddiidngn ootf atrffieclcotstahne dgirda fnteodt astfrfeucctt uthree ognratfhteedP sPtrfiubcetursr.e on the PP fibers. FFaauulalanndd rreeppoorrtteedd tthhaatt llooww--pprreessssuurree ooxxyyggeenn ppllaassmmaa ccaann bbee aa ssuuiittaabbllee pprreettrreeaattmmeenntt pprroocceessss ttoo iinnttrroodduuccee ppoollaarr ggrroouuppss oonnttoo tthhee ssuurrffaacceess ooff PPPP ffiibbeerrss aanndd iinnccrreeaassee tthheeiirr wweettttaabbiilliittyy aanndd aaddhheessiioonn ffoorr iimmpprroovveedd ggrraafftitninggo fohf ehxeaxmaemtheythl-ydli-sdiliosixlaonxean(He M(HDMSOD)S[O26) ].[2S6im]. ilSairmlyi,laursliyn,g uloswin-gp rleoswsu-rperecsoslduroex ycgoeldn opxlaysgmena ,pHlaDsmI-Ca,D HsDtrIu-cCtDur esstraurcetusurecsc easrsef uslulyccgersasffuteldlyo gnrtaofttehde ochnetom tihcael lcyhienmerictaPllPy siunrefratc ePsP. TsuhrefaScEeMs. Trehseu SltEsMco nrefisrumltesd cothnafitramleady etrhaotf aH lDayIecro oaft eHdDwIa csofautertdh ewracso fnunrethcteerd cownitnhecβt-eCdD w.ith β-CD. Polymers2018,10,58 8of17 Polymers 2018, 10, 58 8 of 17 Figure 3. SEM micrographs; (a1,a2) PP control; (b1,b2) oxygen plasma treated; (c1,c2) HDI grafted Figure3. SEMmicrographs;(a1,a2)PPcontrol;(b1,b2)oxygenplasmatreated;(c1,c2)HDIgrafted PP-HDI-6; (d1,d2) HDI-CD-6; and (e1,e2) CD-TCL-6 (top row 200×, bottom row 1000×). PP-HDI-6;(d1,d2)HDI-CD-6;and(e1,e2)CD-TCL-6(toprow200×,bottomrow1000×). 3.3. Characterization of HDI, CD, and Triclosan on Modified PP Mesh 3.3. CharacterizationofHDI,CD,andTriclosanonModifiedPPMesh The PP control and grafted samples were characterized using EDX (Figure 4) for elemental The PP control and grafted samples were characterized using EDX (Figure 4) for analysis. elementalanalysis. Polymers2018,10,58 9of17 Polymers 2018, 10, 58 9 of 17 Figure4.EDXspectraandatomicpercentofPPcontrolandmodifiedmeshes(a)PPcontrol;(b)HDI Figure 4. EDX spectra and atomic percent of PP control and modified meshes (a) PP control; (b) HDI grafted,PP-HDI-6;(c)HDI-CD-6;(d)CD-TCL-6. grafted, PP-HDI-6; (c) HDI-CD-6; (d) CD-TCL-6. IItt ccaann bbee oobbsseerrvveedd tthhaatt tthhee PPPP ccoonnttrrooll ((FFiigguurree 44aa)) ssaammppllee sshhoowwss tthhee pprreesseennccee ooff aa ((CC)) ccaarrbboonn aattoomm tthhaatt iiss wwiitthhiinn 00..55 kkeeVV.. NNeevveerrtthheelleessss,, PPPP--HHDDII--66 ((FFiigguurree 44bb)) sshhoowwss ttwwoo aaddddiittiioonnaall ppeeaakkss ((OO)) aanndd ((NN)) iinn aaddddiittiioonn ttoo tthhee ccaarrbboonn aattoomm aanndd aallll tthhrreeee ppeeaakkss aarree uunnddeerr 00..55 kkeeVV,, ccoonnfifirrmmiinngg tthhee pprreesseennccee ooff hheexxaammeetthhyylleennee ddiiiissooccyyaannaattee ((HHDDII)) oonn PPPP ssuurrffaacceess.. MMoorreeoovveerr,, HHDDII--CCDD--66 ddiissppllaayyeedd tthhee eexxiisstteennccee ooff tthhee ssaammee ccaarrbboonn ((CC)),, ooxxyyggeenn ((OO)),, aanndd nniittrrooggeenn ((NN)) ((FFiigguurree 44cc)) bbuutt aatt ddiiffffeerreenntt ppeeaakk hheeiigghhttss,, wwhhiicchh ccoonnfifirrmmeedd tthhee pprreesseennccee ooff ccyyccllooddeexxttrriinn.. IItt ccaann bbee oobbsseerrvveedd tthhaatt CCDD--TTCCLL--66 sshhoowweedd ((FFiigguurree 44dd)) aann aaddddiittiioonnaall ppeeaakko offc hclholroinrien(eC (lC)al)t oamtomwi twhiinth3i.n0 3k.e0V kienVa dind iatidodnittoiocna rtboo cna,rnbiotrno,g nenit,roangdeno, xayngden oaxtyogmesn, caotonmfirsm, cionngftihrmeisnugc ctehses fsuulclcoeasdsfiunlg looafdtriincglo osaf ntroicnlotosatnh eoCntDo -tghrea fCteDd-gsaramftpelde ss.amples. SSttrruuccttuurreess ooff tthhee PPPP ccoonnttrrooll,, PPPP--HHDDII,, aanndd HHDDII--CCDD--ggrraafftteedd ssaammpplleess aatt ddiiffffeerreenntt rreeaaccttiioonn ssttaaggeess wweerree aannaallyyzzeedd uussiinngg FFTTIIRR--AATTRR.. TThhee PPPP ccoonnttrrooll eexxhhiibbiittss aabbssoorrbbaannccee bbaannddss aatt 22995500 ccmm−−11 ((vvaa CCHH33)),, 22991166 ccmm−−1 1(v(av aCHCH2)2, )1,415425 c2mc−m1 (−δC1 H(δ3C)H, a3n)d, a1n3d761 c3m76−1 c(mδC−H13()δ C[2H9,33)0][.2 N9,e3v0]e.rtNheelveesrst, haelll ePsPs-,HaDllIP gPr-aHftDedI gsaramftpeldess (aFmigpulrees 5(aF)i gsuhroew5ead) asdhdowitieodnaald adbistoiorbnaanlcaeb spoerabkasn acte 3p32e1a kcsma−t1 (3O32H1),c 1m62−01 c(mOH−1 )(,ν1 C6=2O0)c,m an−d1 (1ν57C6= cOm)−,1 a(δnNdH15) 7d6uec mto− h1y(dδrNoxHy)l,d aumeidtoe Ih, yadnrdo axmyli,daem IIi dfoermI,aatniodnas,m reidspeeIcItifvoerlmy.a CtiDon-gsr,arfetsepde (cFtiigvuelrye. C5bD) -pgroalyftpedro(pFyigleunree s5abm)ppolelysp mroapinytlaeinneesda mallp plersevmioaiunst apienaekdsa ollf pHreDvIi-ogurasfpteedak ssaomfpHleDsI a-gnrda fatedddistaiomnpallelys showed absorbance peaks at 1701 cm−1 (carbonyl group, ν C=O) and C–H (vCH) stretch at 1256 cm−1. However, C–O groups of CD also appear at 1030 cm−1, consistent with a previously published paper Polymers2018,10,58 10of17 andPoalydmdeirtsi 2o0n1a8,l l1y0, s5h8 o wedabsorbancepeaksat1701cm−1 (carbonylgroup,νC=O)andC–H(vC1H0 o)f 17 stretch at 1256 cm−1. However, C–O groups of CD also appear at 1030 cm−1, consistent with a pre[v3i1o]u. sTlyhep aubbsloisrhbeadncpea bpaenrd[3 o1]f. aTmhiedaeb Is o16rb20a nccme−b1 a(nν dCo=fOa)m aindde aIm16id20e cIIm 1−5176(ν cmC=−1O (δ)NanHd) acmanid beeI aIlso 157o6bcsmer−v1ed(δ NinH al)l cCanD-bgeraafltseodo sbasmerpvleeds, iwnhailclhC Dco-ngfriarfmteedds tahme pfolerms,awtihoinch ocf ounrfietrhmaende, tchoenfsoisrmtenatti wonitohf the ureltihtearnaet,ucroen osins tCenDt w[1i7t,h32th].e Mlioterreaotvuerer, owneC dDid[ 1n7o,3t2 f]i.nMd oarneyo vaebrs,owrbeadnicde npoetafikn ddifafneryeanbcseosr bbeatnwceeepne aHkDI- diffCerDe n(CceDs-bgertawfteeedn) aHnDdI C-CDD-T(CCLD -(gtrriacfltoesda)na-lnodadCeDd)- TsCamLp(tlreisc,l owshainc-hlo ias ddeude) tsoa mthpe lfeasc,tw thhaict htriiscldousaent owas thenfaoct trtehaacttetdri cbluots acnapwtuarsendo btyre tahcet eCdDb ucatvciatpyt. uredbytheCDcavity. Figure5. FTIR(ATR)spectra; (a)PP-HDIgraftedsamples(PP-HDI-2), (PP-HDI-4)andPP-HDI-6; Figure 5. FTIR (ATR) spectra; (a) PP-HDI grafted samples (PP-HDI-2), (PP-HDI-4) and PP-HDI-6; and and(b)PPcontrol,PP-HDI-6-grafted,andtriclosan-loaded(CD-TCL-2andCD-TCL-6)samples. (b) PP control, PP-HDI-6-grafted, and triclosan-loaded (CD-TCL-2 and CD-TCL-6) samples.
Description: