ebook img

PrefMiner: Mining User's Preferences for Intelligent Mobile Notification Management PDF

12 Pages·2016·0.99 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PrefMiner: Mining User's Preferences for Intelligent Mobile Notification Management

PrefMiner: Mining User’s Preferences for Intelligent Mobile Notification Management AbhinavMehrotra RobertHendley MircoMusolesi UniversityofBirmingham UniversityofBirmingham UniversityCollegeLondon UniversityCollegeLondon UnitedKingdom UnitedKingdom UnitedKingdom [email protected] [email protected] [email protected] ABSTRACT anyimportantinformation[23]. However,theirwillingnessis, Mobile notifications are increasingly used by a variety of inasense,exploitedbymobileapplicationsasthesetrigger applicationstoinformusersaboutevents,newsorjusttosend a plethora of notifications continuously [24]. Given the po- alerts and reminders to them. However, many notifications tentiallylargenumberofnotifications,usersdonotacceptall are neither useful nor relevant to users’ interests and, also ofthemastheirreceptivityreliesonthecontenttypeandthe forthisreason,theyareconsidereddisruptiveandpotentially senderofthemessages[24,25]. Usersmostlydismiss(i.e., annoying. swipeawaywithoutclicking)notificationsthatarenotuseful orrelevanttotheirinterests[19,33]. Someexamplesofsuch Inthispaperwepresentthedesign,implementationandevalu- notificationsarepromotionalemails,gameinvitesonsocial ationofPrefMiner,anovelinterruptibilitymanagementsolu- networksandpredictivesuggestionsbyapplications. Atthe tionthatlearnsusers’preferencesforreceivingnotifications same time, past studies have shown that users get annoyed basedonautomaticextractionofrulesbyminingtheirinter- byreceivingirrelevantorunwantednotificationswhichcould actionwithmobilephones. Thegoalistobuildasystemthat resultinuninstallingthecorrespondingapplication[17,33]. isintelligibleforusers, i.e., notjusta“black-box”solution. Rulesareshowntouserswhomightdecidetoacceptordis- Theabovefindingsprovideevidencethat,inordertoreduce cardthematrun-time. ThedesignofPrefMinerisbasedona the level of disruption, an interruptibility management sys- largescalemobilenotificationdatasetanditseffectivenessis tem should not just try to deliver notifications at opportune evaluatedbymeansofanin-the-wilddeployment. moments but also stop notifications that are not useful, or are uninteresting or irrelevant for the user. However, most AuthorKeywords ofthepreviousstudiesproposeinterruptibilitymanagement Notifications;Interruptibility;Context-awareComputing. mechanismsthatleveragetheconceptofanticipatorycomput- ing[29]topredictopportunemomentsbyusingcontext[21, 18,28,26]andcontent[24]. Inthiswork,forthefirsttime,we ACMClassificationKeywords designanintelligentinterruptibilitymanagementmechanism H.1.2. ModelsandPrinciples: User/MachineSystems;H.5.2. thatlearnsthetypesofinformationusersprefertoreceivevia InformationInterfacesandPresentation(e.g. HCI):UserIn- notificationsindifferentsituations. Anotherimportantaspect terfaces is usability: in order to tackle this problem we implement amechanismforminingassociationrules[9]andmakethe INTRODUCTION discoveredrulestransparenttouserssothattheycancheck Today’smobilephonesarehighlypersonaldevicescharacter- theirappropriateness. izedbyalways-onconnectivityandhigh-speeddataprocessing. Theseaffordancesmakeitauniqueplatformforapplications Inordertotrainandevaluatetheproposedintelligentnotifi- harnessingtheopportunityofreal-timeinformationdelivery. cationmechanism,wefirstexploitthedatasetsofreal-world Avarietyofapplicationsareavailableontheappstoresthat mobilenotificationscollectedduringtheMyPhoneandMe enableuserstosubscribetonumerousinformationchannels study [25]. We construct the association rules by using the andactivelyreceiveinformationthroughnotifications[3,4]. combinationsofnotificationtitlesandcontextmodalitiesin- cluding activity, time and location. Through an extensive Previousstudieshaveshownthatusersarewillingtotolerate evaluation,weshowthatbyusingnotificationtitlesandthe someinterruptionsfromnotifications,sothattheydonotmiss user’s location we can predict the notifications that will be dismissedbytheuserwithaprecisiongreaterthan91%.More- over,weshowthattheuser’sactivityandhourofthedaydo Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalor notcontributetotheimprovementofthepredictionaccuracy. classroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributed forprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitation onthefirstpage.CopyrightsforcomponentsofthisworkownedbyothersthanACM Wethenfunneledourfindingsintoapracticalimplementation mustbehonored.Abstractingwithcreditispermitted.Tocopyotherwise,orrepublish, ofaninterruptionmechanismformobiledevices–MyPref, topostonserversortoredistributetolists,requirespriorspecificpermissionand/ora anintelligentnotificationlibraryfortheAndroidOS.MyPref [email protected]. UbiComp’16,September12-16,2016,Heidelberg,Germany enablesanapplicationtodiscoverpersonalizedrulesforthe ©2016ACM.ISBN978-1-4503-4461-6/16/09...$15.00 DOI:http://dx.doi.org/10.1145/2971648.2971747 user’spreferencesandpredicttheirreceptivitytonotifications withothers,forexamplefordeferringthenotificationsuntil containingdifferenttypesofinformation. TheexpressiveAPI therighttime/context. ofthelibraryallowsadevelopertoconfiguretheprediction settingsincludingthefeaturesusedforminingrules,making it also extensible and generalizable. Moreover, through an WhyMineAssociationRulesOverotherTypesofMachine extensiveevaluationofmemory,batteryandtimeoverheads, LearningModels? weshowthatMyPrefisalight-weightandresourceefficient Oneofthemajorissuesindesigninginterruptibilitymanage- librarythatiscapableofmining1500notificationsamplesin mentsystemsisrelatedtotheirtestingandevaluation. Infact, aminutebyconsumingonly11.737mAHbatterycharge. ifthenotificationmechanismsarenotcorrect,theymightlead to rejecting or deferring important notifications. Therefore, WepresentthedesignandimplementationofPrefMiner,an inordertobuildusablesystems,wehavetoinvolveusersto interruptibility management application that is built on top adjusttheinterruptibilitymanagementmechanisms,inorder oftheMyPreflibrary. Toachieveusers’trusttheapplication toachievethegoalofreducinginterruptionswithoutcompro- showsthediscoveredrulestothemandasksfortheirconsent misingthereceptionofanyusefulandimportantinformation. foreachruletoactivateit. Theinterruptibilitymanagementmechanismsproposedinthe Finally,unlikepreviousinterruptibilitystudies,wedonotre- previousstudiesrelyonmachinelearningmodelsformaking strictourselvestoevaluatingtheinterruptibilitymanagement predictionsthatmightbedifficulttounderstandandtranslate mechanismonthecollecteddataortomanageourowngener- directlyintohuman-readablerules[21,28,24]. Thesemodels atednotifications. Instead,inordertoevaluatePrefMiner,we aregoodforlearningquicklywithahighaccuracybutitis conductedanin-the-wild 15-dayexperiment. Weshowthat nearlyimpossibleforuserstounderstandthesemodelsand with16subjectsPrefMinersuggested179rulesand56.98% providetheirfeedback. Therefore,werelyonminingassocia- oftheseruleswereaccepted. Duringthestudyperiodtheapp tionrulesthatcanbeeasilyunderstoodbyusersascompared filterednotificationswitharecallof45.81%andaprecision to other prediction models. This allows us to get feedback of100%asallfilteringruleswereacceptedbytheusers. fromusersabouttherulesthatshouldnotbeusedforstopping notificationsontheirphones. Itisworthnotingthatasimple MOTIVATIONOFKEYDESIGNCHOICES machinelearningtechniquesuchasthedecisiontree[34]is In this section we discuss the key motivations and design likelytofindafewmorerulesthantheassociationrules,how- choices of our solution, namely (i) the choice of learning ever,thedecisiontree-basedrulesmostlyhavelowreliability users’preferenceswithrespecttodifferenttypesofinforma- becausetheyrefertoverysmallsetsofdatainstances[27]. tiondeliveredthroughnotificationsratherthanmodellingtheir interruptibility;(ii)thechoiceofimplementinganalgorithm basedonassociationrulesinsteadofalternativemachinelearn- MININGUSERPREFERENCES ingalgorithms. In this section we discuss how we extract notification rules byminingassociationrulesbasedondifferentcombinations WhyMineUser’sPreferencesforDifferentTypesofInfor- ofnotificationtitlesandcontextmodalitiesincludingactivity, mation? timeandlocation. Thekeyobjectiveofaninterruptibilitymanagementsystem istodelivertherightinformationattherighttime. Mostof thepreviousinterruptibilitystudieshaveproposeddifferent RemovingReminderNotifications approachestomodelinterruptibilityforpredictingopportune Thefirststepconsistsofidentifyingaparticularclassofnoti- moments [21, 18, 28, 24]. However, these studies do not ficationsthatarealwaysdismissedbuttheyshouldbeshown suggestwhattodowithnotificationsthatarriveatinopportune in any case to users. As discussed earlier, notifications are moments. Shouldwedeferthem? Orshouldwecompletely dismissed if they are not found to be useful or relevant to dismissthem? theuser’sinterest[19,33]. However,somenotificationsare dismissedbecausetheydonotrequireanyfurtheractionfrom Inapreviousstudy[13],Clarksuggestedthatusers’negative theuser. Thesenotificationsshouldnotbeautomaticallyfil- responsetoaninterruptioncanbeoftwotypes: (a)acknowl- tered,sincetheymightberelevantforusers,eveniftheyare edgeitandagreetohandleitlater; (b)declineit(explicitly alwaysdismissed. Werefertosuchnotificationsasreminder refusingtohandleit).BasedonClark’ssuggestionswehypoth- notificationsintherestofthepaper. Alarm, calendarevent esizethataninterruptibilitymanagementmechanismshould andbatterystatusnotificationsaresomecommonexamplesof takeanorthogonalbutequallyimportantapproachbylearn- remindernotifications. ing the different types of interruptions that users explicitly refusebydismissingnotifications. Inthiswaysuchamecha- Moreformally,inordertodefineremindernotifications,we nismcanidentifythenotificationsthatarenotusefulforthe introduceasimpledefinitionofclickrate(CR): usersandstoptheoperatingsystemfromtriggeringalertsfor these types of notification. Moreover, our hypothesis is in Numberofacceptednotifications line with the findings of Fischer et al. [19, 33], i.e., users’ CR= ∗100 (1) Totalnumberofnotifications receptivity relies on the usefulness and their interest in the deliveredinformation. Wewouldliketostressagainthatthis Ifanapplication’sclickrate(CR)iszerothenallnotifications isanorthogonalmechanismthatcanbeusedinconjunction fromthatapplicationaretreatedasremindernotifications. NotificationClassification (iii) Removalofstopwords: stopwordsarethecommonwords Inordertomodelusers’preferenceswithrespecttoreceiving (suchas‘a’,‘the’,‘is’and‘are’)thatgenerallyhavequite different types of information, we categorize each notifica- highfrequencyinthetext. Weremovethemtoensurethat tionbasedontheinformationcontainedinit. Arecentstudy theydonotaffectcontent-bearingkeywordsintheclustering proposesanapproachformodellinginterruptibilitybyusing algorithm[12]. informationtype,socialcircleandcontextinformation[24]. (iv) Removalofthesenderandapplicationnames: weremove Theauthorsof[24]assumethatallnotificationstriggeredby senderandapplicationnamesbecausetheycanleadtheclas- an application are of the same type and categorize them by sifiertoclusternotificationsbasedonthesenderorapplica- using the type of application that triggered them. In other tionnames. Therefore,foreachnotificationweremove(if words,theyclassifynotificationsatanabstractlevel,e.g.,chat, present)thenameoftheapplicationbywhichitistriggered. email,systemsandsoon. Moreover, to remove sender names we find and remove Instead,wedonotlimitourselvestocategorizeanotification allthewordsthatarenotpresentintheenglishdictionary basedonthetypeofapplicationthattriggereditbecausean thatcomeswiththeqdapDictionariespackage[5]. Itis application can generate notifications that contain different worthnotingthatinthecaseofchatandemailnotifications types of information. A user might be interested to receive thatcontainonlynames,wedonotremovenamesandthus somebutnotalltypesofnotificationstriggeredbyaspecific allowthealgorithmtoclassifysuchnotificationsbasedonly application. Forexample,aFacebooknotificationaboutanew onthesendernames. postonauser’stimelinemightnotbeconsideredasdisruptive (v) Stemmingofwords: itisastandardizationmethodtoavoid as a game invite notification. In other words, users would having multiple versions of words referring to the same notwantaninterruptibilitymanagementsystemtocompletely conceptbyreducingaworddowntoitsroot. Forinstance, stopFacebooknotifications,butonlythosethatareannoying, thewords‘comment’,‘commented’,‘comments’and‘com- suchasgameinvites. menting’areallstemmedto‘comment’). Therefore,inordertoclassifynotifications,weperformclus- ConstructingaClassifier teringbyconsideringtheirtitlesbymeansofDBSCAN[16], Inordertotraintheclassifier,weuseabagofwordsapproach adensitybasedalgorithm1. Anotificationtitleisashortsen- andcreateaDocument-TermMatrix(DTM)–amatrixthat tencethatgivesaglimpseoftheinformationcontainedinit. describesthefrequencyofterms(i.e.,words)thatoccurina Thefollowingaresomeexamplesofnotificationtitles: “Sign collectionofdocuments(i.e.,notificationtitlesinourcase). In in to a Wi-Fi network”, “Time to Work”, “Today is Alice’s aDTM,rowscorrespondtodocumentsinthecollectionand birthday”.Itisworthnotingthatinsomecasesthenotification eachtermisassociatedtoacolumn. titlecontainsthesendernamealongwithothertext(suchas “Alicecommentedonyourpost”)ormerelythesendername Topreventtheproblemofoverfittingtheclassifier[35],we (suchas“Alice”). Generally,thesendernameisattachedto computethetermfrequency(TF)andremovethetermsthat thetitlesofnotificationstriggeredbychatandonlinesocial haveaTF lowerthanTFthreshold. TheTF andTFthreshold are networkingapplications. definedasfollowing: Theclusteringofnotificationsiscarriedoutthroughthefol- Numberofnotificationsinwhichthewordoccurs lowing steps: i) cleaning notification titles; ii) constructing TF= Totalnumberofnotifications aclassifier; andiii)clusteringnotifications. Wediscussthe (2) detailsofeachstepindetailbelow. Numberofparticipationdays TF = (3) CleaningNotificationTitles threshold N*Totalnumberofnotifications Notificationtitlesareshortsentencesphrasedin awaythat theyareeasilyunderstoodbyusers. Themostimportantstep According to the above equation the value of TFthreshold en- for analyzing these titles is to first clean them in order to suresthatatleastonenotificationcontainingthetermistrig- removethenon-informativedata. geredinN days. Toanalyzethenotificationtitleswefollowthestandardprocess Finally,aDBSCAN-basedclassifierisconstructedbyusing ofcleaningtextinthefollowingway: theaboveDTM.Toclusterthedatatheclassifierrequirestwo parametersasinputs: (i)MP,definedastheminimumnumber (i) Conversionofthethetexttolower-case: thisensuresthat ofpointsrequiredtoformadenseregionand(ii)ε,definedas thelower-caseandtheupper-caseversionsofthesameword themaximumdifference(i.e.,numberofnon-matchingwords) areconsideredthesame. betweenthenotificationtitlesofacluster. (ii) Removalofpunctuationandnumbers:theseelementsofthe ClusteringNotifications textdonotcontainusefulinformationfortheclassification Since the notification titles are relatively short-length sen- task,butatthesametimetheymightinfluenceit. tences, it is possible that notifications from different appli- cations contain similar words that can lead the classifier to 1Weareawarethatnotificationclusteringcouldbeimprovedbyusing cluster them together. In order to prevent this problem, for theentirenotificationcontent(i.e.,includingalsotheheaderofnotifi- cations).However,duetoprivacyconcernsthenotificationheaders eachapplicationwecreateaseparateclassifierbyusingthe werenotrecordedinthedatasetweusedforourevaluation[25]. notifications generated by that application. For example, if there are 15 notifications from 3 applications, we create 3 clustering models and each model is trained using notifica- Filtered Remaining tionsofseparateapplications. Finally,whentheclassifiersare constructed,wepredicttheclassesofallnotifications. 3000 nt u ConstructingAssociationRules Co2000 Inordertodiscoverrulesabouttheuser’spreferencesforre- ms ceivingnotifications,weusetheAISalgorithm[9]–amethod Ter1000 forminingdatatodiscoverstatisticalrelationshipsbetween 0 variables. Thealgorithmscansthedatatofindthefrequent 1 2 3 4 5 6 7 itemsetsandcomputestheirsupportvalue(discussedlaterin N−value thissection). Finally,itfiltersoutthelistofitemsetswhose Figure1. Filteredandremainingtermsfornotificationclusteringwith supportvalueisgreaterthanthegivensupportthreshold. differentvaluesofNinTFthreshold. AnassociationruleisrepresentedasX →Y,whereX isde- finedastheantecedentandY astheconsequent.Thealgorithm DatasetandEvaluationSettings generatesruleswiththeconsequentcontainingonlyoneitem. In order to evaluate the proposed solution, we use the data ThismeansthatrulescanbeintheformofX1∪X2→Y but collectedbymeansofsmartphonesduringtheMyPhoneand notintheformofX →Y1∪Y2. Mestudy[25]. Fromtheoriginaldataset, wetookasubset of data considering only the users who participated for at To better understand the concept of association rules let us least14days. Wealsoremovedthenotificationswhichwere consideranexamplewheretheuser:(i)alwaysdismissTwitter notmappedwiththeuser’sactivity,locationandarrivaltime. notificationsforwhotofollow;(ii)acceptsFacebookbirthday Moreover,thedatasetcontainsanattributetoidentifywhether reminder notifications only in the morning while she is at anotificationisclicked,dismissedorhandledonanotherde- home;(iii)doesnotacceptWhatsAppnotificationsfromAlice vice. Wedidnotconsidernotificationsthatwerehandledon whileatwork. AssumingthatnotificationsabouttheTwitter another device. Consequently, the final dataset used in our suggestion,FacebookbirthdayreminderandWhatsAppfrom analysiscomprises11,185notificationsfrom18users. AliceareclassifiedintheclassesN ,N andN respectively, 1 2 3 the following association rules would represent the user’s Weevaluatethediscoveredrulesforpredictingusers’response preferencesinthiscase: to notifications by using a k-fold cross validation approach {N1}→{Dismiss} withthevalueofkas10. Thepredictionresultsarecomputed {N2,Home,Morning}→{Accept} separatelyforeachuserandweaggregatethembycomputing {N2,Home,Afternoon}→{Dismiss} themeanandthestandard-errorwith95%confidencelimits. {N2,Home,Evening}→{Dismiss} Wedividethesetofnotificationsbelongingtoeachuserintoa {N2,Home,Night}→{Dismiss} trainingsetandatestset,wherethetrainingsetcontains90% {N2,Work}→{Dismiss} ofthedataandtherestisconsideredasthetestset. {N ,Other}→{Dismiss} 2 {N ,Home}→{Accept} 3 DefiningConfigurations {N ,Other}→{Accept} 3 Asdiscussedearlier,weusetheTF topreventtheprob- threshold {N ,Work}→{Dismiss} 3 lemofoverfittingtheDBSCAN-basedclassifierwithsparse ForanassociationruleX →Y,wedefinethetwoparameters: (i.e.,infrequent)terms. Inordertofindanoptimalvalueof TF wecreateaDTMforallnotificationtitlesinthe Threshold • Support: theratiobetweenthenumberoftimesX andY datasetandcomputethenumberoftermsfilteredbysetting co-occurandthenumberofdata-instancespresentinthe TF with different values of N ∈[1,7]. Here, we do Threshold givendata. Itcanberepresentedasthejointprobabilityof notconsidervaluesofN greaterthan7becausewebelieveit X andY: P(X,Y); wouldnotbeusefultoincludenotificationtermsthatdonot arriveatleastonceinaweek. • Confidence: theratiobetweenthenumberoftimesY co- occurswithX andthenumberoftimesX occursinthegiven As shown in Figure 1 there are 3642 unique terms in the data. Itcanberepresentedastheconditionalprobabilityof dataset. BysettingN=1,therearechancesofunderfittingthe X andY: P(Y |X). modelbecause3371termsareremovedandonly271terms remainintheDTM.Sincethereisnotmuchdifferenceinthe An association rule is created only when it has at least the numberoffilteredtermswithN∈[2,7],weuseN=2forour minimumsupport(S )andconfidence(C ).Itisworthnot- min min analysis,whichalsoensuresthateachtermisseenbytheuser ingthatdecreasingthevaluesofeithersupportorconfidence atleastonceintwodays. couldresultindiscoveringmorerules[9]. Inordertosatisfytheaboveconstraint,foreachuserwesetthe EVALUATIONOFTHERULE-BASEDMECHANISM valueofMPtoD/2(Dindicatesthenumberofparticipation Inthissectionwediscusstheimplementationandevaluationof days). This ensuresthatthere areat least D/2 notifications themechanismforminingindividual-basedassociationrules ineachcluster. Inotherwords,notificationsofeachcluster aboutusers’preferences. arrive at least once in two days. Similarly, for discovering 100 100 100 90 90 90 80 80 80 %)70 %)70 %)70 Result (34560000 PRreeccaisllion Result (34560000 PRreeccaisllion Result (34560000 PRreeccaisllion 20 20 20 10 10 10 0 0 0 70 80 90 70 80 90 70 80 90 Confidence Value (%) Confidence Value (%) Confidence Value (%) (a) (b) (c) 100 100 90 90 80 80 %)70 %)70 Result (34560000 PRreeccaisllion Result (34560000 PRreeccaisllion 20 20 10 10 0 0 70 80 90 70 80 90 Confidence Value (%) Confidence Value (%) (d) (e) Figure2.Predictionresultsforassociationrulesdiscoveredbyusingnotificationresponsealongwith:(a)AR1:notificationtype;(b)AR2:notification typeandactivity;(c)AR3:notificationtypeandarrivaltime;(d)AR4:notificationtypeandlocation;(e)AR5:notificationtype,activity,arrivaltime andlocation. association rules we set S (i.e., minimum support value) 3. AR3: byusingnotificationresponsewithnotificationtype min equaltoD /(2∗N ),whichensuresthatthenotifi- andarrivaltime; participate count cationinteractionpatterncoveredineachrulehasoccurredat 4. AR4: byusingnotificationresponsewithnotificationtype leastonceintwodays. Here,D indicatesthenumber participate andlocation; ofparticipationdaysoftheuserandN referstothetotal count numberofnotificationscollectedforthatuser. Moreover,we 5. AR5: byusingnotificationresponsewithnotificationtype, setε to1sothateachnotificationtitlewillhaveatleastN−1 activity,arrivaltimeandlocation; (N referstothenumberofwordsinatitle)wordssimilarto Forallapproacheswerestricttheconsequenttocontainonly othernotificationtitlesinitscluster. the notification response and the antecedent is restricted to FeatureSelection nevercontainthenotificationresponse. Weintroducethiscon- Inordertodiscoverassociationrulesabouttheuser’sprefer- straintbecauseweareonlyinterestedtopredicttheacceptance enceswerelyonthefollowingfeatures: ofanotification,thereforeotheritemsintheconsequentwould beofnouseandjustaddextracomputationalload. (i) notification response: the user’s response (i.e., click or dismiss)toanotification; PredictionResults (ii) notificationtype: theidentifieroftheclustertowhichthe Inthissectionwepresenttheaccuracyoftheassociationrules notificationbelongs; discoveredwithdifferentvaluesofC forallfiveapproach. min (iii) arrivaltime: thearrivaltimeofthenotificationconsidering Inordertoassessthediscoveredassociationrules,wecom- fourtimeslots–morning(6-12),afternoon(12-16),evening parethepredictedresponsewiththeactualresponse(i.e.,the (16-20)andnight(20-24and0-6); groundtruth)andcomputetheaccuracyintermsof: (iv) activity: the user’s physical activity (includes still, walk- • Recall: ratiobetweenthenumberofnotificationsthatare ing,running,bikingandinvehicle)whenthenotification correctly predicted as dismissed and the total number of arrived; notificationsthatareactuallydismissed. (v) location: theuser’slocationwhenthenotificationarrived; Notethatwedonotincludethealertmodalityofnotifications • Precision:ratiobetweenthenumberofnotificationsthatare forminingrulesbecauseweareinterestedinfindingtheinfor- correctlypredictedasdismissedandthetotalnumberofno- mationthatusersprefertoreceivevianotificationsindifferent tificationsthatarepredicted(bothcorrectlyandincorrectly) situationsirrespectiveoftheiralertmodalities. asdismissed. Byusingdifferentcombinationsofthesefeaturesweconstruct InFigure2wepresentthepredictionresultsfortheassocia- theassociationrulesaccordingtothefiveapproaches: tionrulesconstructedbyusingallfiveapproaches. Theresults showthatincreasingtheconfidenceofassociationrulesde- 1. AR1: byusingnotificationresponsewithnotificationtype; creasestherecallbutimprovestheprecision. Thisimpliesthat 2. AR2: byusingnotificationresponsewithnotificationtype byincreasingtheconfidenceafewerbutmorereliablerules andactivity; arediscovered. 100 l l l Confidence l l l l l l l l l l l 40 l 65% l l Precision (%) 90 Clonf67788i50505d%%%%%encel l l l l Recall (%)2300 778899050505%%%%%% l l l l l l 10 90% l 95% l l l l l l l l l l l l 0 l l 1 3 5 7 9 11 13 15 17 19 21 1 3 5 7 9 11 13 15 17 19 21 Day Day Figure3.Predictionresultsforassociationrules(withnotificationtitleandlocation)usingtheonlinelearningapproach. TheassociationrulesconstructedwithapproachesAR1and usefulnotifications. Therefore,whiledesigningitweshould AR2donotshowasignificantdifference. TherecallofAR2 aimtohavefewerfalse-negatives(i.e.,incorrectlypredicting isslightlyhigherwhentheconfidenceisbelow70%,butthe a notification as non-interesting for the user) that could be precisiondropsaswell,whichmeanssomeextrabutunreliable achievedbyensuringthattheprecisionremainscloseto100%. rulesarediscovered. Ontheotherhand,theassociationrules However, we could consider a precision of around 90% as constructedwithAR3achievesbetterrecallthanAR1andAR2 acceptablebecauseitmightbepossiblethatacoupleofnotifi- butitsprecisionconsistentlyremainslower(i.e.,under85%) cationshavebeenclickedbymistakeortokilltimewhenthe ascomparedtootherapproaches. Thisimpliesthatthereisno userwasbored. significantcontributionofactivityandarrivaltimeintermsof Atthesametime,theinterruptibilitymanagementmechanism predictinguser’spreferencesforreceivingnotifications. shouldalsoachieveasignificantvalueforrecallinorderto The approach AR4 (i.e., the association rules that are con- proveitsefficacyinfilteringnotificationsthatarenotusefulor structedbyusingthenotificationresponse,typeandlocation) relevanttotheuser’sinterest.Wecouldnotobtainahighrecall performsbetterthatotherapproachesintermsofbothrecall valuebecausenotalldismissednotificationsarenon-useful. andprecision. Itsrecallgoesuptoaround43%withoutdrop- Instead,somenotificationsaredismissedbecausetheydonot pingtheprecisionbelow79%. Evenbycombiningallfeatures requireanyfurtheractions. Thoughwehavealreadyfiltered togetherintheapproachAR5,theresultsdonotimprove. As outremindernotificationsbeforetheanalysis,therecouldbe compared to approach AR4, there is a negligible increment notificationsfromotherapplicationswhichareuseful,butdo intherecalloftheapproachAR5withabigdropinitspre- not require any action, such as a chat message “See you at cision. Consequently, our results provide evidence that the 7pm”andaconfirmationemail“Ok,bye!”. user’spreferenceforreceivingnotificationsdoesnotdepend Weobservethat,byusingtheconfidenceof70%,theapproach ontheactivityandarrivaltime,butonthetypeofinformation AR4isabletoachievearound42%recallwithaprecisionof itcontainsandthelocationoftheuser. 84%. However,thedropof16%precisionvaluebringsarisk It is worth noting that the high standard-error in the results thatthemechanismcouldpredictsomefalse-negatives. So, demonstratesthatourmechanismdoesnotworkconsistently weshouldcompromisebyhavingaround35%recallwitha forallusers. Itisduetothefactthatusershavedifferentpref- precision of more than 90% at a confidence of 80%. Here, erencesforreceivingnotifications. Moreover,theupper-limit even the 35% recall implies that we are able to filter a big ofthestandard-errorforprecisioncloseto100%demonstrate portionofnonusefulnotificationsandthusreducedisruption. thatforsomeusersourmechanismisabletoveryaccurately predictnotificationsthatarenotinterestingorusefulforthem. ONLINELEARNING Intheprevioussectionweevaluatedourmechanismbyusing Anotherinterestingobservationisthattherecallofapproach thebatchlearningmethodinwhichtheassociationrulesare AR3isalwayshigherthanthatofAR1andAR2,butitspre- minedbyusingstaticdata. However,inarealworldscenario cision is instead always lower. We believe that AR3 attains suchtrainingdataisnotinitiallyavailableandtherefore,asso- higherrecallbecauseusersfollowcircadianrhythmsanddur- ciationrulescannotbediscovereduntilasufficientamountof ingdifferenttimeperiodsofadaytheyarepresentatcertain datahasbeencollected. locations(e.g.,atworkintheafternoonandathomeduring night)[15]. Therefore,inapproachAR3rulesareessentially Inordertoaddressthisissue,wecanuseanonlinelearning associatedtotheirbehavioratcertainlocationsratherthanthe methodinwhichtheassociationrulesareperiodicallymined timeofnotifications’arrival.Moreover,theprecisionmightbe fromthedatathatiscollectedgradually. Evenifthissolution affectedasusers’mobilitypatternmightvaryonsomedays. does not remove the problem of initial bootstrapping com- pletely,thepredictionaccuracyimprovesgraduallyasmore OptimizingtheSystemforHighPrecision andmoretrainingdatabecomesavailable. Moreover,byusing Thekeyrequirementfordeployinganinterruptibilitymanage- anonlinelearningmethodasystemcanadaptitselfaccording mentmechanismin-the-wildisthatitshouldneverstop/defer tothepotentialchangesinuser’sbehaviorovertime. Inordertoevaluatethismethod,weiterativelyconstructas- locally,thelibraryalsopreservesuser’sprivacysincenodata sociationruleswithallthenotificationscollectedbytheend istransmittedtoaback-endserver. Itoffersflexibilitytode- ofeachdayandevaluatetheserulesbyusingnotificationsof velopers by allowing them to define notification clustering thefollowingday. Forexample,ondayN amodelisbuiltby configurations(i.e.,TF ,ε andMP)aswellastherule Threshold usingnotificationsfromday1toN−1. Moreover,similarto miningconfigurations(i.e.,support,confidenceandfeatures theevaluationbyusingbatchlearningmethodweconfigure tobeusedforminingrules). S as(N−1)/(2∗N ), whereN indicatesthetotal min count count Finally,thelibrarylearnstheuser’spreferencesforreceiving numberofnotificationscollecteduntilldayN−1. Thisensues notifications and returns the discovered rules as output. In thatthenotificationinteractionpatterncoveredineachrule ordertoenableanoverlyingapplicationtofacilitatethetrans- hasoccurredatleastonceintwodaysoratleast(N−1)/2 parencyofthepredictionmechanismtotheusers,thelibrary timesinN−1days. makestheruleshumanunderstandablebyreplacingeachno- Figure3showsthepredictionresultsfortheindividualized tificationtypewiththemostfrequent3 wordsoftherelevant rulesiterativelyconstructedoneachdaywithdifferentvalues notificationcluster(werefertothesewordsaskeywordsinthe ofC byusingtheonlinelearningmethod. RuleswithC restofthepaper). min min as80andbelowstartfilteringnotificationsfromthe3rd day For instance, let us consider some examples of hypothetic and by the 7th day they achieve the recall of 25-35% and keywordsinnotificationclusters: thekeywordsfromtheclus- precision around 90%. Instead, by the 7th day other rules ter of Facebook’s birthday reminder notifications (such as could achieve the recall of 10% and precision above 90%. “TodayisAlice’sbirthday.” and“AliceandChrishavebirth- Interestingly, rules with C as 95% never become stable. min daystoday. Helpthemhaveagreatday!”) wouldbe“today” Thiscanbeduetothefactthattheserulesfilternotifications and“birthday”. ThekeywordfromtheclusterofGooglePlay withhighreliabilitywhichcanbeconfirmedbytheirprecision Store’sappupdatenotifications(suchas“2applicationsup- always remaining over 90%. On the other hand, rules with dated.” and“3updatesavailable.”) wouldbe“update”. The C as65-70%and80-90%becomestablebythe12th and min keywordsfromtheclusterofsystems’sWiFiavailabilitynoti- 9thdayrespectively. fications(suchas“Wi-Finetworksavailable”and“Verizon Itisworthnotingthatgiventhedurationofthedataset,itisnot Wi-Fiavailable”)wouldbe“Wi-Fi”and“available”. possibletoevaluatetheadaptationofthealgorithmandcon- Theoverlyingapplicationcanpresenttheserulestousersin firmiftherulesmaintaintheirstabilityovertime. Itmightbe ordertoaskfortheirconsentandusetherulesthatareaccepted possiblethatusersdivergefromtheirnotificationinteraction by them to filter notifications. Later in the section, we will behaviourandthesystemneedstoadaptaccordingly. There- show a potential approach to take the consent of users for fore,weenvisagethatthesystemshoulduseaslidingwindow usingthepredictedrulesinanapplication. approach, i.e.,thealgorithmshouldbetrainedonthelastL daysinordertobeabletoadapttochangesinuser’sbehavior. Moreover,producingruleswithkeywordsinsteadofcluster identifierswouldreducethecomputationtimeatthearrival MYPREFLIBRARY ofnotifications. Thismightbefineforapplicationsthatare predictingtheacceptancefortheirownnotifications.However, Overview if an application is managing notifications from third-party Starting from the mechanisms and evaluation we presented applicationthenthepredictionprocessshouldbeveryquick intheprevioussection,weimplementedtheMyPreflibrary sothat,ifrequired,itcancancelanotificationbeforeitalerts – anintelligent interruptibilitymanagement librarythat can theuser(viasound,vibrationorLEDlight). predict the type of notifications that users would prefer to receiveontheirmobilephonesinspecificcontexts.Thelibrary learns the user’s preferences for receiving notifications by EvaluationoftheMyPrefLibrary miningassociationruleswiththenotificationandcontextdata In this section we quantify the performance of the MyPref thatissuppliedtoitandpredictstheuser’sreceptivitytothe library. We use a Nexus 6 phone with 3 GB of RAM and subsequentnotifications. TheMyPreflibraryisimplemented a quad-core 2.7GHz Krait 450 CPU, running a clean slate fortheAndroidOSandreleasedasanopensourceproject2. Android5.0OSfortheperformanceevaluationofthelibrary. Thegoalistoprovidedeveloperswithapracticalgenerictool forintelligentrule-basednotificationsthatcanbeintegratedin SourceCodeandMemoryFootprint anyapplication,hidingatthesametimethecomplexityrelated MyPrefisimplementedasalight-weightAndroidlibrarycon- tothepredictionmechanisms. sistingof15Javaclassesbuiltwith4077linesofcode. We developedastubapplicationontopofthelibrarytoevaluate The MyPref library abstracts the functionalities of the pro- thememoryfootprintthataccountsto7.559MB(including posed interruptibility mechanism through a set of intuitive WekaandSnowballstemminglibraries). Weusedthird-party APIprimitives. Theabstractionsincludeclusteringofnotifica- measurementtools,namelyCountLinesofCode[2]andAn- tions,miningassociationrulesandpredictingtheacceptance droidDalvikDebugMonitorServer[1],toevaluatethesource ofnotifications. ThelibraryreliesonWekaforAndroid[7] codeandmemoryfootprintofthelibrary. andtheSnowballstemminglibrary[6]forclusteringnotifica- tionslocallyonthephone.Sincethecomputationisperformed 3Weconsiderthemostfrequentafterremovingallthestopwords 2https://github.com/AbhinavMehrotra/PrefMiner andstemmingtheremainingwords. H) A m 60 on (11.5 ettery Charge Consumpti1101..50 l l l l l l l l l l l l l llAAAAARRRRR12345l Time (seconds)2400 l l l l l l l l l l l l l llAAAAARRRRR12345l B 100 300 500 700 900 1100 1300 1500 100 300 500 700 900 1100 1300 1500 Notification Count Notification Count Figure4. Batterychargeconsumedforminingrulesusingdifferentap- Figure5.Timetakenforminingrulesusingdifferentapproacheswitha proacheswithdifferentnumberofnotificationsasaninput. varyingnumberofnotificationsininput. EnergyConsumption ThePrefMinerapplicationisbuiltontopoftheMyPreflibrary Afundamentalaspectindesigningthisclassoflibrariesisthe discussedandevaluatedintheprevioussectionandusesthe energyusageanditsimpactonthephone’sbatterylife. We notificationtypeandlocationdata(i.e.,theapproachAR4as analyzetheenergyconsumptionofthelibrarybyvaryingthe discussedabove)forminingtheassociationrules. Theappli- amountofdataintheinput.Wecharacterizethebatterycharge cation continuously collects the notification data and binds consumptionforminingassociationrulesforallapproaches theuser’scurrentlocationtoeachdatainstance. Therulesare (AR1,AR2,AR3,AR4andAR5). WeusePower-Tutor[36]for constructed every day when the phone is in charging mode takingthebatterymeasurements. andnotinusesothattheapplicationdoesnotdirectlyaffect AsshowninFigure4,thebatteryconsumptionincreasesal- users’mobileexperience. mostlinearlyastheamountofdatausedforminingtherules As shown in Figure 6.a the newly discovered rules are pre- increases. However,asthenumberoffeaturesincreasesthe sented to the users in a human-readable format to get their energyconsumptionincreasesbutnotdramatically. Thisim- consent. Toconvertaruleintoahuman-readableformat,we pliesthatmostoftheenergyisconsumedforclusteringthe usetheapplicationname,thenotificationclusteridentifier(i.e., notificationtypesandlessenergyisrequiredforminingthe thekeywordsprovidedbythelibraryasareplacementforthe rules. notification type) and location. Some possible examples of Moreover, the battery consumption slightly varies for ap- suchrulesarethefollowing: “StopnotificationsfromFace- proachesAR2,AR3andAR4evenwhentheyhavethesame bookthatcontain‘candy’and‘crush’wordsinthetitle.” and numberoffeaturesused. Thereasonforthisdifferencecould “StopnotificationsfromWhatsAppthatcontain‘Alice’wordsin be that these approaches use features which have different thetitleandarriveatWORK.” number of classes. For instance, location has three classes: Users can accept the rules, which they think are correctly home,workandother,whereasactivityhasfiveclasses: still, discovered,forfilteringoutnotificationsontheirphones,by walking,running,bikingandinvehicle. Increaseinthenum- clicking“Yes”. Iftheuserclickson“Never”forarule,the berofclassesinafeaturewouldrequiremoreiterationsfor applications stores that rule as a blacklisted rule and never discoveringrulesandthusconsumemorebattery. showsitagaininthefuture. Toensurethis,aftereveryrule TimeComplexity miningprocess,theapplicationremovesallblacklistedrules Wecomputethetimerequiredforminingassociationrulesby fromthenewlydiscoveredrules. Moreover,iftheuserclicks usingallfiveapproachesfordifferentamountsoftrainingdata. on“NotNow”,theruleisre-proposedduringthenextiteration ThetimecomplexityofthealgorithmisO(N ). oftheminingprocess. Finally,oncearuleisacceptedbya count user, it becomes active (see Figure 6.c) and the application AsshowninFigure5andasexpected,thetimecomplexity startsfilteringoutallthesubsequentnotificationsaccording linearlyincreasesastheamountofdataincreases. Quiteinter- totherulesthatarecurrentlyactive. Moreover,theusercan estingly,thedifferenceintermsoftimerequiredforthecom- clickonthe"ViewFilteredNotifications"button(shownin putationforthevariousapproachestakenintoconsideration Figure 6.a) in order to view the list of filtered notifications increasesasthenumberofnotificationsincreases. Moreover, alongwiththeirtimeofarrivalandthetriggeringapplication. italsoincreasesasthenumberoffeaturesusedgetslarger. For instance,thelibrarytakesnotmorethan61secondsformining associationrulesfrom1500notificationsforanyapproach. DeploymentofPrefMiner ThePrefMinerapplicationwaspublishedontheGooglePlay IN-THE-WILDEVALUATION Storeandadvertisedthroughsocialmediaandotherchannels In this section we present an in-the-wild evaluation of in our University. We ran the study for the duration of 15 PrefMiner (see Figure 6), a mobile application that is able daysfollowedbyanexitquestionnaire(seeTable1). Over- learntheuser’spreferenceforreceivingdifferenttypesofno- all,18peopleparticipatedinthestudywithoutanymonetary tificationsandfilteringoutthenotificationsthatarenotuseful, incentive. However, oneuserdidnotansweranyquestions uninterestingandirrelevanttotheuser. aboutthesuggestedrulesandanotheruserdismissedallthe 45% 35 Accepted unt2350 Rejec7te7d% 73%73% 64% 50% 34% 20% Co20 50% ules 15 80%79% 75% 57% 47% 25% (a) R (b) 10 67% 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 User Figure7. UsersresponsetotherulessuggestedbythePrefMinerappli- cation. (a) (b) 60 %) (d) all (40 (c) ec R er Filt20 (c) (d) Figure6. PrefMinerapplication:(a)mainscreen,(b)self-rulecreation, 0 (c)activerules,(d)pendingrules. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 User Figure8.PerformanceofPrefMinerinfilteringnotifications. rules. Therefore,weconsideredonlytheremaining16users Question AverageResponse forevaluatingtheapplication. Q1.Ifoundtheappusefulforlearningmypref- 4.25 erencestofilternotifications. Tomaketheapplicationinterestingfortheusersweallowed Q2.Theappfilteredmostofthenotificationsthat 4.33 them to manually create their own rules. As shown in Fig- Ididn’twanttoreceive. ure6.b,amanualrulecanbecreatedbydefiningtheapplica- Q3.Theappincorrectlyfilterednotificationsthat 1.58 tion(selectedfromalistofinstalledapplications),keywords Iwantedtoreceive. andlocation. Inordertoensurethatthemanualrulesdonot Table1.Exitquestionnairewiththeaverageresponsefromusers. affectourexperimentwerestricttheusersfrommanuallycre- ate any rule during the period of the study (i.e., the first 15 Duringthestudytheapplicationalsocollectedthenotifications daysaftertheinstallationoftheapplication). Notethat,for thatarrivedontheuser’sphone. Ourresultsshowthateach privacyreasons,theuserhastogiveexplicitpermissionafter dayauserreceivesaround71notifications(withthestandard theinstallationasrequiredbytheAndroidoperatingsystemto deviation equal to 22 notifications). We compute the filter allowPrefMinertomanagenotifications. Moreover,toensure recallaspercentageoffilterednotificationsoverthesumof thattheuserisawareofdatacollection,theapplicationalso thenotificationsdismissedbytheusersandthefilteredones showsadetaileduserconsentform. (i.e.,allthenotificationsautomaticallyormanuallyfiltered). Theresultsshowthatthefilterrecallachievedbytheaccepted rules is 45.81%. More specifically, the average number of In-the-wildEvaluationResults notificationsthataresuccessfullyfilteredeverydayis12(with DuringthestudyPrefMinersuggested179rulestothepartic- thestandarddeviationequalto8). InFigure8weshowthe ipants out of which 102 rules (i.e., 56.98%) were accepted. filterrecallofeachuser. ForsomeusersPrefMinerisableto Figure7showsthecountforacceptedanddismissedrulesfor identifyaround60%ofthenotificationsthatusersdonotwant each user that are sorted according to their rule acceptance toreceive. Ontheotherhand,thefilterrecallforsomeusers percentage. Thegraphshowsthattherearesomeuserswho isfairlylow(approx. 20%). However,itisworthnotingthat acceptedmostoftherulesandsomewhoacceptedonlyafew thesystemisoptimizedforhighprecisionsothatitdoesnot rules. Overall,around70%oftheusersaccepted50%(and filteroutanyimportantnotifications. Moreover,foreachday above)ofthesuggestedrules. Inordertofindwhyandwhat onaverage7notificationsperuserareclassifiedasreminders. rulesweredismissedbyusersweanalyzedalldismissedrules. Ourresultsshowthatmostofthedismissedrulesareaboutthe ExitQuestionnaire “communication applications” including WhatsApp, Gmail Attheendofthe15-daystudy,theapplicationaskedusersto and Hangouts. The other most dominant app category for fillinanexitquestionnaire(showninTable1)thatcanbeused dismissedrulesis“systemapplications”includingBluetooth toquantifytheusefulnessandaccuracyofPrefMineraccord- Share,AndroidSystemandGooglePlayStore. ingtotheusers. Userswereallowedtoregistertheirresponse on a 5 point Likert scale (1:Strongly disagree - 5:Strongly 33]. Forexample,Pielotetal.[33]showthatusersconsider agree). Out of the 16 participants only 12 participants reg- notificationsfromcommunicationapplications(suchasmes- isteredtheirresponsetothequestionnaire. Table1liststhe sengersandemailclients)asimportant. Thesenotifications averageresponsetothethreequestionsprovidedbythepartici- are perceived as less annoying and are less likely to be dis- pants. Theresultsdemonstratethatusersfoundtheapplication missedcomparedtonotificationsfromotherapplications. Felt usefulforfilteringnotificationsandaccordingtothemitfil- etal.[17]foundthattheuser’sperceptiontowardsmobileno- teredmostoftheunwantednotificationscorrectly. tificationsvariesstrongly. Ifapplicationstriggernotifications thatarenotconsideredrelevant,userstendtogetannoyedand DISCUSSIONANDFUTUREWORK deletethem. Fischeretal.[19]showthatusers’receptivityis In this paper we have presented PrefMiner that learns the influencedbytheirgeneralinterestinthenotificationcontent, user’s preference and accordingly manages the subsequent entertainmentvalueperceivedinitandactionrequiredbyit, notifications. To the best of our knowledge, this is the first but not the time of delivery. Mehrotra et al. [25] show that studybasedonboththeanalysisofareal-worldnotification notificationscontainingimportantorusefulcontentareoften content along with context and the in-the-wild deployment accepted,despitethedisruptioncausedbythem. of a customizable notification system. We believe that our Atthesametime,paststudieshaveproposedinterruptibility approachformakingpredictiontechniquestransparenttothe managementmechanismsfordeliveringnotificationsatthein- users helps an interruptibility management system to build ferredopportunemomentsbyusingtheuser’scontext[22,21, users’trustsinceitreducestheriskofstoppinganyimportant 20,18,32,31,28]andthenotificationcontent[24].In[21]Ho notification. It still reduces the burden from users by stop- andIntillesuggestedthatthetransitionbetweentwophysical ping45.81%ofnotificationsthatarenotconsideredusefulor activities(suchassittingandwalking)canbeusedasoppor- importantand,thus,minimizestheperceiveddisruption. tunemomentsfordeliveringnotifications. Pielotetal.[31] However, the proposed interruptibility management mecha- proposedamodelthatcanpredictwhetherauserwillviewa nism has some minor limitations. Firstly, it does not focus notificationwithinafewminuteswithaprecisionofapproxi- ondeferringnotificationsatinopportunemoments. Instead,it mately81%.PejovicandMusolesi[28]proposedamechanism aimstostopunnecessarynotificationsfromalertingtheuser thatreliesonthecontextualinformation(includingactivity, andthusreducetheoveralldisruption. Asafutureplan,we locationandtimeofday)topredictopportunemomentsfor plantodesignandevaluateourmechanismforlearningthe deliveringnotifications. Mehrotraetal.[24]suggestedusing momentsatwhichnotificationsshouldbedeferredandforhow boththecontextualinformationandthenotificationcontent long. Secondly,ourmechanismisnotabletoaccuratelydetect formodelinginterruptibility. However,theauthorsassumed remindernotifications. Instead,itfindsonlytheapplications thatanapplicationtriggersonlyasingletypeofnotifications. forwhichallnotificationsaredismissedandlabelsthemas Instead, in this work, for the first time, we design an inter- reminderapplicationsandremindernotifications. Webelieve ruptibilitymanagementsystemthatclassifiesnotificationsinto thatifwecanaccuratelyidentifyandremoveallreminderno- different classes based on the information they contain and tifications,ourinterruptibilitymanagementmechanismwould learnstheuser’spreferencesforreceivingthetypesofinfor- beabletodiscovermoreaccuraterulesandthustheoverall mationindifferentsituations. accuracycanbeimproved. Thismightbebasedonthemanual annotationofcertaintypeofnotifications, suchasstandard CONCLUSIONS Androidbatterywarningmessages. Inthispaperwehavepresentedanovelsolutionforintelligent Anotherlimitationisthatwecouldnotinfertheuserresponse notificationmanagementbasedontheautomaticextractionof tonotificationsthatarehandledfromotherdevices. Thus,we rulesthatreflectuser’spreferences. Thegoaloftheproposed havetodiscardsuchnotifications. Webelievethatbybeing approachistomakenotificationsintelligibletousers. Wefirst able to detect the user response for such notifications, our evaluateourproposedmechanismwithalarge-scaledataset mechanismcanstartmakingstablepredictioninfewerdays ofnotificationscollectedduringaninterruptibilitystudy. Our andmightalsodiscoversomeinterestingrulesacrossdevices. resultsshowthatbyusingthenotificationtitleandtheuser’s Forthisreason,anotherextensionofthisstudyisthedesign location,wecanpredictifamessagewillbedismissedbya ofarule-basedmanagementsystemacrossdevices. userwithaveryhighprecision. Finally,thecurrentimplementationoftheMyPreflibrarycan WehavealsodiscussedthedesignofanopensourceAndroid only support mobile phones that are configured to use the libraryimplementingtheinterruptibilitymechanismandthe Englishlanguage. Thisisbecausethesephonesreceivethe implementationofthePrefMinerapplicationbuiltontopof notificationtitlesinEnglishandthecurrentimplementation it. Throughanin-the-wilddeployment,wehaveshownthat of our library could classify only the text in this language. PrefMinerrepresentsaveryeffective,yettransparent,solution We plan to evolve our library’s capability to support other forinterruptibilitymanagementformobiledevices. languagesinthefuture. ACKNOWLEDGEMENTS RELATEDWORK This work was supported through the EPSRC Grant The area of mobile interruptibility has received increasing “MACACO:Mobilecontext-AdaptiveCAchingforContent- attentioninthepastyears. Previousstudieshaveexploredvar- Centricnetworking”(EP/L018829/2). iousinterestingaspectsoftheproblem[8,11,10,14,25,30,

Description:
for Intelligent Mobile Notification Management. Abhinav Mehrotra. University of Birmingham. University College London. United Kingdom [email protected]. Robert Hendley. University of Birmingham. United Kingdom. [email protected]. Mirco Musolesi. University College London.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.