ebook img

Preferences for European agrarian landscapes PDF

13 Pages·2014·0.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Preferences for European agrarian landscapes

LandscapeandUrbanPlanning132(2014)89–101 ContentslistsavailableatScienceDirect Landscape and Urban Planning journal homepage: www.elsevier.com/locate/landurbplan Preferences for European agrarian landscapes: A meta-analysis of case studies BorisT.vanZanten∗,PeterH.Verburg,MarkJ.Koetse,PieterJ.H.vanBeukering InstituteforEnvironmentalStudies,VUUniversity,DeBoelelaan1087,1081HVAmsterdam,TheNetherlands h i g h l i g h t s • WecomparelandscapepreferencesacrossadiversesetofEuropeancasestudies. • Wefindgenericpreferencesforlivestock,mosaiclandandhistoricbuildings. • Preferencesforlandscapeattributesarerelatedtopopulationdensityandincome. a r t i c l e i n f o a b s t r a c t Articlehistory: StatedpreferencestudiesareincreasinglyemployedtoestimatethevalueofattributesofEuropeanagrar- Receiv ed8February2014 ianlan dscapesan dchang est herein.Desp itethevas ta mounto fca sestu die s,prefere nc esforland scape RAeccceepivteedd i2n 0 rAevuigsuedst f 2o0rm14 19 August 2014 attr ibutes are c onte xt speci fic, whic h inhibit s cr oss-c ase com pa rison and up -scaling. In t his study, we addressthisproblembyapplyingameta-analysisofstatedpreferencestudiesthatfocusonattributesof Europeanagrarianlandscapes(n=345).Themainobjectiveofthisstudyistoidentifygenericpreferences Keywords: forparticu lartype soflandsca pe a ttribu tes acros scasestu die s.In addit io n, landscap econte xtvariables Meta-analysis thatexplainpreferenceheterogeneitybetweendifferentcasesthataddresssimilarlandscapeattributes Landscapevalues areidentified.Wefindthatlandscapeattributesthatdescribemosaiclandcover,historicbuildingsorthe Landscapepreferences LLaannddssccaappee fveaalutuarteiosn prerleasteionnces boef tliwveesetnocpkr egfeenreenraclelys froercepiavret itchuel ahrigahttersitb suttaetsedan pdrecfoenretenxctesv aarciraobslse sca–sessu.c Fhuartshpeormpuolraeti, owned fiennd- Culturalec osystemservices sityandG DPperc apita–using am eta-regre ssionanal ysis. Theresu ltsofthe p resen ts tudyprovid ethe firstcross-disciplinaryandcross-caseevidenceonrelationsbetweenpreferencesforlandscapeattributes andsocio-economicandlandscapecontextconditions.Thestudyisafirststeptowardup-scalingofland- scapepreferencesandthedevelopmentsociallandscapeindicatorsthatreflecttheperceivedvalueof landscapesatregionalandpan-regionalscales,whichisincreasinglyimportantaslandscapepoliciesare progressivelyimplementedatEuropeanlevel. ©2014ElsevierB.V.Allrightsreserved. 1. Introduction various scientific disciplines have made contributions to the landscape preference literature. Many of these research efforts Agricultural landscapes provide multiple ecosystem services were driven by changes in landscapes due to processes such as besidetheproductionoffood,feedandfibers(VanZantenetal., intensification, scale enlargement and agricultural abandonment 2014). Amongst the most common services are recreation and (Howley,Hynes,&Donoghue,2012;Hunziker&Kienast,1999;Van tourism as well as cultural heritage and aesthetic functions, Berkel&Verburg,2014).Theseprocesseshavedrasticallychanged often summarized as cultural services (Chan et al., 2012; Daniel landscape structure and composition and, therefore, the visual et al., 2012). A common way to obtain insight into these cul- appearanceandqualityofmanypost-warEuropeanagrarianland- turalservicesistostudystatedlandscapepreferences.InEurope, scapes(Klijn,2004;VanderZanden,Levers,Verburg,&Kuemmerle, inreview). Landscape preferences have been addressed by numerous empirical studies. These studies have applied different method- ∗ Correspondingauthor.Tel.:+31205989556. ologies originating from different disciplines, among others E-mailaddresses:[email protected],[email protected] environmentalpsychology,landscapeecology,environmentaleco- ((BM.T.J.. vKaone tZsaen),tePnie)t, ePre.vtearn.v.beerubkuerrgi@[email protected] .(nPl.H(P. .VJ.Her.bvuarng)B, eMukarekri.knoge)[email protected] nomics and ge ography. D espite add ressing a similar prob lem, http://dx.doi.org/10.1016/j.landurbplan.2014.08.012 0169-2046/©2014ElsevierB.V.Allrightsreserved. 90 B.T.vanZantenetal./LandscapeandUrbanPlanning132(2014)89–101 methodologicalheterogeneityconstrainsthecomparisonofland- intheanalysisastheyinhibitquantitativemeta-analysesofcase scapepreferencesacrossempiricalstudiesand,therefore,inhibits studyresults. theadvancementofcross-caseevidence.Animportantconceptual Section2ofthispaperdescribesthemethodsthatwereapplied; distinctioncanbemadebetweenmonetaryandnon-monetaryval- section3describestheresultsofadescriptivecross-casecompar- uationoflandscapepreferences,wheremonetaryvaluationstudies ativeanalysisandameta-regressionanalysis;section4discusses presentbeneficiarieswithlandscapealternativesthatalsoinclude theresultsanddrawsconclusions. afinancialtradeoff,whilenon-monetarystudiesuserankingmeth- odstomeasurethelandscapepreferencesofrelevantbeneficiaries. 2. Methods Anotherimportantconceptualdistinctionbetweenempiricalpref- erencestudiesarisesfromdifferencesbetweenexpert-basedand 2.1. Overviewofmethodology stakeholder-based assessments of landscape quality. The former typeofstudiesregardlandscapequalitytobeanintrinsicattribute Thispaperusesmeta-analysistosynthesizefindingsofempiri- ofthelandscape,whereasthelattertyperegardslandscapequality callandscapepreferencestudiesinEurope.Meta-analysesofcase asasubjectivevaluethatisderivedthroughtheeyesofthebeholder studiesareappliedtoprovideahigherlevelofgeneralizationof (Lothian,1999;Tveit,2009). specificcasestudyknowledgeandaddressthescalesensitivityof Instakeholder-basedlandscapeassessments,researchershave causalmechanismsandeffects(Young,Lambin,&Alcock,2006). appliedbothcognitive(e.g.Sevenant&Antrop,2009)andphysi- Toconstructadatabasewithcomparativecases,thisstudyfollows callandscapeattributeapproaches(e.g.Arnberger&Eder,2011; themethodologicalrecommendationsformeta-analysesproposed Dachary-Bernard & Rambonilaza, 2012) to measure visual pre- by Rudel (2008). First, empirical studies were selected based on ferences for landscapes. Cognitive attributes, such as landscape a predefined set of criteria. Second, a typology of agricultural coherence, disturbance, and naturalness, often measure aspects landscapeattributeswasdesignedtoenablecross-casecompari- of landscape preference based on evolutionary theories that sonandfrequencyanalysisofsimilarattributes.Third,preference emerged in environmental psychology (Appleton, 1975; Kaplan scores for specific landscape attributes in the individual studies & Kaplan, 1989). This category of attributes does not address werenormalizedtoenablecross-casecomparisonofpreferences. preferences for a specific physical component of a landscape, Fourth, a number of potential explanatory variables were coded but provides a holistic assessment of landscape character (Tveit, foreachcase.Thedatabasewasanalyzedusingfrequencyanalysis, Ode, & Fry, 2006). Physical attributes address preferences for cross-casecomparisonofmeanpreferencesforspecificlandscape tangible and quantifiable landscape components, such as the attributes,andmeta-regressionanalysis. presence of hedges or a land cover type. Studies that address physical attributes often estimate a change in preferences as 2.2. Searchprotocolandselectioncriteria a result of (potential) landscape change. Hunziker and Kienast (1999), for example, examined stakeholder preferences for dif- Thisstudyanalyzedempiricalstudies(n=51;seeS1intheSup- ferent stages of afforestation in Switzerland. Campbell (2007) plementarymaterial)thatfocusonstatedlandscapepreferences estimated the economic value of landscape attributes, such as forasetoflandscapeattributes.Everypreferenceestimatefora hedgerows and stone walls in Ireland, using stated preferen- landscapeattributestatedbyadefinedgroupofbeneficiariesina ces. definedcasestudyareawastreatedasauniquecaseinthedatabase, Inadditiontotheirconceptualandmethodologicalheterogene- resultingin345cases.Thecasestudyareasinthedatabaserange ity,studiesthataddresspreferencesforlandscapeattributestend fromlocaltonationalscaleandallstudieswerepublishedbetween to be context specific and thus lack external validity (Bateman, 1993and2013.Thestudieswereretrievedbykeywordsearchusing Day, Georgiou, & Lake, 2006). Local case studies are valuable to thesearchenginesISIwebofScience,ScopusandGoogleScholar. gainunderstandingonlocalcausalmechanisms(i.e.howdoesone’s Searchstringswere:(ruralORagricultural)ANDlandscapeAND(pre- occupationasafarmeraffectone’slandscapepreferences?),butthe ferencesORvaluation).Inaddition,snowballsearchwasappliedto strengthandmagnitudeofcausaleffectscoulddifferfromplaceto selectedstudies. place(Gerring,2007;Rudel,2008).Asaresult,ithasbeenproven Theselectioncriteriaforempiricalstudieswerethefollowing: difficult to upscale locally measured landscape preferences and (1) studies measured landscape preferences for particular visual tousethesepreferenceestimatesfordevelopingsociallandscape attributesoflandscapes;(2)beneficiarieswhostatedthepreferen- indicatorsoftheperceivedvalueoflandscapestosupportlandscape cesweredefined;(3)casestudiesaddressedlandscapepreferences planningonregionalorpan-regionalscales(Paracchini&Capitani, inagrarianlandscapes;(4)studieswereconductedinEurope.The 2011). searchprotocolandselectionprocedureofthismeta-analysiswere Toaddressthisproblem,thispaperaimstoreviewthefindings performedinaccordancetothePreferredReportingItemsforSys- of existing empirical stated landscape preference studies and to tematic Reviews and Meta-Analyses protocol (PRISMA; checklist examineiftherearegenericpreferencesacrossEuropeforpartic- seeS2oftheSI). ulartypesoflandscapeattributes.Statedpreferencestudiesassess thegeneralpublic’spreferencesbyaskingrespondentstorank,rate 2.3. Landscapeattributetypology orstateawillingnesstopayforanenvironmentalgoodorservice; contrastingtorevealedpreferencestudiesthatderiveenvironmen- Toenablecross-casecomparisonofpreferencesforlandscape talqualitypreferencesfromobservedbehavior.Weaimtoanalyze attributes,aclassificationoftheattributesusedinthedifferentcase and interpret preference heterogeneity between different con- studiesintogenericcategoriesisrequired.Asthereisagreatdiver- textsbyincorporatingspatiallyexplicitsocio-economicandland sityinEuropeanagriculturallandscapes,thereisalsoawidevariety use/landcoverrelatedproxyvariablesinameta-regressionanaly- ofdifferentattributesthatpotentiallycontributetothequalityand sis.Toenableacomparisonofpreferenceestimatesacrosscases,we valueoftheselandscapes(Gobster,Nassauer,Daniel,&Fry,2007). havecollectedalargesetofcasestudiesthatmeasurestakeholder’s Thetypesoflandscapeattributesthatareaddressedintheempir- landscape preferences for physical landscape attributes. We use icalstudiesdependontheobjectivesofthestudy,theperspective thissubsetofthestatedlandscapepreferenceliteraturetoconduct oftheresearcherandtheresearchdesign.Inmanystudies,expert ourmeta-analysis.Hence,holisticlandscapecharacterassessments knowledgeorfocusgroupsareusedtoidentifythemostimpor- andexpertevaluationsoflandscapepreferencesarenotincluded tantlandscapeattributesthatcontributetothequalityorthevalue B.T.vanZantenetal./LandscapeandUrbanPlanning132(2014)89–101 91 of the landscape (Howley et al., 2012; Moran, McVittie, Allcroft, Toenablethecomparisonoflandscapepreferencesacrosscase &Elston,2007).Otherstudiesrelatecognitiveattributestophys- studiesandtesttherobustnessoftheresults,preferencescoresare icallandscapeattributes(e.g.landcoverdiversityorcomplexity) normalizedinthreedifferentways. orusemetricsoflandscapestructureandcomposition(Ode,Fry, Tveit,Messager,&Miller,2009;Ode,Tveit,&Fry,2008). 2.4.1. Preferencedirection(positive-neutral-negative) In this analysis, we distinguish four groups of landscape Thisnormalizationmethodassessesthepreferencedirectionof attributes (Fig. 1). First we distinguish a group of attributes that beneficiariesforaparticularlandscapeattribute.Allcases,except describe direct anthropogenic influences in agrarian landscapes, thoseapplyingalatentclasschoicemodel,arenormalizedonthis mainly encompassing visual agricultural management practices qualitativescale.Forstudiesthatelicitedpreferencesusingthe% such as irrigation, farm stewardship, presence of livestock and respondent choice method, preference rating or economic valu- sustainable field margins. The second and third group consist ation,preferencescoresforattributeswereranked.Forinstance, of attributes that describe landscape structure and composition, whenastudyyieldsascoreof5forhedges,2forpresenceoflivestock which are often regarded as a result of both anthropogenic and and1formixedforests,therankingwillbe(1)hedges,(2)presence (bioticandabiotic)biophysicalprocesses(Mücher,Klijn,Wascher, oflivestockand(3)mixedforests.Inthiscase,hedgesareconsidered &Schaminée,2010).Landscapeattributesreferringtolandcover positive,presenceoflivestockneutralandmixedforestnegative.For patternsandcroptypesarecategorizedaslandcovercomposition; thesestudies,thepreferencedirectionreflectsrelativepreferences landscapeattributesreferringtospecificelementsthataffectthe fortheattributesinthestudy. spatial structure of agrarian landscapes such as hedgerows, tree Thenormalizationmethoddescribedaboveisonlyappliedto lines, ditches or historic buildings, are categorized as landscape case studies that yield preferences for at least three attributes. elements. The fourth group consists of attributes that describe Withrespecttocasestudiesthataddresslessthanthreeattributes visual aspects of biophysical features of landscapes, i.e. pres- and case studies that provide qualitative preference scores, the ence of water in a landscape, hills or mountains. This first level preference direction of landscape attributes is derived from the of landscape attribute grouping enables a comparison of the interpretationsoftheauthorsoftheparticularcasestudy. observedlandscapeattributesintheprimarystudiesonanominal level. 2.4.2. Normalized-ranktransformation Thesecondleveloflandscapeattributetypologybreaksdown This normalization method provides a normalized preference the first level attribute groups into more refined categories scorebasedontherankoftheattribute.Allcaseswithpreference (for a detailed description of the landscape attribute typol- scoresexpressedatordinal,intervalorratiolevelswereconverted ogy see S3 of the SI). This level enables the comparison of torankings.Caseswererankedbytheirrelativepreferencewithin landscape preferences between attributes at ordinal or inter- thecasestudy.Inanidealsituation,allcasestudieswouldconsist val level. The second level typology is designed by an iterative ofthesameamountofattributesandtheranksofattributeswould coding routine, adapting and adjusting the classification and bedirectlycomparableacrosscasestudies.However,somestudies research design to interpretations and preliminary results from includeeightattributes,whereasotherstudiesincludeonlyone. a small subset (n=40) of the database as proposed by Rudel Therefore,thecasesaretransformedtoanormalizedrank(0–1), (2008). using: Somestudiesincludeanumberofattributesthatcannotbecate- gorizedineitherthefirstorthesecondlevelattributetypology(e.g. (r−1) K&aOltlesnebn o,r2n 0 1&0 B).jeS rukceh , 2cl0a0s 2si; fi Mcaot riaonn eptr oa lb.,l e2m0 0s7a;r Wiseesetie thrbeerrfgr,o Lmif rtahne, rnorm= 1 −(R − 1), (1) fa ctthat notalla ttrib utesinthestu dyreferto lands capec harac ter- whererrepresentstherankoftheattributewithinthecasestudies, istic sdir ectl y( e.g.public pr efer ences forth e promotion oflocally Rthel o westrank (and the ref ore thenum berofa ttri bute sinthe grow nfood,M oran etal., 2007),orthe yoc cur whenthep ref erence ca se s tudy) a nd rn orm t he normal ized rank. Fo r instance, w he n a thatis meas uredca nn ot beassi gn edto onea ttribu tet ypespecif- stud yyields asc oreof5fo rhedges,2 forpre sen ceoflivest ockan d icall y( forexamp le‘summ er farm,log b uildi ngs,moun tains inthe 1for mixed fo rests,t he r ank ingwill b e(1 )hedges ,(2 )presenc eof backg roun d’,Kalte nborn&B jerke ,20 02).Inthe formercas e, the liv est ockand (3)mix edf orests.In this cas e,h edgesre ceiv eascore of particularlan dscapeattri bu tesare leftout of the databa se;in the 0,presen ceo fliv estock ascore of 0.5 andm ixedfo restas co reof 1. lattercase landscape attributes are inc lude d int hedatabas e, but Th isnorma liz ationme th odis on lya pplic ablet ocase s tudies th at marke das uncategori zed. prov idepreference estimate sf orat leastthree at tribu tes. 2.4.3. Min–maxnormalization 2.4. Normalizationofthedependentvariable Th is normali zation method provides a normalized preference score based on the continuous preference score of the attribute Landscape preferences are measured using a wide variety of (for o ther a ppl icati ons of min –max norm alizat ion see : Stürck, methods.Asa result,thede pen dentvaria bleise xp resse dindiffe r- Poo rtinga, &Verburg,20 14 ;Tian,Bai, Sun,&Zhao,20 13).A llcases entunits thr ou ghout the casestudie s.Econo m icvaluatio ns tudies thatexpre ss landscap eprefe renc esby aW T Pestim ateor by pref- pro videa nestimateo fwi lling nesstop ay(WTP)i nmoneta ryunits eren cerating aresubje ctedtoamin –m a xnor malizatio nt oa ssess for land sca pe attrib ut es. In lands ca pe r esearch , preference s for therela tivepr efe renceofth ep a rticularlan dscapeattribu te within lan dscapeattr ibutesarege ne rallyexpres sedusing apreference rat- the casestu dy.Inthec as eof min–max normaliza tion,all prefer- ing(forex ampleona 5p ointLike rt-scale),a prefe re ncerankin gor enc esco resare as sum edto b eatcontin uousscale.Inc on trastto by inter preting p os it iv e or n egative corre la tions betw een stat ed then ormali zed ranktran sfo rm atio n,min–ma xnorm al izational so pre ferencesand thepres enc eofalan dscapeattrib ute.Inad dition, acco untsforthe relat ivedifferencesb etweenth epreferencesc ores some studie s ex pre ss prefere nc e s as the p ercentage of respon- withinth eca ses tudy.Th eexpressio nforthe nor malization proce- dents that ch ose the landscape at trib ute as the mos t p referred dureis give nby : attrib ute (f rom h ere o n referred to as % r esp ond ent ch oice) (e.g. Blimarorons, o1, 9 P9i9n)to-C orrei a, R amos, Su ro vá, & Menezes, 20 12; Gom ez- snorm= (sm(sa −x −sm simn)in), (2) 92 B.T.vanZantenetal./LandscapeandUrbanPlanning132(2014)89–101 All Cases 1st Level Agricultural Land Cover Landscape Biophysical Management Composition Elements Features 2nd Level Intensive agricPurletsuerence of livestock Farm stewardshDioFpi emlidn anmcaer gaignris cultural LDC ominMaonscaie cf oLrC estG/rneaetn ulrialn eLaC r eleGrmeeyn ltis near elementHs istoric buildings Point elePrmeesnetns ce of water Hills/mountains Fig.1. Overviewofthetypologyoflandscapeattributes. wheresrepresentstheinitialpreferencescoreandsnormthenor- members,especiallywhencombinedwithahighlevelofeducation, malized preference score. For instance, a study yields a score of have a relatively strong preference for more ecological compen- 5forhedges,2forpresenceoflivestockand1formixedforests.In sation areas (e.g. sustainable field margins) in Swiss agrarian thiscase,thenormalizedpreferencescoreforhedgesis1,presence landscapes.Otherstudieshavecapturedenvironmentalattitudes oflivestockis0.25andmixedforestis0.Similartotheprocedure usingindicatorssuchastheecologicalparadigmscore(Sevenant in the normalized rank transformation, only case studies with a &Antrop,2010)orbydistinguishingbetweenanthropocentricand minimumofthreeattributesareincludedinthemin–maxnormal- ecocentric beneficiaries (Kaltenborn & Bjerke, 2002). Kaltenborn izationsample. andBjerke(2002)findastrongrelationbetweenecocentricbene- ficiariesandpreferencesforwildlands,whereasanthropocentrists 2.5. Explanatoryvariablesintheempiricalstudies expressarelativelystrongpreferenceforfarmlandscapes. The most common type of explanatory variables addressed refers to characteristics of beneficiaries. Especially studies that 2.5.3. Familiaritywiththelandscape focusontheimplicationsoflandscapepreferencesforplanningand Characteristicsthatdescribefamiliaritywiththelandscapeand policypayattentiontotheheterogeneityofpreferencesbetween sense of place of the beneficiary are examined by a number of beneficiarygroups(Rogge,Nevens,&Gulinck,2007).Belowwedis- empiricalstudies.Soini,Vaarala,andPouta(2012)analyzebenefici- cussthemostimportantfindingsfromtheliteraturethatunderlie aries’senseofplaceinrelationtotheirstatedlandscapepreferences theformulationofhypothesisonwhichtheselectionofvariables usingafactoranalysisinaFinnishcasestudy.Localbeneficiaries forouranalysisisbased. withtiestotheagriculturalsectorstatedarelativelylowpreference for naturalness and high adaptability toward landscape change, 2.5.1. Socio-economicanddemographiccharacteristics whilebeneficiarieslessfamiliarwiththelandscaperegardedthe General socio-economic and demographic explanatory vari- landscapemoreasastaticentityandweremorereluctanttoward ables, such as income, gender, level of education and age, are landscape changes (Soini et al., 2012). Some studies find signifi- addressedinmostoftheempiricalstudies.SevenantandAntrop cant relations of preferences with the familiarity of a landscape (2010)findastatisticallysignificantrelationshipbetweenageand by including the frequency of visits and recreational activities preferences for Flemish agrarian landscapes. In their latent class as a dummy variable in a regression model (Dachary-Bernard & analysis,olderpeople(70–80years)haverelativelystrongprefer- Rambonilaza, 2012; Sayadi, González-Roa, & Calatrava-Requena, ences for stewardship and restricted urbanization. Van den Berg 2009). In a choice experiment study, Hasund et al. (2011) find a andKoole(2006)findsimilarresults,indicatingarelativelystrong significantpositiverelationbetweenfamiliaritywithalandscape preferenceformanagedlandscapesofrespondentsolderthan50. element (stonewalls, headlands, and ponds) and preferences for Variousstudiesincludegenderintheiranalyses,butoftennosta- thisparticularlandscapeelement. tisticallysignificantresultsarefound(Howleyetal.,2012;Junge, Lindemann-Matthies,Hunziker,&Schüpbach,2011;VandenBerg &Koole,2006).Theeffectsofincomehavebeentestedespecially in econo mic va luat ion stu die s; the t heore tical expect ation that 2.5.4. Residentiallocation in comeandW TPestim atescorre late positivelyi softenconfir med Re sidential lo cation (e.g. visitors versus local residents, rural (e.g. Ca mpb ell, 2 007). Hig hly educ ated bene fic iaries generally versusurbanre sidents, distan cetoare a)isth emos tdominant vari- expr essastrong erprefe renceth anlowere ducatedbenefi ciariesfor ablead dresse dintheca sestudi es (e.g.B ar ros oeta l.,2012;So liva, multifun c tionality ,ecological resto ration andwild ernessofagr ar- Bolli ger,&Hun zik er,2 010 ).Reside ntia llocation is oft enrel atedto ianlandscapes(How leyetal., 2012;Linde man n-Matthies ,Ju nge,& the way p eople use landsca pes: in ma ny cases re crean ts do n ot Ma tthies,2010 ;Vanden B erg &Koo le,2006). resi dein thelan dsca peofintere st, where asloc alresident so ften do not us e th e landscap e for recre ation. Typ ologi es of the bene- 2.5.2. Environmentalattitude ficiaries are often based on residential location (Hunziker et al., Th e beneficiaries ’ environmental attitudes often strongly 2008; R amb onilaz a & Da cha ry-Bernard , 2007). R ambonilaz a a nd affect p references for landscape attrib utes. A nu mber of studies Dacha ry-Bernard(2 00 7),forexample,fin dina Bretoncasest udy addre ss the influe nce of membe rship of an e nvironm ent al non- that residents ha ve a str ong er prefere nce for h edgero w re stora- governm ent alorganiza tio n(Jungeetal .,2 011 ;Liekensetal.,2 013; tion, whiletou rists pr eferthei ntegrationo ffa rmbuildin gsinthe Sevenant&An trop,2010).Ju ngeet al .(20 11)fin dthato rg ani zation lands cape. B.T.vanZantenetal./LandscapeandUrbanPlanning132(2014)89–101 93 2.5.5. Othercharacteristics landcoverattributes,whereastheyareexpectedtobepositively Anumberofotherbeneficiarycharacteristicsareaddressedby related to preference scores for the dominance forest/nature land someofthecasestudies.Severalstudiescomparepreferencesof coverattributes. landscapeprofessionalstopreferencesofarepresentativelocalor The share of agricultural land cover in the case study area is regionalsample,inordertotesttheimpactofexpertknowledge expected to be negatively related to landscape preferences for (Roggeetal.,2007;Tveit,2009).Othercasestudiestesttheeffects landscapesdominatedbyagriculturallandcover.Thishypothesis of the relation of beneficiaries to farming (e.g. farming relatives, is based on an expected scarcity effect, i.e. in less favored areas employedintheagriculturalsector)(Sayadietal.,2009),language where large scale intensification is a rare phenomenon, agricul- group(Solivaetal.,2010),householdsize(Kallas,Gómez-Limón,& turallandcoverisoftenperceivedasapositiveattribute(Sayadi Arriaza,2007;Sayadietal.,2009),andsocialclass(Howley,2011; et al., 2009; Willis & Garrod, 1993). An inverse scarcity effect is Moranetal.,2007). expectedfortheshareofforestlandcover,whichwehypothesize tobenegativelyrelatedtopreferencesforforest/naturelandcover 2.6. Meta-regressionanalysis:Preferencesforlandcover attributes. compositionattributes Various case studies in our database explicitly address the consequences of abandonment on stated preferences for land- Two groups of explanatory variables are used in the meta- scapechanges(Arnberger&Eder,2011;Gomez-limon,1999).We regressionanalyses:thefirstgroupisderivedfromthecasestudy hypothesizethatcasesthatexplicitlyaddressabandonmentyield descriptionsdirectly,whilethesecondgroupofvariablesisderived relativelylowstatedpreferencescoresforlandscapesdominated fromindependentspatialdatasetsusingthelocationsofthecase byforestornaturallandcovers.Abandonmentcaseswereidentified studyareas,followingmethodsproposedbyVanAsselen,Verburg, as those studies where abandonment as a concept was explic- Vermaat,andJanse(2013)andBranderetal.(2012).Thefirstgroup itly mentioned in the paper; acknowledging that this may still includesbothvariablesthatrelatetothecharacteristicsofthebene- cover a range of different abandonment types and stages. We ficiariesthathavestatedtheirpreferencesandtothemethodsused exploredtherelationwithotherpotentiallyimportantspatialfac- inthecasestudy(seecodebook,S4oftheSI).Thesecondgroupof tors,suchasaccessibility,shareofprotectedareasandagricultural explanatoryvariableswasextractedthroughspatialanalysisbased land use intensity (Ode et al., 2009; Swanwick & Hanley, 2007), onthegeographiclocationsofthecasestudyareas(centroidpoint buteitherwefoundastrongmulticollinearitywithotherexplana- ofthearea).Withrespecttolocal/landscapescalecases,thecase toryvariablesorwefoundthattherewasnoeffectonlandscape studyareawasassumedtobelocatedwithina10kmradiusaround preferences. the centroid and mean values for this area were extracted from spatialdatasets.Withrespecttonationalscalecases,explanatory 2.6.2. Meta-regressions variableswereobtainedfromnationaldatasets.Forthecomplete As a result of sample size constraints we can only perform a listofdatasourcesfortheexplanatorycontextvariablesseeS5of meta-regression analysis for those cases that address land cover theS.I. compositionattributes.Weapplyaweightedleastsquaresregres- sion analysis in which cases are weighted by the inverse of root 2.6.1. Researchhypotheses samplesize,whichiscommonpracticeinmeta-analysesinenvi- Theexplanatoryvariablesareincludedinthemeta-regression ronmentaleconomics(Nelson&Kennedy,2008). analysesbasedonasetofaprioriexpectationsderivedfromliter- We estimate two different regression models. The first ature,whicharetranslatedintoresearchhypotheses.Thefirstset meta-regressionisappliedtoallcasesthataddresslandcovercom- ofhypotheses(1.aand1.binTable1)referstothefirstresearch positionattributes.Explanatoryvariablesinthismeta-regression question: are there generic preferences for particular landscape are, among others, the second level attribute type dummy vari- attributes?Basedonlandscapepreferencetheory(Appleton,1975; ables(e.g.dominanceagriculturallandcover,dominancemosaicland Kaplan & Kaplan, 1989) and several case studies providing local coverordominanceforest/naturallandcover).Thisregressiontests empiricalevidence(e.g.Howley,2011;Hunzikeretal.,2008;Ode hypotheses1.aand1b.Thesecondtypeofmeta-regressionmodel et al., 2009; Vecchiato & Tempesta, 2013), we hypothesize that testshypotheses2.ato2.d.Thistypeofmeta-regressionisapplied landscapes dominated by a mosaic of land covers are most pre- tothesubsetofdominanceagriculturallandcoverandthesubset ferredacrosscasestudies.Buildingonlocalempiricalevidencewe ofdominanceforest/naturelandcoverattributes. expect that generally landscapes dominated by forest or natural Inadditiontotheexplanatoryvariablesdescribedearlierinthis landcoversreceivehigherrelativepreferencesthanthosedomi- section,wecontrolfortheeffectsofthenumberofattributesin natedbyagriculturallandcover(García-Llorenteetal.,2012;Van thecasestudyandfordifferencesbetweeneconomicvaluationand Berkel&Verburg,2014). non-economicvaluationstudies.Economicvaluationstudiesmight The second set of hypotheses (2.a to 2.d in Table 1) refers to finddifferentpreferencescoresbecauseinthesestudiesrespon- thesecondresearchquestion:whichvariablesexplainpreference dentsareforcedtomakeafinancialtradeoff,therebyplacingthe heterogeneityforparticularlandscapeattributesacrosscasestud- landscape preferences in a fundamentally different context. We ies?Basedontheliteraturereviewed,wehypothesizethatregional controlforthenumberofattributesbecausethenormalizedpref- beneficiarieshaveastrongerpreferenceforlandscapesdominated erencescoreswereobtainedbasedontherelativepreferencefor byagriculturallandcover,whereasnon-regionalbeneficiariespre- thatparticularattributewithinthecasestudy.Therefore,normal- ferlandscapesdominatedbyforestsornaturallandcovers(Soini izedpreferencescoresmaybeaffectedbythenumberofattributes etal.,2012;Solivaetal.,2010). inthecasestudy. Preferencesforlandscapesthataredominatedbyforestsornat- To test the robustness of the results, all meta-regression urallandcoversareexpectedtobehighinrichperi-urban/green models were estimated with both min–max normalized scores belt areas, while they are expected to be low in sparsely popu- and normalized-rank preference scores. Variance inflation fac- latedruralareaswithlowerincomelevelsandthateconomically tors(VIFs)weremonitoredtoavoidmulticollinearityamongthe depend on agricultural production (Buijs, Pedroli, & Luginbühl, explanatoryvariables.Giventhesmallsamplesizeofourdataset, 2006; UK National Ecosystem Assessment, 2011; Zasada, 2011). explanatoryvariableswithaVIFvalueabove3wereexcludedfrom Hence,wehypothesizethatGDPandpopulationdensityareneg- theanalysis.AllowingexplanatoryvariableswithhigherVIFswould ativelyrelatedtopreferencescoresforthedominanceagricultural furtherinflatethevarianceofthecoefficients,whichcouldcause 94 B.T.vanZantenetal./LandscapeandUrbanPlanning132(2014)89–101 Table1 Hypothesesderivedfromliteraturereviewwithregardtogenericpreferencesforlandscapeattributetypes(1.aand1.b)andvariablesthatpotentiallyexplainvariancesin statedpreferencesforlandscapeattributes(2.a–2.d). Hypothesisno. Description Reference 1.a Mosaiclandcoverattributesreceivehigherpreferencescoresthan Howley(2011),KaplanandKaplan(1989),Odeetal.(2009) dominanceagriculturallandcoverordominanceforest/natureland coverattributes 1.b Dominanceforestnaturelandcoverattributesreceivehigher García-Llorenteetal.(2012),VanBerkelandVerburg(2014) preferencescoresthandominanceagriculturallandcoverattributes 2.a Regionalbeneficiariesstatehigherpreferencesfordominance E.g.Soinietal.(2012),Solivaetal.(2010) agriculturallandcoverandlowerpreferencesfordominance forest/naturelandcoverattributesthannon-regionalbeneficiaries 2.b GDPpercapitaandpopulationdensityarenegativelyrelatedto Buijsetal.(2006),UKNationalEcosystemAssessment(2011),Zasada(2011) preferencescoresfordominanceagriculturallandcoverattributes andpositivelyrelatedtopreferencescoresfordominance forest/naturelandcoverattributes 2.c The%agriculturallandcoverinalandscapeisnegativelyrelatedto Sayadietal.(2009),WillisandGarrod(1993) preferencescoresfordominanceagriculturallandcoverattributes; the%forestlandcoverinalandscapeisnegativelyrelatedto preferencescoresfordominanceforest/naturelandcoverattributes 2.d Inabandonmentstudies,dominanceforest/naturelandcover ArnbergerandEder(2011),Gomez-limon(1999) attributesreceivelowerpreferencescoresanddominance agriculturallandcoverattributesreceivehigherpreferencescores that coefficients lose statistical significance (Wooldridge, 2009). the landscape of interest. A smaller number of cases focused on In addition to the full models presented and discussed in this tourists(n=33),students(n=19)andfarmers(n=17).Onlyafew paper—backwardstepwiseregressionwascarriedouttoassessthe casesaddressedexpertsorpoliticians(n=6),secondhomeowners stabilityoftheeffectsoftheexplanatoryvariables.Resultsfromthe (n=2)andhunters(n=2). twoapproachesaresimilar,unlessdiscussedotherwiseinSection Inmostofthecasesinthedatabase,preferencesforlandscape 3.3. attributesaremeasuredusingapreferencerating(n=143;Fig.4B). For 88 cases a choice modeling methodology with a payment 3. Results vehicle was applied. In 12 other cases a non-monetary latent class ch oice model w as app lied to ident ify classes of bene ficiar- 3.1. Descriptionofthedatabase ies that explain stated preference heterogeneity. Other methods rep resen tedint hesam pleare:mu lti-attributeco ntinge ntvalua- Fig. 2 shows the geographic location of case study areas in tion(n=35),%respondentchoice(n=30),linearmodel/regression Europe a nd the year of publicat ion of th e c ases. Easter n Euro pe (n=1 5) , and co rrelation/An ova(n =8 ). isunderrepresentedinthedatabasebecausetherewerenocases foundinpost-socialistcountriesthatmatchedthesearchcriteria. ManyempiricalstudiesinthedatabaseoriginatefromGreatBritain 3.2. Descriptiveanalysisofpreferencesforlandscapeattributes orSw itzerland, butalso Ir elan d,Norwa yandSpa inar ewell repre- sented.Insomecountries,suchasIrelandandSwitzerland,many Fig. 5 provides an overview of the mean values and distri- studies w ere aim ed at me asuri ng prefere nces for agrarian land- butions o f the nor ma lized land sca pe p refere nces sc ores of the scapeso nana tional sca le,identifyi ng,forinstan ce, preferenc esfor casesfo rth ese condlevella ndscapeatt ributetypes, showin gb oth Irishag rar ia nlandsc apesi ngeneral.F urth ermore, Fig.2shows an min–m ax no rmaliza tionv aluesand normaliz ed-ran ktransfo rma- expo nentialg rowthofpu bl ishedcas esoverthela sttw o decad es. tionvalue s.Thepreferen cedirec tion tablesdisplayco untsofcases Thedatabas econsist so f345case s. that arecat egor izedaspos itive,neut ralor negative .Thea ttr ibute A ll cases in the d ata base were categorized in accordance to type s po int elements , in tensive a gricultu re, farm stew ard ship, and the fir st lev el of t he typolo gy of landscape a ttr ibutes (Fig. 1). fieldm argin scontain lessthan 10cases.Fo rthes eattributet ypes Fig. 3 sh ows th e num ber of cas es per attribu te type. Th e larg est prefe rence sc ores are sho wn p er individ ual score instead o f in a cate go ry – 1 70 c ases – c on tains l and scape attr ibute s rel ated to boxplot. land cover composition. Agricultural management practices were Thenormalizedmeanpreferencescoresarehighestformosaic addr essed in 41 cases, whereas 66 cases addres sed prefer ences landco ver,historicb uildin gsandprese nceofl ives tock(Fig .5) ,which for landsca pe ele ments. Cases th at f ocus o n landscap e attributes confi rms h ypothe sis 1.a. F or m ost attri bu te types , the no rmal- des cribingbio physicalfe atures oflan dscap esa rerelativel ysparsein izedpref erencescore s–m in– maxn ormalizat ionan dno rmalized thedataba se(n=13).T helarge st classofattr ibu tesinthefi rstlev el rank transforma tion– sh owsimila rresults.Thep refer encedirec- of t he typolo gy , land cov er comp ositio n, consists o f 5 6 c ases that tion, however, indic a tes sli ghtly d ifferent resu lts and re quires ad dres s preferen ces for do minance fore st land co ve r/na tural land a dif ferent inte rpretation as com pared to the nor maliz ed pref- coverat tributes,i.e.c ase sthatrefer toland scape swherefores tand e rence sco res. While the no rmalized s co res represent re lative natur allandcove rty pesa redo mina nt; 41casest hatad dress pre- prefere nces fo r a par ticu lar landscap e attrib ute within a case ference sfor mosai cland cov erattribut es; anda cate goryofc ases study, the p refe re nce directio n describe s whether the lan ds cape that add ress es pref erenc es for dominanc e agr ic ultural la nd cover attribu te i s interpret ed as pos itive, neu tral or n ega tive. With attri butes(n=6 6). respect t o d ominance fo res t/natural l and cov er, four cases from Fig. 4A di sp lays the count of the different beneficiary groups studies wi th less than three attribu tes o btained a po sitive pref- that ar e a ddressed by the c ase stu dies in t he database . Most erence (i.e. these case s did not obtai n a trans fo rmed-ran k or stud iesf ocusedond raw ing arep resentat ive nati onal(n=1 04)or min–m ax n ormali zed sc ore) . Th e same e ffect is observed for regiona l (n=77) sa mple of la ndscape benefi ciaries. S ev en ty tw o preferenc e scores case s for fa rm st ewards hip an d g rey linear ele- casesfoc use d on prefere nce sfromloca lpopulations livingw ithin ments. B.T.vanZantenetal./LandscapeandUrbanPlanning132(2014)89–101 95 Fig.2. anoverviewofthegeographiclocationyearofpublicationofthecasesinthismeta-analysis.(A)Showslandscape-andnationalscalecasestudyareasonthemapof Europe.Onenationalorlandscapescaledotreferstoonecasestudyarea.Oftenmultiplestudiesandcasesoriginatefromonecasestudyarea.Inset(B)revealstheincrease inthenumberofempiricallandscapepreferencestudiesduringtheperiod1990-presentand(C)showsthenumberofcasesandstudiespercountry. 180 160 170 140 120 100 80 60 66 40 20 41 0 13 agricultural land cover landscape biophysical management composition elements features 1st Level 2nd Level Agricultural management Land cover composition 7 Landscape elements 4 ipnrte e snesnivce e aogf rliivce uslttuorcek 9 3 6 lddaoonmmd iicnnoaavnneccree magoriscauicltural 56 66 ggrree ey nli nlienaera er leelmemenetnsts 6 19 farm stewardship land cover historic buildings 14 dominance fore st/nat ural point elements 27 9 land cover 10 other agricultural other land cover 41 other landscape element mana gem ent at tr ibutes composi tion at tr ibutes at tr ibutes Fig.3. Thenumberofcasesperlandscapeattribute-type.Thebarchartshowsthecountofthefirstleveloftheattributetypology.Fiftyfivecasesinthedatabasedidnotfit eitheroftheattributetypesandwereleftoutoftheanalysis.Thepiechartsshowthecountofthesecondleveloftheattributetypologyforthelargesttypes. 96 B.T.vanZantenetal./LandscapeandUrbanPlanning132(2014)89–101 A) B) 120 160 140 100 120 80 100 60 80 60 40 40 20 20 0 0 Repres. natioRnealpres. regiLooncalal population Tourists Students FaErxmpeerrsts/politi2cinad nshome owners Hunters Preference raCtihnoigce experimMeulntti-attri% bruetse pCoVndenLitsn ecahr oicmeodel/regressioLnatent claCsos rrCeElation/anova Other Fig.4. (A)Countofdifferentbeneficiarygroupsthatwereaddressedand(B)countofdifferentmethodsthatwereappliedinthecases. Agricultural management Land cover composition Landscape elements 1.00 1.00 1.00 .80 12 .80 29 29 .80 24 24 e 12 or .60 .60 51 .60 c s d e 61 51 aliz .40 .40 61 .40 m r no .20 .20 .20 17 17 .00 .00 .00 reference direction ++-/- 312 1130 313 261 ++-/- 122529 21550 211348 ++-/- 1720 334 1458 402 pattribute type inteangrsiicvue lture preselinvcees tofo ck farm stewardship ominancle aangd riccouvlterural mloasnaid ccoverminancel faonrde sct/ovneartural greene llienmeearntsgrey linear elementshistoric buildingpsoint elements d o d Fig.5. Normalizedpreferencesforlandscapeattributes.Thegreyboxplotsshowmin–maxnormalizedscores;blackboxplotsshowpreferencescoresobtainedthrough normalized-ranktransformation.Whitebarsintheboxplotsindicatemeanpreferencescore.Thenumbersintheboxplotsrefertothenumberofcases.Forattributetypes thatconsistoflessthan10cases,normalizedscoresofthecasesaredisplayedindividually. Table2 Estimatedcoefficientsforthemeta-regressionsincludingallcasesthataddresspreferencesforlandcovercompositionattributes.Thedependentvariableislandscape preferencescore,obtainedviamin–maxnormalizationandnormalized-ranktransformation. Variable Min–maxnormalization Normalized-ranktransformation Standardizedcoefficient pValue Standardizedcoefficient pValue Mosaiclandcover 0.44*** 0.000 0.45*** 0.000 Domina ncef orest/ naturallandcover 0.21** 0.017 0.19** 0.031 Linearelem entsattribute instu dy 0.16* 0.090 0.26*** 0.005 Histori cbuilding sattribut ei nstud y −0.11 0.216 −0.10 0.217 Non-reg ionalbene ficiaries −0.02 0.902 −0.00 0.952 Populationde nsitycasestu dyarea 0.18 * 0.073 0.14 0.145 GDPperca pitacase stud yarea 0.22** 0.038 0.17 0.102 Econ omi cvalua tion study −0.21* 0.063 −0.11 0.307 Numberofattributesinstudy 0.09 0.301 0.03 0.671 Nationalscalecase 0.05 0.618 0.08 0.365 n 129 129 A djustedR2 0 .16 0.17 AIC 118 118 * Statisticallysignificantat10%. ** Statistically significant at 5%. *** Statistically significant at 1%. B.T.vanZantenetal./LandscapeandUrbanPlanning132(2014)89–101 97 3.3. Meta-regression preferences for the dominance of agricultural land cover. These groupsdonotdependonagriculturefortheirlivelihoodsandoften Table 2 displays the output of two weighted least squares uselandscapeforrecreationalpurposesandratherprefermosaicor meta-regressionmodelsthatexploretheinfluenceofexplanatory forested/naturallandscapes.GDPpercapitahasnosignificantinflu- variablesonnormalizedpreferencescoresforcasesthataddress enceonpreferencesfordominanceagriculturallandcover(Table3), land cover composition attributes (n=129). The objective of this partlyrejectinghypothesis2.b. analysis was to test hypotheses 1.a and 1.b: to assess whether As predicted in hypothesis 2.b, the population density in the there are generic preferences for particular landscape attributes casestudyareasisnegativelyrelatedtopreferencescoresfordom- (e.g.mosaiclandcover,dominanceforest/naturallandcover),while inanceagriculturallandcover,althoughthecoefficientisstatistically controllingforanumberofstudyandcontextcharacteristics.The insignificant.Thisindicatesthatpreferencesforthedominanceof adjustedR2 va lu esof0.1 6a nd0.1 7ar erelativ elylow,which was agriculturall andc overincre ase whenpopul atio nde nsityinlan d- expectedsincethemeta-dataincludeaheterogeneouscollection scapes decreases. Although not statistically significant at usual ofcasesandprimarilyfocusesonhypotheses1.aand1.b. criticalsignificancelevels,pvaluesforpopulationdensityarerela- InTable2,thedummyvariablemosaiclandcoverhasasignificant tivelycloseto10%significancelevelsinbothmodelspecifications. positive influence on preference scores for both normalizations. Percentage agricultural land cover is negatively related, and Thestandardizedcoefficientsindicatethatnormalizedpreference significantatp<0.05,todominanceagriculturallandcoverforthe scoresare0.44or0.45higherforlandscapesdominatedbymosaic min–maxnormalization.Thisresultconfirmshypothesis2.c:pre- land cover than for the reference category dominance agricul- ferencesforattributesthatdescribethedominanceofagricultural tural land cover. To a lesser extent, dominance forest/natural land land cover increase when the percentage agricultural land cover coverattributesalsoreceivehighernormalizedpreferencescores in the landscape decreases. Especially in case studies conducted thanthereferencecategory(0.21or0.19).Theseresultsindicate inlessfavoredareas,dominanceagriculturallandcoverattributes that,whencontrollingfortheotherexplanatoryvariablesinthis are highly preferred. Both the number of attributes in the case regression,preferencescoresformosaiclandcoveranddominance studyandthedummyvariableabandonmentstudydemonstratea forest/naturelandcoveraresimilartothefindingspresentedinFig.5. negative,statisticallyinsignificantrelationtopreferencesfordom- The explanatory variables linear elements and historic build- inance agricultural land cover attributes. The economic valuation ingsdescribewhetherthecasestudyalsoincludedattributesthat study dummy variable was left out the model because of multi- describe(bothgreenandgray)linearelementsorhistoricbuild- collinearitywiththeotherexplanatoryvariables. ings in the landscape. Significantly higher stated preferences for Table4displaysthecoefficientsofthemeta-regressionanaly- landcovercompositionattributeswerefoundwhenthecasestudy sisthatexplainspreferenceheterogeneityamongstcases(n=32) also addressed preferences for linear elements. The dummy vari- that focused on dominance forest/nature land cover. The adjusted able representi ng the pres ence of h istoric bui ldin gs obtain ed a R2 v aluesof 0.3 3and0.28 oftheregres sions inTab le4 arehigh negative coefficient, which indicated that land cover composi- comparedtotheotherregressions.Inaccordancewithhypothe- tion attributes are likely to receive lower preferences when the sis2.a,non-regionalbeneficiariesoftenstatedahigherpreference study also addressed preferences for historic buildings. However, scorefordominanceforest/naturelandcoverattributesthanregional thecoefficientisnotstatisticallysignificant,sothisrelationshipis beneficiaries. However, although the p-values are relatively low, uncertain. thecoefficientsarenotstatisticallysignificant.Anegativerelation Non-regional beneficiaries have not expressed significantly between GDP per capita in the case study area and preference different preferences for land cover composition attributes than for dominance forest/nature land cover attributes is found statis- regionalbeneficiaries.Thetwocasestudycontextvariables,popu- tically significant for the min–max normalization, which rejects lationdensityandGDPpercapita,arebothpositivelyrelatedtothe hypothesis2.bonthisexplanatoryvariable.Incontrast,astrong dependentvariable.Forthesevariables,thecoefficientsweresta- significant(p<0.05)positiverelationbetweenpopulationdensity tisticallysignificantwithrespecttothepreferencescoresobtained inthecasestudyareaandthedependentvariableisfound.This throughmin–maxnormalization.Thus,ingenerallandcovercom- indicatesthatpreferencesforforest/naturelandcoverattributesare positionattributesreceiveahigherpreferencescoreincasestudy higherindenselypopulatedareas,confirminghypothesis2.b. areaswitharelativelyhighpopulationdensityandGDPpercapita. In studies that focus on abandonment of agricultural areas, The dummy variable economic valuation study has a negative dominanceforest/naturelandcoverattributesreceivesalowernor- coefficient, which indicates that cases that have applied eco- malizedpreferencescorethanstudiesthatdonotexplicitlyaddress nomic valuation received lower preference scores for land cover the consequences of abandonment. This result was found to be composition attributes. This means that land cover composition statisticallysignificant(p<0.10)underbothnormalizationproce- attributes receive lower preferences when a financial tradeoff is dures.Nostatisticallysignificanteffectswerefoundfortheother involved.Theexplanatoryvariablesnumberofattributesinthestudy explanatoryvariablesinthemeta-regression. and national scale case have small and statistically insignificant coefficients,providingevidencefornostructuralvariationbetween theseimportantdifferencesbetweencasestudies. 4. Discussionandconclusions Tables3and4presentresultsfromthemeta-regressionmod- els that aim to explain variation between expressed preferences Inthisstudywehavereviewedandappliedameta-analysisto for dominance of agricultural land cover in landscapes and domi- studystatedpreferencesforagrarianlandscapesacrossEurope.The nanceforforest/naturelandcover,usingbeneficiaryandcontextual methodologybuildsonbothmeta-analysesinthefieldofenviron- explanatoryvariables.Table3givestheestimatedcoefficientsofa mentaleconomics(e.g.Brander,Florax,&Vermaat,2006;Brander meta-regressionanalysiswithasubset(n=40)ofcasesthatfocus &Koetse,2011;Nelson&Kennedy,2008)andmeta-studiesinenvi- ondominanceag ricultural land co ver.Th ea d just ed R2va lueo f0.15 ro nmenta lchan geresea r ch(e.g.Ge ist&La mb in,2002;Rude l,2 008; and0.04oftheregressionsisrelativelylow.Thecoefficientsindi- VanAsselenetal.,2013).Inordertocompareresultsofstatedpref- cate a strong beneficiary-effect; non-regional beneficiaries have erencestudiesfrommultipledisciplinesinaquantitativemanner, stated significantly lower preferences for dominance agricultural weanalyzednormalized,within-study,preferencesforparticular landcoverthanregionalbeneficiaries.Thisresultconfirmshypoth- landscapeattributes.Weassumedthattheserelativepreferences esis2.a:beneficiariesfromoutsidethelandscapeoftenstatelower for landscape attributes best reflect the relative importance and 98 B.T.vanZantenetal./LandscapeandUrbanPlanning132(2014)89–101 Table3 Estimatedcoefficientsformeta-regressionmodelswithallcasesthataddressdominanceagriculturallandcoverattributes.Thedependentvariableislandscapepreference score,obtainedviamin–maxnormalizationandnormalized-ranktransformation. Variable Min–maxnormalization Normalized-ranktransformation Standardizedcoefficient pValue Standardizedcoefficient pValue Non-regionalbeneficiaries −0.33* 0.064 −0.40** 0.041 GDPpercapitacasestudyarea 0.16 0.355 0.11 0.543 Popu lati onden sityc asest udya rea −0.27 0.134 −0.25 0.209 Percentage agricult ural landco ver(CORINE) −0.43** 0.024 −0.20 0.313 Numberof attributesin stud y −0.08 0.655 −0.21 0.274 Abandon m entstudy −0.16 0.411 −0.05 0.799 n 40 40 A djustedR2 0 .15 0.04 AIC 24 25 * Statisticallysignificantat10 ** Statistically significant at 5%. value of a particular type of landscape attribute in a particular Withrespecttothecontextvariables,themeta-regressionanal- landscapecontext.Thetwonormalizationmethodsthatwereused ysis has revealed that in relatively densely populated agrarian inthemeta-regressionanalysisshowedsimilarresults.Although landscapes – often referred to as green-belt or peri-urban areas p-valuesvary,thedirectionofthecoefficientsoftheexplanatory –beneficiariesexpressedhigherpreferencesforthoselandscape variablesofthenormalized-ranktransformationandthemin–max characteristics associated with forest and natural land cover. In normalizationaresimilarintheregressionanalyses. contrast,althoughnotstatisticallysignificant,populationdensity In spite of large variation within landscape attribute types provednegativelyrelatedtopreferencesforagriculturallandcover. and between the approaches used in the individual case stud- Atthesametime,thepreferencesforagriculturallandcoverare ies,wefoundcross-casegenericpreferencesforseverallandscape higherinareaswitharelativelylowpercentageofagriculturalland attributes. The analysis of relative preferences (Fig. 5) indicates cover. A plausible interpretation of this result is that in remote, highmeanpreferencescoresforattributesthatdescribehistoric marginalagriculturalareas,agriculturallandcoverishighlyappre- buildingsinthelandscape,mosaiclandcoverandthepresenceof ciated,motivatedbybothregionaleconomicviabilityandaesthetic livestockinthelandscape.Withregardtothelandcovercomposi- landscapequalityconsiderationsofbeneficiaries(e.g.Sayadietal., tionattributes,thesefindingswereconfirmedinameta-regression 2009). analysispresentedinTable2.Mosaiclandscapesand,toalesser An important question is whether the case studies included extent,landscapeswithadominanceofforestornature,obtained in our analysis are representative for agrarian landscapes in the higher preference scores than landscapes dominated by agricul- EuropeanUnion.Fig.2showsaconsiderablenumberofcasestudy ture. areas in Western Europe, Scandinavia, the Iberian Peninsula and Especially the normalized preference scores for landscapes Switzerland, while Central and Eastern European agrarian land- dominated by agricultural land cover and landscapes dominated scapesareunderrepresented.Fortheseregionsonlyasmallnumber by forest/natural land cover are heterogeneous across cases. In ofstudiesthatmeetourcriteriaareavailable,whichislikelydueto order to explain observed preference heterogeneity, many case thefactthattheseareasarenotoftensubjecttostudyandbecause studieshaveexploredrelationsbetweenbeneficiarycharacteristics ofdifferencesinresearchfundingandinterestsbetweenregions. and landscape preferences. One of the most common explana- Fig.6comparesthedistributionofdifferenttypesofagricultural tions for preference heterogeneity is the residential location of landscapesacrossthecasestudyareastothedistributionoftheEU- the beneficiary. Often local residents state high preferences for 27asawholebasedonalandscapetypologyof(VanderZanden attributesassociatedwithagriculturallandcover,whereasvisitors etal.,inreview).Thislandscapetypologyaccountsforanumber statehigherpreferencesforattributesassociatedwithforestand of important characteristics of agricultural landscapes: manage- naturallandcover(e.g.Hunzikeretal.,2008;Solivaetal.,2010). ment intensity (Temme & Verburg, 2011); linear elements (Van These findings were confirmed in our meta-regression analyses derZanden,Verburg,&Mücher,2013)andfieldsize.Large-scale presentedinTables2and3. extensive arable landscapes and medium-scale intensive arable Table4 Estimatedcoefficientsformeta-regressionmodelswithallcasesthataddressdominanceforest/naturelandcoverattributes.Thedependentvariableislandscapepreference score,obtainedviamin–maxnormalizationandnormalized-ranktransformation. Variable Min–maxnormalization Normalized-ranktransformation Standardizedcoefficient pValue Standardizedcoefficient pValue Non-regionalbeneficiaries 0.20 0.252 0.27 0.132 GDPpercapit acasestudya rea −0.25 * 0.095 −0.24 0.105 Popu lati onden sityc asest udya rea 0.39** 0.019 0.36 ** 0.036 Percentage forestla ndc over(C ORIN E) 0.01 0.966 −0.01 0.941 Economicv aluatio nstu dy −0.26 0.248 −0.23 0.318 Numberofattributesinstudy 0.28 0.133 0.22 0.231 Abandon m entstudy −0.37 * 0.080 −0.43 * 0.050 n 32 32 A djustedR2 0 .33 0.28 AIC 34 30 * Statisticallysignificantat10 ** Statistically significant at 5%.

Description:
appearance and quality of many post-war European agrarian land- scapes (Klijn . tematic Reviews and Meta-Analyses protocol (PRISMA; checklist.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.