ebook img

Predictive Models for Decision Support in the COVID-19 Crisis PDF

103 Pages·2021·4.777 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Predictive Models for Decision Support in the COVID-19 Crisis

SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY Joao Alexandre Lobo Marques Francisco Nauber Bernardo Gois José Xavier-Neto Simon James Fong Predictive Models for Decision Support in the COVID-19 Crisis SpringerBriefs in Applied Sciences and Technology SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum offields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical publications can be: (cid:129) A timely report of state-of-the art methods (cid:129) Anintroductiontooramanualfortheapplicationofmathematicalorcomputer techniques (cid:129) A bridge between new research results, as published in journal articles (cid:129) A snapshot of a hot or emerging topic (cid:129) An in-depth case study (cid:129) Apresentation ofcore conceptsthatstudents mustunderstand inordertomake independent contributions SpringerBriefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules. On the one hand, SpringerBriefs in Applied Sciences and Technology are devoted to the publication of fundamentals and applications within the different classical engineering disciplines as well as in interdisciplinary fields that recently emerged between these areas. On the other hand, as the boundary separating fundamental research and applied technology is more and more dissolving, this series isparticularlyopentotrans-disciplinary topics between fundamentalscience and engineering. Indexed by EI-Compendex, SCOPUS and Springerlink. More information about this series at http://www.springer.com/series/8884 Joao Alexandre Lobo Marques (cid:129) Francisco Nauber Bernardo Gois (cid:129) é Jos Xavier-Neto Simon James Fong (cid:129) Predictive Models for Decision Support in the COVID-19 Crisis 123 JoaoAlexandre LoboMarques Francisco NauberBernardo Gois Laboratory of Neuroapplications MachineLearning Department University of Saint Joseph Secretary of Healthof the Government Macau, Macao of the State ofCeara Fortaleza, Brazil JoséXavier-Neto Government Intelligence Cell Simon James Fong Secretary of Healthof the Government Department ofComputer of the State ofCeara andInformation Science Fortaleza, Brazil University of Macau Macau, Macao ISSN 2191-530X ISSN 2191-5318 (electronic) SpringerBriefs inApplied SciencesandTechnology ISBN978-3-030-61912-1 ISBN978-3-030-61913-8 (eBook) https://doi.org/10.1007/978-3-030-61913-8 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Prediction for Decision Support During the COVID-19 Pandemic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Explanation and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Explanatory Approaches—Data Regression in Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Prediction for Decision Support. . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Scope and Time Spam . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 The Proposed Approach for the Methodology and Results Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Methodology and Scope Definition for the Data Analysis. . . . . . . 7 1.5.1 Data Source and Data Selection . . . . . . . . . . . . . . . . . . . 7 1.5.2 Methodology for Validation and Evaluation. . . . . . . . . . . 10 1.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Epidemiology Compartmental Models—SIR, SEIR, and SEIR with Intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 SIR Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 SEIR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 SEIR with Intervention Model . . . . . . . . . . . . . . . . . . . . 20 2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 SIR Model—Results and Discussion. . . . . . . . . . . . . . . . 21 2.3.2 SEIR Model—Results and Discussion. . . . . . . . . . . . . . . 27 2.3.3 SEIR Model with Intervention . . . . . . . . . . . . . . . . . . . . 29 2.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 v vi Contents 3 Forecasting COVID-19 Time Series Based on an Autoregressive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 Proposed Methodology for the Data Analysis . . . . . . . . . 43 3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 ARIMA Predictions for China . . . . . . . . . . . . . . . . . . . . 43 3.3.2 ARIMA Predictions for the United States of America . . . 45 3.3.3 ARIMA Predictions for Brazil . . . . . . . . . . . . . . . . . . . . 47 3.3.4 ARIMA Predictions for Italy . . . . . . . . . . . . . . . . . . . . . 49 3.3.5 ARIMA Predictions for Singapore . . . . . . . . . . . . . . . . . 49 3.3.6 Model Performance Comparison Between Countries . . . . 52 3.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 Nonlinear Prediction for the COVID-19 Data Based on Quadratic Kalman Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.1 Kalman Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.2 State-Space Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.3 Quadratic Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.4 Proposed Methodology for the Data Analysis . . . . . . . . . 58 4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 Kalman Filter Predictions for China . . . . . . . . . . . . . . . . 58 4.3.2 Kalman Filter Predictions for the United States . . . . . . . . 59 4.3.3 Kalman Filter Predictions for Brazil . . . . . . . . . . . . . . . . 59 4.3.4 Kalman Filter Predictions for Italy . . . . . . . . . . . . . . . . . 62 4.3.5 Kalman Filter Predictions for Singapore . . . . . . . . . . . . . 62 4.3.6 Model Performance Comparison Between Countries . . . . 66 4.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 Artificial Intelligence Prediction for the COVID-19 Data Based on LSTM Neural Networks and H2O AutoML . . . . . . . . . . . . . . . . 69 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.1 Long Short-Term Memory Networks (LSTM) . . . . . . . . . 70 5.2.2 H2O AutoML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2.3 Proposed Methodology for the Data Analysis . . . . . . . . . 71 5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.1 LSTM Predictions for China. . . . . . . . . . . . . . . . . . . . . . 72 5.3.2 H2O AutoML Results for China. . . . . . . . . . . . . . . . . . . 72 5.3.3 LSTM Predictions for the United States . . . . . . . . . . . . . 76 Contents vii 5.3.4 H2O AutoML Results for US. . . . . . . . . . . . . . . . . . . . . 76 5.3.5 LSTM Predictions for Brazil. . . . . . . . . . . . . . . . . . . . . . 76 5.3.6 H2O AutoML Results for Brazil. . . . . . . . . . . . . . . . . . . 80 5.3.7 LSTM Predictions for Italy. . . . . . . . . . . . . . . . . . . . . . . 80 5.3.8 H2O AutoML Results for Italy. . . . . . . . . . . . . . . . . . . . 80 5.3.9 LSTM Predictions for Singapore. . . . . . . . . . . . . . . . . . . 80 5.3.10 H2O AutoML Results for Singapore. . . . . . . . . . . . . . . . 86 5.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6 Predicting the Geographic Spread of the COVID-19 Pandemic: A Case Study from Brazil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2 Proposed Methodology for the Geographic Epidemic Predictor . . . 90 6.2.1 Location and Database . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2.2 Clustering and Prediction Techniques . . . . . . . . . . . . . . . 92 6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.1 General Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.2 Prediction Case 01—Analyzing the Infection Trend. . . . . 94 6.3.3 Prediction Case 02—Importance of the Prediction After the Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Chapter 1 Prediction for Decision Support During the COVID-19 Pandemic 1.1 Introduction At the moment this book is being written, the world is facing the most significant challenge of modern history: the COVID-19 pandemic. The consequences of the outbreakcannotbepreciselyevaluatedyet,sincedifferentcountriesaregoingthrough differentstrategiestocopewiththeviruspandemicandthisis,obviously,generating completelydifferentresults.Ontheotherhand,countrieswhereeffectivestrategies couldreducetheinfectionratesafewmonthsago,arefacingsecondandthirdwaves ofinfection,indicatingthatthiswillbealong-termbattlethatwillprobablyendnot onlywhenavaccinewillbesuccessfullydeveloped,butwhentheimmunizationwill beeffectivelyinplace,withbillionsofpeopleprotected. Theimpactsarestronglysignificantinpublichealthsystems,withunprecedented numbersofmortalityrates,exponentialincreasingratesofICUoccupationinshort term and limited capacity of response in a large number of healthcare institutions. Additionally, when considering the perspective of the consequences of the pan- demicintheglobaleconomy,thefactsarealsofrightfulandwithlong-termimpacts, especially for developing countries and more specifically for small and medium enterprises.Societiesandgovernmentswillneedalongtimeandnewstrategiesand actionstorecoverfromthecurrentoutbreakminimizingtheimpact. ThetermCOVID-19isanacronymfor“CoronavirusDisease19”andisthename ofthediseasecausedbythevirusstrainnamedSARS-CoV-2(SevereAcuteRespi- ratory Syndrome Coronavirus 2), which belongs to the class of the coronaviruses. Itattackstherespiratorysystem,butbesidesacommoninfectionintherespiratory tract,severalotherconsequencesmayaffectthepatientdirectlyandindirectly.The immunesystem,forexample,tryingtocombatthevirus,inseveralcasesgenerates such a strong response that affects the patient’s life. Consequences of the cardio- vascularsystemandheartfunctioningarealsobeingwidelyreportedinthemedical literature. WhentheviruswasfirstlyreportedinWuhan,Chinaandstarteditsexponential spread,severalstrategieswereadoptedinparallel,ledbygeneralguidelinesprovided by the WHO (World Health Organization) and specific efforts developed by local ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021 1 J.A.L.Marquesetal.,PredictiveModelsforDecisionSupport intheCOVID-19Crisis,SpringerBriefsinAppliedSciencesandTechnology, https://doi.org/10.1007/978-3-030-61913-8_1 2 1 PredictionforDecisionSupportDuringtheCOVID-19Pandemic Governmentstodealandrespondtothischallenge,besidesthebiotechnologyefforts todevelopmedicinesandvaccinestofightagainstthevirusaction[13]. From the biomedical engineering and computer science perspective, several approaches are being considered, from the development of automatic diagnostic toolsbasedontheapplicationofAI(ArtificialIntelligence)softwaretoanalyzeX- ray and CT-Scans of the patient lungs, to the use of computer-based solution for predictionusingepidemiologicaldatabasedonlinear,nonlinear,machinelearning, anddeeplearningtechniques. Themainobjectiveofthisbookistopresentdifferentapproachesandtechniques for epidemiological time-series prediction, which will be able to provide decision supportforGovernmentsandHealthcaredecision-makers,withthepresentationof asequenceofresultsbasedonrealdatafromfivecountrieswithsomesimilarities andsignificantdifferences. The intent is not to exhaust the topic, but present a discussion covering from conventionalcompartmentalmodels(SIRandSEIR)torecentlydevelopedArtificial Intelligence (AI) solutions. The mathematical level presented for each technique intends to be sufficient for the reader without an advanced technical background, providingreferencesfortheoneswhowanttofollowupindetailabouteachapproach presented. Thisintroductorychapteraimstocreateafoundationofconceptsrelatedtothe topicofpredictioninhealthcareandepidemiology,whicharerelevanttounderstand theapplicationofthetechniquespresentedineachfollowingchapter. 1.2 ExplanationandPrediction Atfirst,itisextremelyimportanttounderstandthedifferenceoftwoessentialcon- cepts that are often mismatched: explanation, which will be clearly related to the traditionalmethodspresentedinexplanatorystatistics;andprediction,whichisthe applicationofspecifictechniquestopredictnewinformationfromcurrentdataand willbethefocusofthisBook. Thisdifferentiationisakeysteptounderstandwhenandwhythereisthenecessity tousepredictiontechniquesandalsotoclearlyidentifywhatisthegoalandthetype ofdatabeingconsidered. Inferentialstatisticshavebeenwidelyusedinexplanatoryanalysisandthefocus isusuallycausal[2].Theapplicationofdifferentregressiontechniquesarecommon, accordingtotheresearchscopeandtypeofdata.Fourofthemostusedapproaches arepresentedinSect.1.2.1.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.