ebook img

Predictive Modeling Applications in Actuarial Science, Volume 2: Case Studies in Insurance PDF

334 Pages·2016·8.81 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Predictive Modeling Applications in Actuarial Science, Volume 2: Case Studies in Insurance

PredictiveModelingApplicationsinActuarialScience VolumeII:CaseStudiesinInsurance Predictive modeling uses data to forecast future events. It exploits relationships between explanatoryvariablesandthepredictedvariablesfrompastoccurrencestopredictfutureout- comes.Forecastingfinancialeventsisacoreskillthatactuariesroutinelyapplyininsurance andotherrisk-managementapplications.PredictiveModelingApplicationsinActuarialSci- enceemphasizeslifelonglearningbydevelopingtoolsinaninsurancecontext,providingthe relevantactuarialapplications,andintroducingadvancedstatisticaltechniquesthatcanbe usedtogainacompetitiveadvantageinsituationswithcomplexdata. VolumeIIexaminesapplicationsofpredictivemodeling.WhereVolumeIdevelopedthe foundationsofpredictivemodeling,VolumeIIexplorespracticalusesfortechniques,focus- ingespeciallyonpropertyandcasualtyinsurance.Readersareexposedtoavarietyoftech- niquesinconcrete,real-lifecontextsthatdemonstratetheirvalue,andtheoverallvalueof predictivemodeling,forseasonedpracticinganalystsaswellasthosejuststartingout. EdwardW.(Jed)FreesistheHickman-LarsonChairofActuarialScienceattheUniversity of Wisconsin–Madison. He received his PhD in mathematical statistics in 1983 from the UniversityofNorthCarolinaatChapelHillandisaFellowofboththeSocietyofActuaries (SoA) and the American Statistical Association (the only Fellow of both organizations). Regardinghisresearch,ProfessorFreeshaswonseveralawardsforthequalityofhiswork, includingtheHalmstadPrizeforbestpaperpublishedintheactuarialliterature(fourtimes). Glenn Meyers, PhD, FCAS, MAAA, CERA, retired from ISO at the end of 2011 after a 37-year career as an actuary. He holds a BS in mathematics and physics from Alma Col- lege, an MA in mathematics from Oakland University, and a PhD in mathematics from SUNYatAlbany.AfrequentspeakeratCasualtyActuarialSociety(CAS)meetings,hehas served,andcontinuestoserve,theCASandtheInternationalActuarialAssociationonvari- ousresearchandeducationcommittees.HehasalsoservedontheCASBoardofDirectors. HehasseveralpublishedarticlesintheProceedingsoftheCasualtyActuarialSociety,Vari- ance, and Actuarial Review. His research contributions have been recognized by the CAS through his being a three-time winner of the Woodward-Fondiller Prize; a two-time win- neroftheDorweilerPrize;andawinneroftheDFAPrize,theReservesPrize,theMatthew RodermundServiceAward,andtheMichelbacherSignificantAchievementAward.Inretire- ment,hestillspendssomeofhistimeonhiscontinuingpassionforactuarialresearch. RichardA.DerrigisfounderandprincipalofOPALConsultingLLC,whichisafirmthat provides research and regulatory support to property casualty insurance clients. Primary areasofexpertiseincludefinancialpricingmodels,databaseanddata-miningdesign,fraud detection planning and implementation, and expert testimony for regulation and litigation purposes. INTERNATIONAL SERIES ON ACTUARIAL SCIENCE EditorialBoard ChristopherDaykin(IndependentConsultantandActuary) AngusMacdonald(Heriot-WattUniversity) The International Series on Actuarial Science, published by Cambridge University Press in conjunction with the Institute and Faculty of Actuaries, contains textbooks for students tak- ing courses in or related to actuarial science, as well as more advanced works designed for continuingprofessionaldevelopmentorfordescribingandsynthesizingresearch.Theseries isavehicleforpublishingbooksthatreflectchangesanddevelopmentsinthecurriculum,that encouragetheintroductionofcoursesonactuarialscienceinuniversities,andthatshowhow actuarialsciencecanbeusedinallareaswherethereislong-termfinancialrisk. Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/statistics.Recent titlesincludethefollowing: ComputationandModellinginInsuranceandFinance ErikBølviken SolutionsManualforActuarialMathematicsforLifeContingentRisks(2ndEdition) DavidC.M.Dickson,MaryR.Hardy&HowardR.Waters ActuarialMathematicsforLifeContingentRisks(2ndEdition) DavidC.M.Dickson,MaryR.Hardy&HowardR.Waters RiskModellinginGeneralInsurance RogerJ.Gray&SusanM.Pitts FinancialEnterpriseRiskManagement PaulSweeting RegressionModelingwithActuarialandFinancialApplications EdwardW.Frees PredictiveModelingApplicationsinActuarialScience,VolumeI:PredictiveModeling Techniques EditedbyEdwardW.Frees,RichardA.Derrig&GlennMeyers NonlifeActuarialModels Yiu-KuenTse GeneralizedLinearModelsforInsuranceData PietDeJong&GillianZ.Heller PREDICTIVE MODELING APPLICATIONS IN ACTUARIAL SCIENCE Volume II: Case Studies in Insurance EDWARD W. FREES UniversityofWisconsin–Madison GLENN MEYERS RICHARD A. DERRIG OPALConsultingLLC 32AvenueoftheAmericas,NewYork,NY10013 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107029880 ©CambridgeUniversityPress2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2016 PrintedintheUnitedStatesofAmericabySheridanBooks,Inc. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-107-02988-0Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. Contents Contributors pagexi Preface xv Acknowledgments xix 1 PurePremiumModelingUsingGeneralizedLinearModels 1 ErnestoSchirmacher 1.1 Introduction 1 1.2 DataCharacteristics 3 1.3 ExploratoryDataAnalysis 6 1.4 FrequencyModeling 12 1.5 SeverityModeling 23 1.6 PurePremium 30 1.7 Validation 34 1.8 Conclusions 37 References 38 2 ApplyingGeneralizedLinearModelstoInsuranceData: Frequency/SeverityversusPurePremiumModeling 39 DanTevet 2.1 Introduction 39 2.2 ComparingModelForms 40 2.3 TheDatasetandModelForms 44 2.4 Results 47 Appendix2.A ProofofEquivalencebetweenPure PremiumModelForms 55 Conclusion 57 Appendix2.B TheGiniIndex 57 References 58 vii viii Contents 3 GeneralizedLinearModelsasPredictiveClaimModels 60 GregTaylorandJamesSullivan 3.1 ReviewofLossReserving 60 3.2 AdditionalNotation 63 3.3 GLMBackground 64 3.4 AdvantagesofGLMs 66 3.5 Diagnostics 68 3.6 Example 73 3.7 Conclusion 97 References 98 4 FrameworksforGeneralInsuranceRatemaking:Beyondthe GeneralizedLinearModel 100 PengShiandJamesGuszcza 4.1 Introduction 100 4.2 Data 102 4.3 UnivariateRatemakingFramework 104 4.4 MultivariateRatemakingFrameworks 113 4.5 ModelComparisons 122 4.6 Conclusion 123 References 124 5 UsingMultilevelModelingforGroupHealthInsuranceRatemaking: ACaseStudyfromtheEgyptianMarket 126 MonaS.A.HammadandGalalA.H.Harby 5.1 MotivationandBackground 126 5.2 Data 130 5.3 MethodsandModels 141 5.4 Results 144 5.5 Conclusions 146 Acknowledgments 147 Appendix 147 References 157 6 ClusteringinGeneralInsurancePricing 159 JiYao 6.1 Introduction 159 6.2 OverviewofClustering 160 6.3 DatasetforCaseStudy 161 6.4 ClusteringMethods 163 6.5 Exposure-AdjustedHybrid(EAH)CluseringMethod 168 Contents ix 6.6 ResultsofCaseStudy 171 6.7 OtherConsiderations 177 6.8 Conclusions 178 References 179 7 ApplicationofTwoUnsupervisedLearningTechniquesto QuestionableClaims:PRIDITandRandomForest 180 LouiseA.Francis 7.1 Introduction 180 7.2 UnsupervisedLearning 181 7.3 SimulatedAutomobilePIPQuestionableClaims DataandtheFraudIssue 182 7.4 TheQuestionableClaimsDependentVariable Problem 185 7.5 ThePRIDITMethod 185 7.6 ProcessingtheQuestionableClaimsDatafor PRIDITAnalysis 187 7.7 ComputingRIDITSandPRIDITS 187 7.8 PRIDITResultsforSimulatedPIPQuestionable ClaimsData 188 7.9 HowGoodIsthePRIDITScore? 189 7.10 TreesandRandomForests 192 7.11 UnsupervisedLearningwithRandomForest 194 7.12 SoftwareforRandomForestComputation 195 7.13 SomeFindingsfromtheBrockettetal.Study 201 7.14 RandomForestVisualizationviaMultidimensional Scaling 202 7.15 KohonenNeuralNetworks 204 7.16 Summary 205 References 206 8 ThePredictiveDistributionofLossReserveEstimates overaFiniteTimeHorizon 208 GlennMeyers 8.1 Introduction 208 8.2 TheCASLossReserveDatabase 210 8.3 TheCorrelatedChainLadderModel 212 8.4 ThePredictiveDistributionofFutureEstimates 213 8.5 TheImplicationsforCapitalManagement 216 8.6 SummaryandConclusions 223 References 223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.