ebook img

Prediction of Pullout Capacity of Anchor Foundation in Sand using Artificial Neural Networks PDF

124 Pages·2017·2.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Prediction of Pullout Capacity of Anchor Foundation in Sand using Artificial Neural Networks

Prediction of Pullout Capacity of Anchor Foundation in Sand using Artificial Neural Networks by Bayshakhi Deb Nath A thesis submitted to the Department of Civil Engineering, Khulna University of Engineering & Technology in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering Khulna University of Engineering & Technology Khulna 9203, Bangladesh September 2017 Declaration This is to certify that the thesis work entitled "Prediction of Pullout Capacity of Anchor Foundation in Sand using Artificial Neural Networks” has been carried out by Bayshakhi Deb Nath in the Department of Civil Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh. The above thesis work or any part of this work has not been submitted anywhere for the award of any degree or diploma. Signature of Supervisor Signature of Candidate P age | ii Approval This is to certify that the thesis work submitted by Bayshakhi Deb Nath entitled Prediction of Pullout Capacity of Anchor Foundation in Sand using Artificial Neural Networks has been approved by the board of examiners for the partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in the Department of Civil Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh in 2017. BOARD OF EXAMINERS 1. Chairman (Supervisor) Dr. Md. Rokonuzzaman Professor Department of Civil Engineering Khulna University of Engineering & Technology 2. Member Head of the Department Department of Civil Engineering Khulna University of Engineering & Technology 4. Member Dr. Abu Zakir Morshed Professor Department of Civil Engineering Khulna University of Engineering & Technology 5. Member Dr. Ismail Saifullah Assistant Professor Department of Civil Engineering Khulna University of Engineering & Technology 6. Member Dr. Syed Abdul Mofiz (External) Professor Department of Civil Engineering Rajshahi University of Engineering & Technology P age | iii Acknowledgement I would like to express my gratitude to my supervisor Prof. Dr. Md. Rokonuzzaman as without his continuous support, expertise and motivation, this thesis would not become in reality. While performing this research, his guidance and support, while still allowing me the freedom to learn first-hand, proved to be technical in the advancement of my work. His high standards and commitment to research set a strong example for me in my time in the work, and provides me with the motivation necessary to perform the required tasks. He has passionately inspired me throughout this research. I am really thankful for his great mentorship, time, and support throughout the thesis work over the last one year. I would also like to thank my committee members, Prof. Dr. Abu Zakir Morshed and Dr. Ismail Saifullah for their crucial suggestion on my research projects, and my external examiner Prof. Dr. Syed Abdul Mofiz for his time to read and critique my thesis. I would also like to thank my respective teachers, and colleagues in the Department of Civil Engineering, Khulna University of Engineering & Technology for their valuable supports. Finally, I would like to express my deepest love, respect and appreciation to my parents, husband, brother and sisters, for their consistent and unconditional love and support. I am very much indebted to my parents and husband for their motivation which has sustained me throughout the long journey of my academic life. P age | iv Abstract Plate anchors are widely used in offshore foundation to resist the uplift forces. Over the years, many theoretical and numerical methods have been developed to predict the uplift capacity of plate anchor in cohesionless soil. However, these methods are inconsistent with each other and with the experimental results. Moreover, most of the theories comprises the pullout capacity of plate anchor oriented in horizontal or vertical direction. Although very few theories cover the effect of anchor rotation on the pullout capacity for strip anchor but cannot be used for other shaped anchor such as square, rectangular etc. Therefore, an attempt is taken to make a correlation with the existing experimental investigation as correlations are very significant, when it is difficult to measure the amount directly, and in other cases it is desirable to ascertain the results with other tests through correlations. Soft computing techniques are now being used as alternate statistical tool, and new techniques such as artificial neural networks (ANNs) has been employed for developing the predictive models to estimate the required parameters. Literatures reveals that the uses of ANN in engineering has increased over the last few years and could be used to many geotechnical engineering problems (pile capacity prediction, modelling soil behaviour, site characterization, earth retaining structures, settlement of structures, slope stability, design of tunnels and underground openings, liquefaction, soil permeability and hydraulic conductivity, soil compaction, soil swelling and classification of soils) with some degree of success. In this investigation, artificial neural network is used to predict the pullout capacity of anchor foundation. The personal computer based software MATLAB 2015 is used to simulate the ANN operation. About 583 pullout capacity test data consisting of both field and laboratory measurement obtained from published literature are used to develop the prediction model. Anchor width (B), embedment ratio (H/B), aspect ratio (L/B), Rotation (), unit weight of soil () and friction angle of soil () are used as input parameters, while pullout capacity factor (Nq) is used as output. Feed Forward Back propagation algorithm is used to train the network. These data are divided into three subsets: training, testing and validation sets containing different percentage of data. Various error criteria such as mean square error (MSE) and mean absolute error (MAE), and correlation coefficient (R) have been considered to check the accuracy of the work. The ANN geometry (no. of hidden neurons, no. of hidden layers, and training functions) are also varied to optimize the network weight i.e. minimum error and maximum correlation coefficient value. It is seen that one hidden layer containing two neurons, and P age | v Levenberg-Marquardt (trainlm) training function gives the optimum weight of the network. Different sensitivity analysis has been shown to identify the significance of different input parameters that affects the developed models. Finally, an ANN based prediction equation is developed and the predicted values are compared with the testing data sets includes experimental results and the existing theories. The performance comparison reveals that the ANN model is a good tool for minimizing the uncertainties and inconsistency of correlations in the prediction of pullout capacity of plate anchor in cohesionless soil. P age | vi Contents DECLARATION .............................................................................................................. II APPROVAL .................................................................................................................... III ACKNOWLEDGEMENT .............................................................................................. IV ABSTRACT ...................................................................................................................... V CONTENTS ................................................................................................................... VII LIST OF TABLES .......................................................................................................... XI LIST OF FIGURES ..................................................................................................... XIII CHAPTER 1 Introduction ........................................................................................... 1 1.1 Introduction ........................................................................................................... 1 1.2 Background of This Study .................................................................................... 1 1.3 Objectives of the Research Work .......................................................................... 4 1.4 Organization of the Thesis .................................................................................... 4 CHAPTER 2 Uplift Capacity Theories ....................................................................... 6 2.1 Introduction ........................................................................................................... 6 2.2 Plate Anchors ........................................................................................................ 6 2.3 Classical Theories of Uplift capacity for Plate Anchors ....................................... 7 2.3.1 Horizontal Plate Anchors ...................................................................................... 8 2.3.1.1 Meyerhof and Adams ............................................................................................ 9 2.3.1.2 Clemence and Veesaert ....................................................................................... 11 2.3.1.3 Murray and Gaddes ............................................................................................. 12 2.3.1.4 Frydman and Shaham .......................................................................................... 14 2.3.1.5 Ovesen ................................................................................................................. 15 2.3.1.6 Tagya ................................................................................................................... 15 2.3.2 Vertical Plate Anchors ........................................................................................ 16 2.3.2.1 Ovesen and Stromann ......................................................................................... 17 2.3.2.2 Biarez et al. ......................................................................................................... 18 2.3.2.3 Ovesen ................................................................................................................. 19 2.3.2.4 Meyerhof ............................................................................................................. 19 2.3.3 Inclined Plate Anchors ........................................................................................ 20 2.3.3.1 Meyerhof ............................................................................................................. 21 2.3.3.2 Hanna et al. ......................................................................................................... 22 2.3.3.3 Ovesen ................................................................................................................. 22 P age | vii CHAPTER 3 Experimental DATABASE ................................................................. 24 3.1 Introduction ......................................................................................................... 24 3.2 Past Experimental Investigations ........................................................................ 24 CHAPTER 4 Artificial Neural NetworkS ................................................................ 28 4.1 Introduction ......................................................................................................... 28 4.2 Basic Neural Network Model ............................................................................. 28 4.3 Artificial Neural Network ................................................................................... 30 4.4 Activation Function ............................................................................................. 30 4.5 Architecture of ANNs ......................................................................................... 31 4.5.1 Feed Forward ANNs ........................................................................................... 31 4.5.2 Feedback/Recurrent ANNs ................................................................................. 32 4.6 Multilayer Perceptron (MLP) Networks ............................................................. 32 4.7 Back propagation ................................................................................................ 33 4.7.1 Batch Training ..................................................................................................... 33 4.7.2 Batch Gradient Descent ...................................................................................... 34 4.7.3 Gradient Descent with Momentum ..................................................................... 34 4.7.4 Variable Learning Rate ....................................................................................... 34 4.7.5 Resilient Backpropagation .................................................................................. 35 4.7.6 Conjugate Gradient Algorithms .......................................................................... 36 4.7.6.1 Fletcher-Reeves Update ...................................................................................... 36 4.7.6.2 Polak-Ribiére Update .......................................................................................... 37 4.7.6.3 Powell-Beale Restarts ......................................................................................... 38 4.7.6.4 Scaled Conjugate Gradient .................................................................................. 38 4.7.7 Quasi-Newton Algorithms .................................................................................. 39 4.7.8 One Step Secant Algorithm ................................................................................. 39 4.7.9 Levenberg-Marquardt (trainlm) .......................................................................... 39 4.8 Learning Rules .................................................................................................... 40 4.8.1 Supervised Learning ........................................................................................... 40 4.8.2 Unsupervised Learning ....................................................................................... 41 4.9 ANN Model Equation ......................................................................................... 41 CHAPTER 5 Methodology ........................................................................................ 43 5.1 Introduction ......................................................................................................... 43 5.2 Data Collection ................................................................................................... 43 5.3 Model Inputs and Output .................................................................................... 46 P age | viii 5.4 Data Division ...................................................................................................... 46 5.5 Data Pre-processing ............................................................................................ 46 5.6 ANN Model Architecture .................................................................................... 47 5.6.1 Activation Function ............................................................................................. 48 5.6.2 Model optimization ............................................................................................. 49 5.6.3 Stopping criteria .................................................................................................. 49 5.6.4 Model Validation ................................................................................................ 49 5.6.5 Post Processing ................................................................................................... 50 5.7 Sensitivity analysis .............................................................................................. 50 5.7.1 Connection weight approach ............................................................................... 51 5.7.2 Garson’s algorithm .............................................................................................. 52 5.8 Development of the ANN Model ........................................................................ 53 CHAPTER 6 Results & Discussions.......................................................................... 57 6.1 Introduction ......................................................................................................... 57 6.2 Performance Evaluation of ANN Models ........................................................... 57 6.2.1 Effect of Data Division ....................................................................................... 57 6.2.2 Effect of ANN Model Geometry ........................................................................ 60 6.2.2.1 Training Function ................................................................................................ 60 6.2.2.2 No. of Hidden Layer ........................................................................................... 61 6.2.2.3 No. of Hidden Neurons ....................................................................................... 63 6.3 Performance of proposed ANN Model ............................................................... 65 6.4 Comparison of the ANN model with the Previous Theories .............................. 68 6.5 Proposed Design Equation .................................................................................. 82 6.6 Sensitivity Analysis ............................................................................................. 85 6.6.1 Connection weight approach ............................................................................... 86 6.6.2 Garson’s algorithm .............................................................................................. 86 6.7 Parametric Study ................................................................................................. 87 6.7.1 Embedment Effect ............................................................................................... 87 6.7.2 Shape Effect ........................................................................................................ 88 6.7.3 Rotation Effect .................................................................................................... 89 6.7.4 Friction Angle Effect .......................................................................................... 93 CHAPTER 7 Conclusions and Recommendations .................................................. 95 7.1 Conclusions ......................................................................................................... 95 7.2 Limitations .......................................................................................................... 96 P age | ix 7.3 Recommendations ............................................................................................... 97 REFERENCES ................................................................................................................ 98 DEVELOPED ANN MODEL ...................................................................................... 106 P age | x

Description:
of tunnels and underground openings, liquefaction, soil permeability and hydraulic conductivity, soil the ANN model is a good tool for minimizing the uncertainties and inconsistency of (http://nptel.ac.in/courses/105101083/Images/ (although there is more computation required in each iteration).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.