ScienceoftheTotalEnvironment625(2018)1030–1045 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate ⁎ NarayanKumarShrestha,JunyeWang AthabascaRiverBasinResearchInstitute(ARBRI),AthabascaUniversity,1UniversityDrive,Athabasca,ABT9S3A3,Canada H I G H L I G H T S G R A P H I C A L A B S T R A C T • Climatechangeimpactanalysisonero- sionandsedimenttransportoftheAth- abasca River Basin (ARB) using the SWATmodel • Future(mid-andlate-century)climate datageneratedbythreeclimatemodels forRCP4.5and8.5emissionscenarios • Impactsduetoclimatechangearefound toberegionspecificandland-usetype dependent. • Channelerosionanddepositionwere thedominantprocessesoverhillslope erosion. • Incrementonsoilerosionrateduetocli- matechangeisgreaterthanreported soilformationrates. a r t i c l e i n f o a b s t r a c t Articlehistory: Theeffectsofclimatechangeonsedimentyieldandtransportdynamicsincoldclimateregionsarenotwellun- Received3November2017 derstoodorreported.Inthisstudy,theSoilandWaterAssessmentTool(SWAT)hasbeenbuilt-up,calibrated,and Receivedinrevisedform31December2017 validatedagainststreamflowandsedimentloadatseveralmonitoringstationsinacoldclimateregionwatershed Accepted31December2017 -theAthabascaRiverBasin(ARB)inAlberta,Canada.Themodelwasthenfedwithbias-correctedspatialdisag- Availableonline5January2018 gregatedhigh-resolution(~10km)futureclimatedatafromthreeclimatemodelsfortwoemissionscenarios (RCP4.5and8.5),andtwoperiods(mid-andend-century).Resultsshowthatchannelerosionanddeposition Keywords: Coldclimateregions arethedominantprocessesoverhillslopeerosioninthebasin.Onaverage,apredictedwarmerandwetterfuture Climatechange climatehasbothsynergeticandoffsettingeffectsonsedimentyield.Changesaresub-regionspecificandland-use Sedimentyieldandtransport typedependent,thusreflectingamarkedspatialandtemporalheterogeneitywithinthebasin.Increasesonsed- Swat imentyieldinfutureperiodsintheagriculturalareasareupto0.94t/ha/yr,andaregreaterthanreportedsoilfor- AthabascaRiverbasin mationratesintheregion.Similarly,whilesubstantialincreases(bymorethantwofold)inthesedimentload transportthroughtheriverreacheswereobtained,thechangesshowbothtemporalandspatialvariability, andarecloselyalignedwiththetrendofstreamflows.Webelievethatavailabilityofsuchmodelsandknowledge oftheeffectoffutureclimaticconditionswouldhelpwatermanagersformulateappropriatescenariostomanage suchbasinsinaholisticway.However,significantuncertaintiesinfuturesedimentyieldandtransport,asaresult ofvariationsinclimaticforcingofdifferentclimatemodels,needtobeconsideredinanyadaptationmeasures. ©2018ElsevierB.V.Allrightsreserved. ⁎ Correspondingauthor. E-mailaddress:[email protected](J.Wang). https://doi.org/10.1016/j.scitotenv.2017.12.347 0048-9697/©2018ElsevierB.V.Allrightsreserved. N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 1031 1.Introduction patches,increasederosivepowerofextremerainfallwouldaccelerate soilerosionbyseveralfold.Similarly,inthelowerregionsoftheARB, Itisnowevidentthatclimatechangeisarealphenomenon(IPCC, wheretheriver-bedslopeisratherflat,depositionoflargeamountsof 2014).Climatechangeinducedhydrologicalaltercationsmayposea erodedsedimentfromupstreamsub-basinswouldmakenavigationim- threattowaterresources,canleadtoexcessivelanddegradation,and possible,especiallyduringlowflowperiods. posesathreattoenvironmentalsustainabilityofariverbasin.Climate WhilethereareanumberofstudiesinwhichtheARBisassessed changeaffectserosionfromuplandcatchmentsandthesedimenttrans- forclimatechangeimpacts,thesestudieshavefocusedprimarilyon portintheriverreachesinmanyways(IPCC,2007).Therefore,thereisa the variability and/or trends of stream flows. For instance, Eum pressingneedtoassesstheimpactsofachangingclimateintheerosion etal.(2017)assessedimpactsofclimatechangeconsideringvarious andsedimenttransportdynamicsofariverbasin.Severalstudieshave hydrologicindicators(seasonalflows,timingandmagnitudeofmax- beenconductedonthissubjectandwidelyreportedinliterature.Ingen- imumandminimumflows,anddateandflowatspringfreshet)at eral,studieshaveshownthatprojectedincreasesintemperatureand upper,middleandlowerreachesoftheARB.Similarly,Leongand projectedincreasesordecreasesinprecipitationhaveresultedincon- Donner (2015) evaluated impacts of climate change on annual trastingsituations.Forinstance,Ademetal.(2016)foundasynergetic flow,centroidofflow,andtimingofspringrunoffatastationdown- responseofincreasesintemperatureandprecipitationonmeanannual streamofoil-sandsregionoftheARB,includingimpactsonlow-flow sedimentyieldintheUpperGilgelAbaycatchment,BlueNileBasin, frequency.Inarecentstudy,Shresthaetal.(2017)assessedgreen Ethiopia.However,Rodríguez-Blancoetal.(2016)foundnon-linearre- and blue water resources at different regions of the ARB. To the sponsesbetweenchangesinclimaticvariablesandsedimentconcentra- bestofourknowledge,therehasbeenlittleassessmentofclimate tionsintheCorbeiracatchment,Spainduetocomplexinteractions changeimpactsonsedimentyieldandtransportdynamicsincold betweenclimaticforcing,atmosphericcarbondioxidelevel,biomass, climatebasins,ingeneralandintheARBinparticular.Becauseof wateryield(andstreamflow),andsoildetachmentandtransportdy- theconsequencesoflanddegradation,itisnecessarytoperforman namics.Similarobservationshavealsobeenmadebyotherresearchers assessment of climate change impacts on erosion and sediment (Ficklinetal.,2013;Nunesetal.,2008;Serpaetal.,2015;Zabaletaetal., transportintheARB.Assuch,thisstudywascarriedoutwiththepri- 2014).Interestingly,Serpaetal.(2015)observedtwocontrastingsitua- maryobjectiveofquantifyingtheimpactsofclimatechangeonthe tions:decreasesinerosionratesinahumidMediterraneancatchment sedimentyieldandtransportdynamicsindifferentspatialandtem- withapermanentvegetationcover,andincreasesinerosionratesina poralscales.Forthis,wecalibratedandvalidatedtheSoilandWater dry Mediterranean catchment with a perennial vegetation cover, Assessment Tool (SWAT) for this cold climate, snow dominated whichhighlightstheimportanceofvegetationcoveronerosionrates. basin.Then,highresolution(~10km)biascorrected,spatiallydisag- BasedontheresultsonUKandEuropeancatchments,Dadsonetal. gregated future climate data from three climate models for two (2010)alsoobservedcomplexinteractionsbetweeninvolvedvariables. emission scenarios (RCP 4.5 and 8.5) and for two future periods However,theysuggestedthatprecipitationandland-coverwouldexert (mid-andend-century)wasfedintothemodel.Webelievethat thestrongestcontroloversoilerosiondynamics.Similarly,Ficklinetal. theresultsofthisstudycanbetranslatedfortheholisticwatershed (2013)highlightedtheroleofbiomassgrowthasaresultofawarmer managementoftheARBasawhole,andisapplicabletoothercold temperatureanditsimpactonsurfacerunoffanderosionratesinanag- climateregionsaswell. riculturalwatershedinCalifornia,USA.IntheNamOubasin,LaoPDR, Shresthaetal.(2013a)foundsignificantuncertaintyinsedimentyield andfluxasaresultofvariationsinclimateforcingofdifferentmodels 2.Materialsandmethods andstressedtheneedtoconsidertheuncertaintiesinadaptationmea- sures.Hence,itisevidentthatprojectedchangesinerosionandsedi- 2.1.Studyarea ment transport are region specific, and are the result of various underlyingfactors.Consequently,thereisaneedtoassesstheclimate TheAthabascaRiverBasin(ARB)istypicalofcoldclimatebasins.It changeimpactsonerosionandsedimenttransportinnewwatersheds, liesinthecentreoftheprovinceofAlbertainCanadaandcontributes includingcoldclimateregions. significantlytotheprovincialeconomybyprovidingacontinuousand Coldclimateregionsservicemultipleecosystemfunctions,suchas dependablewatersupplytovariousindustriesandlocalcommunities climateregulation,waterinfiltration,andbiodiversityconservation (AWC, 2011). The river originates in the Columbia Icefields in (AWC,2011;Black,1997).However,climatechangeandhumanactivi- Canada's Rocky Mountains and flows about 1500 km North-East, ties,suchasever-increasingindustrializationandagrowingpopulation, drainingintoLakeAthabascainthenorth(Fig.1).Thecatchmentarea disturbtheseimportantecosystemsleadingtoseverelanddegradation. oftheARBatthemouthisabout161,000km2.Therivercrossesthrough Thishasresultedinwaterqualityimpairmentsinreceivingwaterbod- variousurbancentresintheprocess(AWC,2011).Majorindustriesin iesandhavelimitedtheirecologicalfunctions(Crabilletal.,1999).In thebasinincludeagriculture,forestry,pulpmills,coalmining,tradition- ordertounderstandandanalyzesuchaninterrelatedandcomplexen- aloilandgasextraction,andoil-sandsmining(AWC,2013).Theriver vironmentprocess,anintegratedmodellingframeworkthatconsiders receivespointsourcepollutionfromwastewatertreatmentplantsin allterrestrialandaquaticecosystemsisneeded(Argentetal.,2006). the urban centres, effluent from industries, and leachate from oil- Insuchintegratedmodellingframeworks,erosionandsoiltransport sandstailingponds(AWC,2014),aswellasnon-pointsourcepollution modellingisessentialbecausesedimentsprovidesurfaceareaforcon- fromagriculture. taminantstobeadsorbed,andsedimentscanbeapathwayfornutrient Forestisthedominantlandusetypeinthebasinwithalmost82% transfer from the river-bed to the water column and vise-versa coverage. Of the different forest types, evergreen forest (FRSE, (Ouattaraetal.,2011;Shresthaetal.,2014;Shresthaetal.,2013b).In TableS1)hasthehighestproportioninallregions(Fig.S1)oftheARB. cold regions, such as the Athabasca River Basin (ARB) in Alberta, Relativelyflattopographyandahighercoverageofdifferenttypesof Canada,higherwintertemperaturesmightconvertnon-erosivesnow- forests(~90%)intheborealplainregion(Fig.S1)makethisarealeast fallintoerosiverainfall.Thiswouldmeltpermafrost,therebyincreasing pronetoerosion.However,theheadwaterregion,withsteeptopogra- wintersurfacerunoff,andleadingtoincreasedsoilerosionfromhill phy(slopesN20%,Fig.S2)andthehighestpercentageofbarrenland, slopesandsedimenttransportthroughthereaches(IPCC,2007;IPCC, makeitmostsusceptibletoerosion.Also,regionssuchasPrairieand 2014).Furthermore,explorationoftheoil-sandsistypicalintheARB. LesserSlave,whichhavethehighestpercentageofagriculturearea, Thiscaninducechangesinthelandscapeofthebasin.Lesserodiblefor- (~45%and~19%respectively,TableS1),arepronetohigherratesofero- estwouldbechangedintoeasilyerodible,barelandpatches.Onsuch sionduetolowornovegetationcoverinnon-growingseasons. 1032 N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 Fig.1.LocationofthebasinwiththeLakeAthabasca,theoutletoftheAthabascaRiver,digitalelevationmodel(DEM)andurbancentres. 2.2.Thesoilandwaterassessmentmodel andmanagementfactor(−);P =supportpracticefactor(−);LS = USLE USLE topographicfactor(−);CFRG=coarsefragmentfactor(−). TheSoilandWaterAssessmentTool(SWAT)isasemi-distributed SWATalsoaccountsforthesnowcoverageeffectonerosion(Neitsch hydrologicalsimulatorusedforcontinuous,longtermsimulationofa etal.,2011): varietyofprocesses(Arnoldetal.,1998).Thesimulatorusesspatial datasetsofelevation,landuseandsoiltypesalongwithseveralhydro- sed0 meteorologicaldatasets,typicallyintegratedusinggeographicinforma- sed¼ (cid:4)3(cid:2)SNO(cid:5) ð2Þ tionsystems(Winchelletal.,2010).SWATdividesawatershedinto exp 25:4 sub-basins, which are further divided into Hydrological Response Units(HRUs),thelatterbeingauniquecombinationofsoil,landuse where,sed′=sedimentyield(metrictons),asinEq.(1);SNO=water and slope (Arnold et al., 2011). The hydrological compartment of contentofthesnowcover(mm). SWATconsidersprecipitation,infiltration,deepaquifer,channeltrans- Sedimentcontributionfromlateralandgroundwaterflowscanalso missionandevapotranspirationlosses,surfacerunoff,lateralandreturn beconsidered.Once,sedimentsareinthestream,thesedimentcarrying flowforwaterbalancecalculations.SWATusestheModifiedUniversal capacityofthechannelisdeterminedas(Bagnold,1977): SoilLossEquationtoestimatesoilerosionandsedimentyieldfrom eachHRUs(WilliamsandBerndt,1977): concsed;ch;mx¼csp:vscphe;pxkp ð3Þ (cid:1) (cid:3) sed0¼11:8 Q (cid:2)q (cid:2)area 0:56K (cid:2)C (cid:2)P (cid:2)LS surf peak hru USLE USLE USLE USLE where,conc =maximumsedimentconcentrationthatcanbe (cid:2)CFRG ð1Þ sed,ch,mx entertrainedinthechannel(tons/m3);c =acoefficient(−);spexp sp =anexponentparameter;v =peakchannelvelocity(m/s)=qch;pk whah)e;rqes,usrfe=d′p=easkedruimnoefnft(myi3e/lsd);(mareeatrhircut=onHs)R;UQasurref=(has)u;rKfaUcSeLEr=unsooffil(emromd-/ ¼prAf(cid:3)cqhch;prf=peakrateadjuchs,tpmkentfactor(−);Ach=crosssectionAcahl ibilityfactor(0.013metricton·m2·ha/(m3·metrictoncm));C =cover areaofthechannelflow(m2);q =averagechannelflow(m3/s). USLE ch N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 1033 Themaximumcarryingcapacityisthencomparedagainsttheinitial (1983–1989 and 2006–2013) for model validation. These periods sediment concentration at a reach (conc ). If conc werechosensystematicallyinordertoincludebothdrierandwetterpe- sed,ch,i sed,ch,i Nconc ,thendepositionprevails,otherwise,degradationpre- riods, as determined by the Standardized Precipitation Index (SPI) sed,ch,mx vails.Theamountdepositionordegradationis(Neitschetal.,2011): (McKeeetal.,1993).ReferShresthaetal.(2017)totheSPIplots.This (cid:6) (cid:7) wouldensurethatthecalibratedandvalidatedmodelcouldsimulate seddep¼(cid:6)concsed;ch;i−concsed;ch;mx(cid:7)(cid:3)Vch ð4Þ variablesofinterestsatisfactorilyinany(drierandwetter)futurecondi- seddeg¼ concsed;ch;mx−concsed;ch;i (cid:3)Vch(cid:3)Kch(cid:3)Cch: tions(Daggupatietal.,2015).Aserosionandsedimenttransportdy- namicsarehydrologicallydrivenprocesses,simultaneouscalibration where, sed = amount of sediment deposited (tons); sed = ofstreamflowandsedimentrelatedparametersisrequired.Further, dep deg amountofsedimentdegraded(tons);V =volumeofwater(m3); someparameterssimultaneouslyaffectthestreamflow,erosionand ch K =channelerodibilityfactor(cm/ha/Pa);C =channelcoverfactor. sedimenttransportdynamics.Assuch,weselected30flowrelated ch ch Aftermaintainingthesedimentbalanceonthereach,thesediment (TableS2)and10sedimentrelatedparameters(Table1)forsensitivity concentrationoutofthereachisgivenas(Neitschetal.,2011): analysis. The model was calibrated using streamflow data (Environment-Canada,2016)recordedat35stations(Fig.S3),andsed- V imentdata(AEP,2016)recordedat5stations(Fig.2).Apropercalibra- sed ¼sed out ð5Þ out chVch tionisassumedtobeachievedwhenreasonablevaluesoftheselected goodness-of-fitstatistics,andagoodvalueofp-andr-statistics(ideal where,sed =sedimenttransportedoutofthereach(tons);sed = valueis1,and0,respectively)isobtained(Table2).Thep-statisticsre- out ch sedimentinthereach(tons);V =volumeofwatertransportedoutof flectthepercentageofobservationsbracketedbythe95%predictionun- out thereach(m3);V =volumeofthewaterintherach(m3). certainty band, and the r-factor denotes the width of the band ch (Abbaspouretal.,2007).Forthemodelperformanceevaluation,we 2.3.Modelinputsandbuild-up chosePercentageofBias(PBIAS),theNSE,andratioofroot-mean- squarederrortostandarddeviation(RSR).Basedontherangeofvalues A90m×90mhole-filleddigitalelevationmodel(Jarvisetal.,2008) ofthesethreeselectedgoodness-of-fitstatistics,weassignedaqualita- (Fig.1),1kmx1kmGlobalLandCoverCharacterizationbasedland-use tiveratingoutofthefour(VeryGood,Good,SatisfactoryandUnsatisfac- map(Lovelandetal.,2000)(Fig.S1),and1:1millionscalesoilmap tory)suggestedbyMoriasietal.(2007)tothemodelresults. (SLC,2010)werethespatialdatasetsusedinthemodelbuild-up.We areawareofpotentialbenefitsoffinerresolutionspatialdatasetssuch 2.5.Climatechangedata astheDEMasithasbeenshownthatfinerspatialdatasetstendtogen- eratebetterhydrological(Teegavarapuetal.,2006)andsoilerosionre- Selectionofsuitableclimatemodelstouseforimpactstudiesisnota sults(Zhangetal.,2008).However,somestudieshavealsoshownlittle straightforwardtask(Lutzetal.,2016).Differentsourcesofuncer- effectoffinerresolutionDEMsupto90m(ReddyandReddy,2015). taintiessuchasinternalclimaticvariability,climaticmodeluncertainty Owingtothespatialextentofthebasin,themodelused,andtheneed andscenariouncertainty(HawkinsandSutton,2009)inherentinfuture oflong-termsimulationinclimatechangeimpactstudies,webelieve climateprojectionsnecessitatetheuseofmultipledatasources.With- thattheresolutionofspatialdatasetsusedinthestudywouldbeappro- standing the obvious advantages of fine resolution climate data in priate.However,thesespatialdatasetscould,preferablybereplacedby process-basedmodels,futureclimaticprojectionsofGlobalCirculation finerones.Then,athresholddrainageareaof200km2wasusedtode- Models(GCMs)areoftendownscaledandbias-corrected(Bergetal., lineatesub-basins.Additionalsub-basinoutletsatmajorriverconflu- 2012). As for the Western North America (WNA) region, Murdock ences, and at stream flow and sediment monitoring stations, were etal.(2013)assessedaccuracyofclimaticprojections(dailyprecipita- defined.Theprocessresultedinatotalof131sub-basins.Todefine tion,maximumandminimumtemperature)ofall26GCMsinvolved HRUs,aslopemapwasderivedanddividedinto4classes(Fig.S2). intheCoupledModelIntercomparisonProject(CMIP5)(Tayloretal., Usingathresholdof10%,5%and10%forlanduse,soilandslope,respec- 2011),andrankedthetop12GCMsfortheWNAregion.Usingvarious tively,atotalof1370HRUswereobtained.Dailyprecipitation,maxi- downscalingmethods,includingtheBias-Correction/SpatialDisaggre- mum and minimum temperatures data at 73 stations recorded by gation (BCSD), (Wood et al., 2004) using the ANUSPLIN data (GoC,2016),relativehumidity,solarradiation,andwindspeeddataat (Hutchinsonetal.,2009),Murdocketal.(2013)preparedfutureclimate 230stationsrecordedby(CFSR,2016)werefedintothemodel.Toiden- dataat0.0833°×0.0833°(~10km×10km)spatialresolution.Assuch, tifythepointandnon-pointsourcesofpollution,weuseda30m×30m wehaveusedthesame,biascorrected,spatiallydisaggregateddaily cropinventorymap(AAFC,2013)andfound‘SpringWheat’and‘Barley’ precipitation,maximumandminimumtemperaturedatafromthetop asthemajorcropsgrowninthebasin.Accordingly,weassignedappro- 3GCMs(CentreNationaldeRecherchesMeteorologiquesandCerfaces priatemanagementoperations(seedlingandharvestingdates,andfer- –CNRM-CM5,CanadianCentreforClimateModellingandAnalysis– tilizerrates)forthesecrops.Whiletheforestisassumedtobegrowing CanESM2,andCenterforAustralianWeatherandClimateResearch– atthestartofthesimulation,appropriatemanagementoperationsfor ACCESS1–0)outofthe12recommendedby(Murdocketal.,2013). pasture(seedlingandharvestingdates,andfertilizerrates),grassland Then,wedownloadedandprocessedthedatasetsat3306gridpoints andrangeland(grazingoperation,dailybiomassconsumption,andma- coveringtheARB(Fig.S3)fromthePacificClimateImpactConsortium nureproduction)weredefined.Finally,annualconstantpointsource (PCIC)dataportal.Asfortheothermeteorologicalvariablessuchasspe- datafrom7industrialeffluentsand4wastewatertreatmentplants cifichumidity(convertedtorelativehumidity),solarradiationand (AEP,2016)werefedintothemodel. windspeed,weuseddownscaleddata(ataspatialresolutionof0.22° ×0.22°–25km×25km)fromtheCanadianCenterforClimateModel- 2.4. Model sensitivity analysis, calibration, validationand uncertainty ling and Analysis (CCCMA), Regional Climate Model (RCM) - the analysis CanRCM4(Scinoccaetal.,2015).Wedownloadedandprocessedthe datasetsat273gridpoints(Fig.S3).Furthermore,datasetscorrespond- TheSWAT-CUP(Abbaspouretal.,2007)wasusedforthesensitivity, ingtotwoIPCCAR5emissionscenarios-theRCP4.5andtheRCP8.5 calibrationandvalidation,anduncertaintyanalysis.TheNashSutcliffe (IPCC,2014)wereconsidered.Inordertoquantifytheclimatechange Efficiency–NSE(NashandSutcliffe,1970)wasusedastheobjective impactsindifferenttimeperiods,amid-centuryperiod(2040's)with function. We chose the years 1980–1982 as a warm-up period, atimeframeof2021–2060,andalate-centuryperiod(2080’s)witha 1990–2005 for model calibration, and two different periods timeframeof2061–2100,arealsoconsidered.Finally,wedividedthe 1034 N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 Table1 Sedimentrelatedparametersconsideredforthesensitivityanalysis. Name Description Unit Min. Max. Default value value value v__ADJ_PKR.bsn Peakrateadjustmentfactorforsedimentroutinginthesubbasin(tributarychannels)- – 0 2 1 prftributary v__PRF_BSN.bsn Peakrateadjustmentfactorforsedimentroutinginthemainchannel(prfmain) – 0 2 1 v__SPCON.bsn Linearparameterforcalculatingthemaximumamountofsedimentthatcanbereentrained – 0.0001 0.01 0.0001 duringchannelsedimentrouting(csp) v__SPEXP.bsn Exponentparameterforcalculatingsedimentreentrainedinchannelsedimentrouting – 1 2a 1 (spexp) v__CH_COV1.rte Channelerodibilityfactor(Kch) – −0.05 0.6 0 v__CH_COV2.rte Channelcoverfactor(Cch) – −0.001 1 0 v__CH_ERODMO.rte Monthlychannelerodabilityfactor(Kch,monthly) – 0 1 0 v__USLE_C.plant.dat MinimumvalueofUSLECfactorapplicabletothelandcover/plant – 0.001 0.5 Plantb v__USLE_P.mgt USLEequationsupportpractice – 0 1 HRUc r__USLE_K.sol USLEequationsoilerodibility(K)factor 0.013metric −10% 10% Soil ton·m2·ha/(m3·metrictoncm) layerd v=parametervalueisreplacedbygivenvalue;r=parametervalueismultipliedby1±agivenvalue a Maximumlimitwidened. b Plantdependent. c HRUdependent. d Soillayerdependent(maximumvalue=0.65andminimumvalue0). Fig.2.Thebasindivisions(Headwater,Foothill,Prairie,LesserSlaveandBoreal)withstreamflowrecording,sedimentmonitoring,andpointsourcesofpollution(industrialandwaste watertreatmentplant)stations. N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 1035 Table2 3.Resultsanddiscussion Valuesofchosengoodness-of-fitstatisticsofsedimentloadsimulationresultsinthecali- brationperiodwithp-andr-statisticsatfiveselectedsedimentmonitoringstations. TheSWATmodelisabletosimulatethestreamflowatvariousloca- Station Figure n PBIAS NSE RSR p-Stat r-Stat tionswithvaryingdegreesofaccuracy(Fig.S4)asconfirmedbythe Headwater(Athabasca 7(a) 55 −6.5 0.42 0.76 0.47 1.15 valuesofgoodness-of-fitstatistics(TableS3).However,wedidnotre- riveratHilton) (V) (U) (U) producestreamflowresultsinthispaperandreadersarethusreferred Foothill(Athabascariver 7(b) 59 59.8 −0.2 1.10 0.15 1.16 to(Shresthaetal.,2017)forfurtherdetails. atWindfall) (U) (U) (U) LesserSlave(Athabasca 7(c) 115 8.90 0.72 0.53 0.57 0.93 3.1.Parametersensitivity RiveratAthabasca) (V) (V) (V) Boreal(Athabascariverat 7(d) 115 6.80 0.75 0.50 0.37 0.84 FortMcMurray) (V) (V) (V) WerefertoShresthaetal.(2017)fordetailsonsensitiveparameters Boreal(Athabascariver 7(e) 136 0.10 0.74 0.51 0.73 1.01 relatedtostreamflows.Outofthesedimentrelatedparametersconsid- atOldFort) (V) (V) (V) eredforsensitivityanalysis,thechannelcoverfactor(CH_COV2)and monthlychannelerodibilityfactor(CH_ERODMO)werefoundtobe Statisticsarecalculatedaftertransformingthesedimentloadinlog(10-based) scale themostsensitiveparameters.Theexponentparameterforcalculating sedimentcarryingcapacityinthechannel(SPEXP)andpeakrateadjust- n=numberofobservations,p-stat=percentageofobservationcapturedby95% predictiveuncertaintyband. mentfactorforsedimentroutinginthetributarychannel(ADJ_PKR) PBIAS=percentageofbias(%),r-stat=thicknessof95%predictiveuncertainty werefoundtobethethirdandfourthmostsensitiveparameters.Only band. one parameter related to erosion from upland processes, the land NSE=Nash-SutfliffeEfficiency(−). coverfactor(USLE_C)forvariousplanttypes,wasinthetop5ranked RSR=ratioofroot-mean-squared-errortostandarddeviationofobservations. sensitiveparameters.Thisindicatesthatchannelerosionisthedomi- Qualitativeratingforsediment,asperMoriasietal.(2007) nantprocessinsedimenttransportintheARBratherthanuplandero- V:VeryGoodRating:PBIASb15%;0.70bNSE≤1.00;0.00bRSR≤0.55. sion or sediment yield from sub-basins. This is expected, as the G:GoodRating:±15%≤PBIAS≤±30%;0.60bNSE≤0.70;0.55bRSR≤0.63. dominantland-usetypeinallregionsoftheARBisforest(TableS1), S:SatisfactoryRating:±30%≤PBIAS≤±55%;0.45bNSE≤0.60;0.63bRSR≤0.71. andsedimentyieldfromforestland-useisgenerallylow.Furthermore, U:Unsatisfactory:PBIAS≥±55%;NSE≤0.45;RSRN0.71. intensesummerrainfallandhighstreamflowduringspringdueto snowmeltwouldgenerallycausesubstantialchannelerosion.Thesensi- tivityoftheparametersobtainedinthisstudyissimilartootherstudies (Betrieetal.,2015;Vigiaketal.,2016)insimilarwatersheds. 3.2.Sedimentyieldfromsub-basins ARBintofiveregions,namely–headwaters,foothills,prairie,Lesser Slaveandboreal(Fig.2)inordertoquantifyclimatechangeimpacts Fig.3showsspatialdistributionoftheannualaveragesediment onaregionalscale. yield from the delineated sub-basins of theARB, and coefficient of Fig.3.Yearlyaveraged(left)andcoefficientofvariation(CV)sedimentyieldfromsub-basinsofthebasininbaseperiod(1983–2013). 1036 N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 slopeofthetrendline(Fig.5)indicatesthatsedimentyieldfromthe foothillregionismostlystable.WhileintheprairieandLesserSlavere- gions, the average sediment yield is fairly comparable (0.78 and 0.8t/ha/yr,respectively),somesub-basinsoftheregionshaveresulted inhighersedimentyieldastheseregionshaveasubstantialpercentage oftheirareaasagriculturalland.Themanagementoperationscarried outintheagriculturalareas(e.g.plowing)wouldexposethemtoa higherriskoferosion.Further,agriculturalareashavelowvegetation coverduringthecoldseason.Asaresult,althoughthemajorityofthe areaintheseregionshaveaslopeb5%,higherinter-annualvariation insedimentyield(Fig.4)alsoindicateshighersusceptibilityofthere- Fig.4.Annualaveragedsedimentyieldfromdifferentregionsofthebasininbaseperiod giontoerosion.Thisisalsoreflectedinthehigherslopeofthetrendline (1983–2013). (Fig.5).Attheborealplains,asthetopographyisgenerallyflat(slope b 5%), and N95% of its area is forest, the erosion potential is low, variationduringthebase(1983–2005)period.Thesub-basinaverage whichisreflectedinthesedimentyieldplot(Fig.3).Thenarrowest sedimentyieldoftheARBisfoundtobe0.4t/ha/yr,whichiswithin boxplotofinter-annualsedimentyield(Fig.4),andaveryflatslope therangeofvaluesreportedintheliteratureforthisregion.Forin- ofthetrendlinealsoconfirmthis.Theaveragesedimentyieldofthere- stance,Benderetal.(2000)reportederosionratesforAlbertaranging gionisverylow(average:0.02t/ha/yr). from0.05–46.8t/ha/yr,and0.05–2.6t/ha/yrintheOil-Sandsregions Asexpected,theforestandrangelandhaveresultedinthelowest of the basin. Similarly, Golder-Associates (1996) reported erosion sedimentyield,andtheagriculturallandhasthehighestyield(Fig.6). ratesintheUSandCanadarangingfrom0.16–27t/ha/yr.AstheARB Thiscanbemainlyrelatedtolandcoverfactors.Therangelandsandfor- hasflattopography(Fig.S2)andthemajorityofland-usetypeisforest estconsistofwoodyand/orherbaceousperennials,andtopsoillayers (TableS1),itisquitenaturalthatouraverageestimatefallsintothe arebarelyexposedtotheerosiveeffectsofextremerainfall,thereby lowerend of the reported ranges in theliterature. However, some leadingtolowererosion.Ontheotherhand,plantsgrownontheagri- sub-basinsattheheadwaterregionhavesedimentyieldashighas culturallandsareannualones,meaningthatthetopsoilisexposedas 10t/ha/yr(Fig.3). bare(orlowvegetationcover)foralmosthalfoftheyear.Further,agri- Asexpected,theheadwaterregionisthemainsourceofsediment culturalrelatedoperationssuchasplowingfurtherloosenthetopsoil. withanaveragesedimentyieldof3.23t/ha/yr,asthisregionhassteep Hence,erosiveextremerainfallwouldeasilyerodethetopsoiland topographyandahigherpercentageofbare-land.However,marked theseareaswouldyieldhigheramountsofsediment.Moreover,agricul- spatial heterogeneity in the sediment yield is evident in the basin turalareasareoftensubjectedtoephemeralgullyerosion(Daggupati (Fig.3).Higherinter-annualvariationsofsedimentyield,asindicated etal.,2014)albeitassistedbyrowcropping.Insuchacase,theconcen- bythewiderinter-quartilerangeoftheboxplot(Fig.4)intheheadwa- trationofchannelizedflowwouldleadtoanevenhigheramountofero- terregionindicatesthatthesedimentyieldfromthisregionoftheARB sionfromagriculturalareas.Aswehaveseen,thereiswiderinter- issensitivetoclimaticforcing(e.g.precipitation)andland-usetype.The quartilerangeofsedimentyieldfromagricultureland,whichalsocon- scatterplotofannualprecipitationandsedimentyield(Fig.5),andthe firmsthehighererosionpotentialofagriculturalland.Ourestimates slopeofthelineartrendlinefittedbetweenthem,however,confirms ofsedimentyieldfromdifferentland-usetypesarefairlycomparable thatclimaticforcingexertsgreatercontrolonerosionratesinthehead- tothevaluesreportedinliteratureforsimilarwatersheds.Forinstance, waterregion.Itshouldbenotedthattheseverityofinstantaneous,ex- forforestland-use,Benderetal.(2000)reportedcitingGrayandLeiser tremehighrainfallisofhighersignificancethanthetotalprecipitation (1982), US-EPA (1973), and US-EPA (1976), sediment yield of amountforthesedimentyieldfromsub-basins. 0.078t/ha/yr;HuangandLo(2015)reportedarangesedimentyield Atthefoothills,whiletheslopeisprimarilyb5%(Fig.S2),andforest value(0.02–0.07t/ha/yr);andRodríguez-Blancoetal.(2016)reported isthedominantland-usetype(Fig.S1,TableS1),thesedimentyield(av- nearzero(0.002t/ha/yr)sedimentyield.Thesevaluesarefairlycompa- erage:0.6t/ha/yr)reduceddrasticallyincomparisontotheheadwater rabletothemediansedimentyield(0.02t/ha/yr)fromtheforestobtain- region.Anarrowerinter-annualvariation(Fig.4)andafairlystable ed in this study. Similarly, our estimate of mean sediment yield Fig.5.Rateofsedimentyieldasfunctionoftotalannualprecipitationfromdifferentregionsofthebasininbaseperiod(1983–2013). N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 1037 (Stephensetal.,1977)forwoodland.However,ourmeansediment yieldestimateof2.91t/ha/yrfromagriculturallandseemstobeabit lowerthanmostofthereportedvalues;15.6t/ha/yrbyBenderetal. (2000),18.67t/ha/yrbyStephensetal.(1977),21.6–30t/ha/yrby Huang and Lo (2015), and 3.09 t/ha/yr by Rodríguez-Blanco et al. (2016).Whilethesedimentyielddependsonvariousfactors,alower yieldcouldbeduetotherelativelyflatslope(b5%)inagriculturaldom- inatedareasoftheARB.Further,themeanannualprecipitationinthese regions is quite low (~500 mm), of which a significant proportion (~20%)issnowfall.However,wemadeanefforttoincreasethesedi- mentyieldatHRUshavingagriculturalareasastheland-usetype,byin- Fig.6.Annualaveragedsedimentyieldfromdifferentland-usetypesofthebasininbase creasingtherelatedparameterstotheupperendoftheallowablerange period(1983–2013). (e.g.,C calibratedvalue=0.45,maximumvalue=0.5;andK USLE USLE fixedtoitsmaximumvalueof0.65,ADJ_PKRandPRF_BSN=2).Simi- (0.78t/ha/yr)fromrangelandiscomparabletoavalueof0.78t/ha/yrby larly,themeansedimentyieldfrompastureis1.53t/ha/yr,whichis Bender et al. (2000) for grassland, and to a value of 1.01 t/ha/yr also comparable to values reported in literature (0.78 t/ha/yr by Fig.7.Observedandsimulatedsedimentloadtransportedthrough(a)Headwater(atHilton),(b)Foothill(atWindfall),(c)LesserSlave(atAthabasca),(d)Boreal(atFortMcMurray), (e)Boreal(atOldFort)incalibrationperiod(1990–2005)with95%totalpredictiveuncertaintybands. 1038 N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 (Benderetal.,2000)and4.33t/ha/yrbyStephensetal.(1977),and theuplandcatchmentswouldbeminimal,orevenzeroduringsuchpe- higherthantheestimate(0.005t/ha/yr)of Rodríguez-Blancoetal. riods,theoverestimationshouldthusberelatedtothesedimentcarry- (2016).TheoptimizedvaluesforC foragriculture,forest,pasture ingcapacityofthechannel.Therefore,wepurposefullyloweredthe USLE andrangelandwere0.475,0.009,0.4505and0.005respectively.Simi- valuesSPEXPandSPCONtotheirallowableminimumvaluesandset larly,theoptimizedvalueforP wascloseto1.0,andtheoptimized CH_ERODMOvaluetozero.However,theloweredvaluesoftheparam- USLE value for K for agriculture, forest, pasture and rangeland were etersalsoloweredthehighersedimentvaluesandthemodelmissedthe USLE 0.65, 0.05, 0.3and0.05respectively.Theseparametersweretuned high sediment loads. To overcome this problem, we increased the basedontheinitialestimateprovidedbyAAFC(2002). SPEXPbeyondtheirallowablelimitof2.0,soastogetthedesiredeffect ofloweringsedimentloadduringlowflowperiodsandincreasingsed- 3.3.Sedimentloadtransportedthroughreaches imentloadduring storm conditions.An illustration of the effect of SPEXPonthesedimentcarryingcapacityofachannelfordifferentsets Ingeneral,themodelisabletoreproducethetrendinobservations ofchannelvelocity(Vpk,ch)isshowninFig.S5.Itisevidentthatwhen ofsedimentloadsatallstations.Qualitativeratingsofsedimentload Vpk,chislowerthan1.0(lowflowperiods),thesedimentcarryingcapac- simulationsindicatethatthesedimentloadissimulatedwitha‘Very itydecreasesastheSPEXPincreases.Conversely,whenVpk,chisN1.0 Good’accuracy(PBIASb15%,NSEN0.7andRSRb0.55)atdownstream (stormconditions),thesedimentcarryingcapacityincreasesasSPEXP stations(Fig.7c–e),whilethesedimentloadissimulatedwith‘Satisfac- increases. In the Bagnold's equation, which was mainly for non- tory’ accuracy in upstream stations (Fig. 7 a–b). Graphical plotting cohesiveparticles,SPEXPensuresnonlinearitiesinthecarryingcapacity showsthat,whilethemodeltendstocapturehighersedimentload ofachannelasvelocitiesincrease(forSPEXP≠1.0).Duringlowflowpe- quitewell,thelowersedimentloadhasbeenslightlyoverestimated,es- riods,cohesivesedimentmightonlyslightlyerode,butwhenvelocity peciallyatdownstreamstations.Suchoverestimationistypicallyob- increases,erosionofcohesivesedimentmightincreaseexponentially servedinlowflowperiods(coldseason).Asthesedimentyieldfrom morethannon-cohesivesediments.Hence,theuseofSPEXPbeyond Fig.8.(a)Percentagechangeinaveragemonthlyprecipitation,(b)absolutechangeinaveragemonthlyairtemperatureoverthebasinbetweenbaseandtwofutureperiodsfortwo emissionscenarios(iandii). N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 1039 Fig.9.Annualaveragedchangesinsedimentyield(SYLD)fromsub-basinsofthebasinintwofutureperiodsfortwoemissionscenarios,relativetobaseperiod. the maximum allowable limit might bejustified. This issue indeed 2017;Tothetal.,2006).Moreextremeseasonalvariationsareexpected needsfurtherinvestigation.Theoptimizedvaluesfortheparameters; indifferentregionsoftheARB(TableS4).ExceptfortheCanESM2based SPCON, SPEXP, CH_COV2, CH_ERODOMOJan → Mar & Nov → Dec, projections,summerprecipitation,whichisofparticularrelevanceto CH_ERODOMOApr → Oct were 0.0002, 2.99, 0.975, 0.01 and 0.99, theerosionandsedimenttransport,isexpectedtodecreaseinallre- respectively. gionsoftheARB.However,substantialincreasesinspringprecipitation (upto53%)andearlyspringfreshetduetoincreasesinspringtemper- 3.4.Climatechangeimpact ature(upto4.4°C)wouldindicatethatbothsoilerosionandsediment transportwouldincreaseinthefuture,especiallyinthespringseason. Basin-wideaveragedmonthlypercentageandabsolutechangesof Further,frequencyanalysisofextremeprecipitation(dailyprecipitation precipitationandtemperature,respectively,intwofutureperiodsrela- N25mm,Fig.S6)revealedthatthiseventswouldbecomeslightlymore tivetothebaseperiodfortwoemissionscenarios(Fig.8)showedthat extreme,especiallythosecorrespondingtohigherreturnperiods(e.g. weatherintheARBisprojectedtobewarmerandwetter(exceptin N100 years)andin thelate-centuryperiod.Reflectingthetrendof Summerseason),especiallyinthelate-centuryperiodforthehigher changesinprecipitation,thestreamflow,onaverage,isprojectedtoin- emissionscenario.However,therearenoticeabledifferencesbetween creaseinallseasonsexceptatthefoothills,prairieandLesserSlavere- theprojectionsofdifferentclimatemodels.Ingeneral,CanESM2based gionsduringthesummerseason(TableS5). projectionsarerelativelywetterandwarmerthanACCESS1–0and CNRM-CM5basedprojections.Themid-centurymeanannualtempera- 3.4.1.Sedimentyieldfromdifferentregions tureisprojectedtochangeby0.4–2.0°C,dependingontheclimatic Thechangesintheannualaveragesedimentyieldshowmarkedspa- modelsandemissionscenarios.Furtherincreases(1.7–5.2°C)areex- tial(Fig.9)andtemporal(Table3,TableS6)heterogeneity.Thechanges pected in the late-century period. These increments are consistent areregion,climaticmodel,futureperiod,andemissionscenariospecific. withobservationsmadebyseveralstudies,e.g.(Eumetal.,2017;Toth Attheheadwaterregion,theincreaseinannualsedimentyield,on etal.,2006).Similarly,increasesof3–15%and7–26%inannualaverage average,ishighest(+11%)inthemid-centuryperiodforthehigher precipitationareexpectedinthemid-centuryandlate-centuryperiods, emissionscenario(Table3),dominatedbysignificantincreases(upto respectivelyrelativetothebaseperiod.Theseincrementsareconsistent 70%)inautumnperiodseasonalsedimentyield(TableS6).Thismight (orslightlyhigher)withmostofthereportedvalues,e.g.(Eumetal., bedrivenbyhigheroccurrencesofextremeprecipitationforthemid- Table3 Percentagechangeinannualaverageinsedimentyieldintwofutureperiodsandfortwoemissionscenarios,relativetobaseperiod(t/ha)indifferentregionsofthebasin. Periods/regions Climatemodel Baseperiod(1983–2013) RCP4.5(2021–2060) RCP4.5(2061–2100) RCP8.5(2021–2060) RCP8.5(2061–2100) Headwater ACCESS1-0 3.23 3.17(−2%) 3.03(−6%) 2.92(−10%) 2.8(−13%) CanESM2 3.18(−1%) 3.59(11%) 3.02(−6%) 3.39(5%) CNRM-CM5 3.82(18%) 4.13(28%) 3.44(7%) 3.71(15%) Mean(%) 3.39(5%) 3.59(11%) 3.13(−3%) 3.3(2%) Foothill ACCESS1-0 0.60 0.49(−19%) 0.57(−6%) 0.41(−32%) 0.46(−24%) CanESM2 0.56(−7%) 0.73(20%) 0.56(−8%) 0.65(7%) CNRM-CM5 0.59(−3%) 0.56(−8%) 0.58(−4%) 0.69(14%) Mean(%) 0.55(−10%) 0.62(2%) 0.51(−15%) 0.6(−1%) Prairie ACCESS1-0 0.78 0.62(−20%) 0.73(−6%) 0.65(−16%) 0.64(−18%) CanESM2 0.76(−3%) 0.75(−3%) 0.69(−12%) 0.78(0%) CNRM-CM5 0.69(−12%) 0.61(−21%) 0.62(−20%) 0.82(6%) Mean(%) 0.69(−11%) 0.7(−10%) 0.65(−16%) 0.75(−4%) LesserSlave ACCESS1-0 0.80 0.73(−9%) 0.9(13%) 0.71(−12%) 0.78(−2%) CanESM2 1(25%) 1.38(71%) 0.99(23%) 1.63(103%) CNRM-CM5 0.83(3%) 0.75(−7%) 0.76(−6%) 1.12(39%) Mean(%) 0.85(6%) 1.01(26%) 0.82(2%) 1.18(47%) Boreal ACCESS1-0 0.02 0.01(−31%) 0.01(−14%) 0.01(−19%) 0.02(−2%) CanESM2 0.02(−8%) 0.02(41%) 0.02(5%) 0.03(70%) CNRM-CM5 0.01(−28%) 0.01(−21%) 0.01(−25%) 0.02(−5%) Mean(%) 0.01(−22%) 0.02(2%) 0.02(−13%) 0.02(21%)