ebook img

Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate PDF

2018·5.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate

ScienceoftheTotalEnvironment625(2018)1030–1045 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate ⁎ NarayanKumarShrestha,JunyeWang AthabascaRiverBasinResearchInstitute(ARBRI),AthabascaUniversity,1UniversityDrive,Athabasca,ABT9S3A3,Canada H I G H L I G H T S G R A P H I C A L A B S T R A C T • Climatechangeimpactanalysisonero- sionandsedimenttransportoftheAth- abasca River Basin (ARB) using the SWATmodel • Future(mid-andlate-century)climate datageneratedbythreeclimatemodels forRCP4.5and8.5emissionscenarios • Impactsduetoclimatechangearefound toberegionspecificandland-usetype dependent. • Channelerosionanddepositionwere thedominantprocessesoverhillslope erosion. • Incrementonsoilerosionrateduetocli- matechangeisgreaterthanreported soilformationrates. a r t i c l e i n f o a b s t r a c t Articlehistory: Theeffectsofclimatechangeonsedimentyieldandtransportdynamicsincoldclimateregionsarenotwellun- Received3November2017 derstoodorreported.Inthisstudy,theSoilandWaterAssessmentTool(SWAT)hasbeenbuilt-up,calibrated,and Receivedinrevisedform31December2017 validatedagainststreamflowandsedimentloadatseveralmonitoringstationsinacoldclimateregionwatershed Accepted31December2017 -theAthabascaRiverBasin(ARB)inAlberta,Canada.Themodelwasthenfedwithbias-correctedspatialdisag- Availableonline5January2018 gregatedhigh-resolution(~10km)futureclimatedatafromthreeclimatemodelsfortwoemissionscenarios (RCP4.5and8.5),andtwoperiods(mid-andend-century).Resultsshowthatchannelerosionanddeposition Keywords: Coldclimateregions arethedominantprocessesoverhillslopeerosioninthebasin.Onaverage,apredictedwarmerandwetterfuture Climatechange climatehasbothsynergeticandoffsettingeffectsonsedimentyield.Changesaresub-regionspecificandland-use Sedimentyieldandtransport typedependent,thusreflectingamarkedspatialandtemporalheterogeneitywithinthebasin.Increasesonsed- Swat imentyieldinfutureperiodsintheagriculturalareasareupto0.94t/ha/yr,andaregreaterthanreportedsoilfor- AthabascaRiverbasin mationratesintheregion.Similarly,whilesubstantialincreases(bymorethantwofold)inthesedimentload transportthroughtheriverreacheswereobtained,thechangesshowbothtemporalandspatialvariability, andarecloselyalignedwiththetrendofstreamflows.Webelievethatavailabilityofsuchmodelsandknowledge oftheeffectoffutureclimaticconditionswouldhelpwatermanagersformulateappropriatescenariostomanage suchbasinsinaholisticway.However,significantuncertaintiesinfuturesedimentyieldandtransport,asaresult ofvariationsinclimaticforcingofdifferentclimatemodels,needtobeconsideredinanyadaptationmeasures. ©2018ElsevierB.V.Allrightsreserved. ⁎ Correspondingauthor. E-mailaddress:[email protected](J.Wang). https://doi.org/10.1016/j.scitotenv.2017.12.347 0048-9697/©2018ElsevierB.V.Allrightsreserved. N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 1031 1.Introduction patches,increasederosivepowerofextremerainfallwouldaccelerate soilerosionbyseveralfold.Similarly,inthelowerregionsoftheARB, Itisnowevidentthatclimatechangeisarealphenomenon(IPCC, wheretheriver-bedslopeisratherflat,depositionoflargeamountsof 2014).Climatechangeinducedhydrologicalaltercationsmayposea erodedsedimentfromupstreamsub-basinswouldmakenavigationim- threattowaterresources,canleadtoexcessivelanddegradation,and possible,especiallyduringlowflowperiods. posesathreattoenvironmentalsustainabilityofariverbasin.Climate WhilethereareanumberofstudiesinwhichtheARBisassessed changeaffectserosionfromuplandcatchmentsandthesedimenttrans- forclimatechangeimpacts,thesestudieshavefocusedprimarilyon portintheriverreachesinmanyways(IPCC,2007).Therefore,thereisa the variability and/or trends of stream flows. For instance, Eum pressingneedtoassesstheimpactsofachangingclimateintheerosion etal.(2017)assessedimpactsofclimatechangeconsideringvarious andsedimenttransportdynamicsofariverbasin.Severalstudieshave hydrologicindicators(seasonalflows,timingandmagnitudeofmax- beenconductedonthissubjectandwidelyreportedinliterature.Ingen- imumandminimumflows,anddateandflowatspringfreshet)at eral,studieshaveshownthatprojectedincreasesintemperatureand upper,middleandlowerreachesoftheARB.Similarly,Leongand projectedincreasesordecreasesinprecipitationhaveresultedincon- Donner (2015) evaluated impacts of climate change on annual trastingsituations.Forinstance,Ademetal.(2016)foundasynergetic flow,centroidofflow,andtimingofspringrunoffatastationdown- responseofincreasesintemperatureandprecipitationonmeanannual streamofoil-sandsregionoftheARB,includingimpactsonlow-flow sedimentyieldintheUpperGilgelAbaycatchment,BlueNileBasin, frequency.Inarecentstudy,Shresthaetal.(2017)assessedgreen Ethiopia.However,Rodríguez-Blancoetal.(2016)foundnon-linearre- and blue water resources at different regions of the ARB. To the sponsesbetweenchangesinclimaticvariablesandsedimentconcentra- bestofourknowledge,therehasbeenlittleassessmentofclimate tionsintheCorbeiracatchment,Spainduetocomplexinteractions changeimpactsonsedimentyieldandtransportdynamicsincold betweenclimaticforcing,atmosphericcarbondioxidelevel,biomass, climatebasins,ingeneralandintheARBinparticular.Becauseof wateryield(andstreamflow),andsoildetachmentandtransportdy- theconsequencesoflanddegradation,itisnecessarytoperforman namics.Similarobservationshavealsobeenmadebyotherresearchers assessment of climate change impacts on erosion and sediment (Ficklinetal.,2013;Nunesetal.,2008;Serpaetal.,2015;Zabaletaetal., transportintheARB.Assuch,thisstudywascarriedoutwiththepri- 2014).Interestingly,Serpaetal.(2015)observedtwocontrastingsitua- maryobjectiveofquantifyingtheimpactsofclimatechangeonthe tions:decreasesinerosionratesinahumidMediterraneancatchment sedimentyieldandtransportdynamicsindifferentspatialandtem- withapermanentvegetationcover,andincreasesinerosionratesina poralscales.Forthis,wecalibratedandvalidatedtheSoilandWater dry Mediterranean catchment with a perennial vegetation cover, Assessment Tool (SWAT) for this cold climate, snow dominated whichhighlightstheimportanceofvegetationcoveronerosionrates. basin.Then,highresolution(~10km)biascorrected,spatiallydisag- BasedontheresultsonUKandEuropeancatchments,Dadsonetal. gregated future climate data from three climate models for two (2010)alsoobservedcomplexinteractionsbetweeninvolvedvariables. emission scenarios (RCP 4.5 and 8.5) and for two future periods However,theysuggestedthatprecipitationandland-coverwouldexert (mid-andend-century)wasfedintothemodel.Webelievethat thestrongestcontroloversoilerosiondynamics.Similarly,Ficklinetal. theresultsofthisstudycanbetranslatedfortheholisticwatershed (2013)highlightedtheroleofbiomassgrowthasaresultofawarmer managementoftheARBasawhole,andisapplicabletoothercold temperatureanditsimpactonsurfacerunoffanderosionratesinanag- climateregionsaswell. riculturalwatershedinCalifornia,USA.IntheNamOubasin,LaoPDR, Shresthaetal.(2013a)foundsignificantuncertaintyinsedimentyield andfluxasaresultofvariationsinclimateforcingofdifferentmodels 2.Materialsandmethods andstressedtheneedtoconsidertheuncertaintiesinadaptationmea- sures.Hence,itisevidentthatprojectedchangesinerosionandsedi- 2.1.Studyarea ment transport are region specific, and are the result of various underlyingfactors.Consequently,thereisaneedtoassesstheclimate TheAthabascaRiverBasin(ARB)istypicalofcoldclimatebasins.It changeimpactsonerosionandsedimenttransportinnewwatersheds, liesinthecentreoftheprovinceofAlbertainCanadaandcontributes includingcoldclimateregions. significantlytotheprovincialeconomybyprovidingacontinuousand Coldclimateregionsservicemultipleecosystemfunctions,suchas dependablewatersupplytovariousindustriesandlocalcommunities climateregulation,waterinfiltration,andbiodiversityconservation (AWC, 2011). The river originates in the Columbia Icefields in (AWC,2011;Black,1997).However,climatechangeandhumanactivi- Canada's Rocky Mountains and flows about 1500 km North-East, ties,suchasever-increasingindustrializationandagrowingpopulation, drainingintoLakeAthabascainthenorth(Fig.1).Thecatchmentarea disturbtheseimportantecosystemsleadingtoseverelanddegradation. oftheARBatthemouthisabout161,000km2.Therivercrossesthrough Thishasresultedinwaterqualityimpairmentsinreceivingwaterbod- variousurbancentresintheprocess(AWC,2011).Majorindustriesin iesandhavelimitedtheirecologicalfunctions(Crabilletal.,1999).In thebasinincludeagriculture,forestry,pulpmills,coalmining,tradition- ordertounderstandandanalyzesuchaninterrelatedandcomplexen- aloilandgasextraction,andoil-sandsmining(AWC,2013).Theriver vironmentprocess,anintegratedmodellingframeworkthatconsiders receivespointsourcepollutionfromwastewatertreatmentplantsin allterrestrialandaquaticecosystemsisneeded(Argentetal.,2006). the urban centres, effluent from industries, and leachate from oil- Insuchintegratedmodellingframeworks,erosionandsoiltransport sandstailingponds(AWC,2014),aswellasnon-pointsourcepollution modellingisessentialbecausesedimentsprovidesurfaceareaforcon- fromagriculture. taminantstobeadsorbed,andsedimentscanbeapathwayfornutrient Forestisthedominantlandusetypeinthebasinwithalmost82% transfer from the river-bed to the water column and vise-versa coverage. Of the different forest types, evergreen forest (FRSE, (Ouattaraetal.,2011;Shresthaetal.,2014;Shresthaetal.,2013b).In TableS1)hasthehighestproportioninallregions(Fig.S1)oftheARB. cold regions, such as the Athabasca River Basin (ARB) in Alberta, Relativelyflattopographyandahighercoverageofdifferenttypesof Canada,higherwintertemperaturesmightconvertnon-erosivesnow- forests(~90%)intheborealplainregion(Fig.S1)makethisarealeast fallintoerosiverainfall.Thiswouldmeltpermafrost,therebyincreasing pronetoerosion.However,theheadwaterregion,withsteeptopogra- wintersurfacerunoff,andleadingtoincreasedsoilerosionfromhill phy(slopesN20%,Fig.S2)andthehighestpercentageofbarrenland, slopesandsedimenttransportthroughthereaches(IPCC,2007;IPCC, makeitmostsusceptibletoerosion.Also,regionssuchasPrairieand 2014).Furthermore,explorationoftheoil-sandsistypicalintheARB. LesserSlave,whichhavethehighestpercentageofagriculturearea, Thiscaninducechangesinthelandscapeofthebasin.Lesserodiblefor- (~45%and~19%respectively,TableS1),arepronetohigherratesofero- estwouldbechangedintoeasilyerodible,barelandpatches.Onsuch sionduetolowornovegetationcoverinnon-growingseasons. 1032 N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 Fig.1.LocationofthebasinwiththeLakeAthabasca,theoutletoftheAthabascaRiver,digitalelevationmodel(DEM)andurbancentres. 2.2.Thesoilandwaterassessmentmodel andmanagementfactor(−);P =supportpracticefactor(−);LS = USLE USLE topographicfactor(−);CFRG=coarsefragmentfactor(−). TheSoilandWaterAssessmentTool(SWAT)isasemi-distributed SWATalsoaccountsforthesnowcoverageeffectonerosion(Neitsch hydrologicalsimulatorusedforcontinuous,longtermsimulationofa etal.,2011): varietyofprocesses(Arnoldetal.,1998).Thesimulatorusesspatial datasetsofelevation,landuseandsoiltypesalongwithseveralhydro- sed0 meteorologicaldatasets,typicallyintegratedusinggeographicinforma- sed¼ (cid:4)3(cid:2)SNO(cid:5) ð2Þ tionsystems(Winchelletal.,2010).SWATdividesawatershedinto exp 25:4 sub-basins, which are further divided into Hydrological Response Units(HRUs),thelatterbeingauniquecombinationofsoil,landuse where,sed′=sedimentyield(metrictons),asinEq.(1);SNO=water and slope (Arnold et al., 2011). The hydrological compartment of contentofthesnowcover(mm). SWATconsidersprecipitation,infiltration,deepaquifer,channeltrans- Sedimentcontributionfromlateralandgroundwaterflowscanalso missionandevapotranspirationlosses,surfacerunoff,lateralandreturn beconsidered.Once,sedimentsareinthestream,thesedimentcarrying flowforwaterbalancecalculations.SWATusestheModifiedUniversal capacityofthechannelisdeterminedas(Bagnold,1977): SoilLossEquationtoestimatesoilerosionandsedimentyieldfrom eachHRUs(WilliamsandBerndt,1977): concsed;ch;mx¼csp:vscphe;pxkp ð3Þ (cid:1) (cid:3) sed0¼11:8 Q (cid:2)q (cid:2)area 0:56K (cid:2)C (cid:2)P (cid:2)LS surf peak hru USLE USLE USLE USLE where,conc =maximumsedimentconcentrationthatcanbe (cid:2)CFRG ð1Þ sed,ch,mx entertrainedinthechannel(tons/m3);c =acoefficient(−);spexp sp =anexponentparameter;v =peakchannelvelocity(m/s)=qch;pk whah)e;rqes,usrfe=d′p=easkedruimnoefnft(myi3e/lsd);(mareeatrhircut=onHs)R;UQasurref=(has)u;rKfaUcSeLEr=unsooffil(emromd-/ ¼prAf(cid:3)cqhch;prf=peakrateadjuchs,tpmkentfactor(−);Ach=crosssectionAcahl ibilityfactor(0.013metricton·m2·ha/(m3·metrictoncm));C =cover areaofthechannelflow(m2);q =averagechannelflow(m3/s). USLE ch N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 1033 Themaximumcarryingcapacityisthencomparedagainsttheinitial (1983–1989 and 2006–2013) for model validation. These periods sediment concentration at a reach (conc ). If conc werechosensystematicallyinordertoincludebothdrierandwetterpe- sed,ch,i sed,ch,i Nconc ,thendepositionprevails,otherwise,degradationpre- riods, as determined by the Standardized Precipitation Index (SPI) sed,ch,mx vails.Theamountdepositionordegradationis(Neitschetal.,2011): (McKeeetal.,1993).ReferShresthaetal.(2017)totheSPIplots.This (cid:6) (cid:7) wouldensurethatthecalibratedandvalidatedmodelcouldsimulate seddep¼(cid:6)concsed;ch;i−concsed;ch;mx(cid:7)(cid:3)Vch ð4Þ variablesofinterestsatisfactorilyinany(drierandwetter)futurecondi- seddeg¼ concsed;ch;mx−concsed;ch;i (cid:3)Vch(cid:3)Kch(cid:3)Cch: tions(Daggupatietal.,2015).Aserosionandsedimenttransportdy- namicsarehydrologicallydrivenprocesses,simultaneouscalibration where, sed = amount of sediment deposited (tons); sed = ofstreamflowandsedimentrelatedparametersisrequired.Further, dep deg amountofsedimentdegraded(tons);V =volumeofwater(m3); someparameterssimultaneouslyaffectthestreamflow,erosionand ch K =channelerodibilityfactor(cm/ha/Pa);C =channelcoverfactor. sedimenttransportdynamics.Assuch,weselected30flowrelated ch ch Aftermaintainingthesedimentbalanceonthereach,thesediment (TableS2)and10sedimentrelatedparameters(Table1)forsensitivity concentrationoutofthereachisgivenas(Neitschetal.,2011): analysis. The model was calibrated using streamflow data (Environment-Canada,2016)recordedat35stations(Fig.S3),andsed- V imentdata(AEP,2016)recordedat5stations(Fig.2).Apropercalibra- sed ¼sed out ð5Þ out chVch tionisassumedtobeachievedwhenreasonablevaluesoftheselected goodness-of-fitstatistics,andagoodvalueofp-andr-statistics(ideal where,sed =sedimenttransportedoutofthereach(tons);sed = valueis1,and0,respectively)isobtained(Table2).Thep-statisticsre- out ch sedimentinthereach(tons);V =volumeofwatertransportedoutof flectthepercentageofobservationsbracketedbythe95%predictionun- out thereach(m3);V =volumeofthewaterintherach(m3). certainty band, and the r-factor denotes the width of the band ch (Abbaspouretal.,2007).Forthemodelperformanceevaluation,we 2.3.Modelinputsandbuild-up chosePercentageofBias(PBIAS),theNSE,andratioofroot-mean- squarederrortostandarddeviation(RSR).Basedontherangeofvalues A90m×90mhole-filleddigitalelevationmodel(Jarvisetal.,2008) ofthesethreeselectedgoodness-of-fitstatistics,weassignedaqualita- (Fig.1),1kmx1kmGlobalLandCoverCharacterizationbasedland-use tiveratingoutofthefour(VeryGood,Good,SatisfactoryandUnsatisfac- map(Lovelandetal.,2000)(Fig.S1),and1:1millionscalesoilmap tory)suggestedbyMoriasietal.(2007)tothemodelresults. (SLC,2010)werethespatialdatasetsusedinthemodelbuild-up.We areawareofpotentialbenefitsoffinerresolutionspatialdatasetssuch 2.5.Climatechangedata astheDEMasithasbeenshownthatfinerspatialdatasetstendtogen- eratebetterhydrological(Teegavarapuetal.,2006)andsoilerosionre- Selectionofsuitableclimatemodelstouseforimpactstudiesisnota sults(Zhangetal.,2008).However,somestudieshavealsoshownlittle straightforwardtask(Lutzetal.,2016).Differentsourcesofuncer- effectoffinerresolutionDEMsupto90m(ReddyandReddy,2015). taintiessuchasinternalclimaticvariability,climaticmodeluncertainty Owingtothespatialextentofthebasin,themodelused,andtheneed andscenariouncertainty(HawkinsandSutton,2009)inherentinfuture oflong-termsimulationinclimatechangeimpactstudies,webelieve climateprojectionsnecessitatetheuseofmultipledatasources.With- thattheresolutionofspatialdatasetsusedinthestudywouldbeappro- standing the obvious advantages of fine resolution climate data in priate.However,thesespatialdatasetscould,preferablybereplacedby process-basedmodels,futureclimaticprojectionsofGlobalCirculation finerones.Then,athresholddrainageareaof200km2wasusedtode- Models(GCMs)areoftendownscaledandbias-corrected(Bergetal., lineatesub-basins.Additionalsub-basinoutletsatmajorriverconflu- 2012). As for the Western North America (WNA) region, Murdock ences, and at stream flow and sediment monitoring stations, were etal.(2013)assessedaccuracyofclimaticprojections(dailyprecipita- defined.Theprocessresultedinatotalof131sub-basins.Todefine tion,maximumandminimumtemperature)ofall26GCMsinvolved HRUs,aslopemapwasderivedanddividedinto4classes(Fig.S2). intheCoupledModelIntercomparisonProject(CMIP5)(Tayloretal., Usingathresholdof10%,5%and10%forlanduse,soilandslope,respec- 2011),andrankedthetop12GCMsfortheWNAregion.Usingvarious tively,atotalof1370HRUswereobtained.Dailyprecipitation,maxi- downscalingmethods,includingtheBias-Correction/SpatialDisaggre- mum and minimum temperatures data at 73 stations recorded by gation (BCSD), (Wood et al., 2004) using the ANUSPLIN data (GoC,2016),relativehumidity,solarradiation,andwindspeeddataat (Hutchinsonetal.,2009),Murdocketal.(2013)preparedfutureclimate 230stationsrecordedby(CFSR,2016)werefedintothemodel.Toiden- dataat0.0833°×0.0833°(~10km×10km)spatialresolution.Assuch, tifythepointandnon-pointsourcesofpollution,weuseda30m×30m wehaveusedthesame,biascorrected,spatiallydisaggregateddaily cropinventorymap(AAFC,2013)andfound‘SpringWheat’and‘Barley’ precipitation,maximumandminimumtemperaturedatafromthetop asthemajorcropsgrowninthebasin.Accordingly,weassignedappro- 3GCMs(CentreNationaldeRecherchesMeteorologiquesandCerfaces priatemanagementoperations(seedlingandharvestingdates,andfer- –CNRM-CM5,CanadianCentreforClimateModellingandAnalysis– tilizerrates)forthesecrops.Whiletheforestisassumedtobegrowing CanESM2,andCenterforAustralianWeatherandClimateResearch– atthestartofthesimulation,appropriatemanagementoperationsfor ACCESS1–0)outofthe12recommendedby(Murdocketal.,2013). pasture(seedlingandharvestingdates,andfertilizerrates),grassland Then,wedownloadedandprocessedthedatasetsat3306gridpoints andrangeland(grazingoperation,dailybiomassconsumption,andma- coveringtheARB(Fig.S3)fromthePacificClimateImpactConsortium nureproduction)weredefined.Finally,annualconstantpointsource (PCIC)dataportal.Asfortheothermeteorologicalvariablessuchasspe- datafrom7industrialeffluentsand4wastewatertreatmentplants cifichumidity(convertedtorelativehumidity),solarradiationand (AEP,2016)werefedintothemodel. windspeed,weuseddownscaleddata(ataspatialresolutionof0.22° ×0.22°–25km×25km)fromtheCanadianCenterforClimateModel- 2.4. Model sensitivity analysis, calibration, validationand uncertainty ling and Analysis (CCCMA), Regional Climate Model (RCM) - the analysis CanRCM4(Scinoccaetal.,2015).Wedownloadedandprocessedthe datasetsat273gridpoints(Fig.S3).Furthermore,datasetscorrespond- TheSWAT-CUP(Abbaspouretal.,2007)wasusedforthesensitivity, ingtotwoIPCCAR5emissionscenarios-theRCP4.5andtheRCP8.5 calibrationandvalidation,anduncertaintyanalysis.TheNashSutcliffe (IPCC,2014)wereconsidered.Inordertoquantifytheclimatechange Efficiency–NSE(NashandSutcliffe,1970)wasusedastheobjective impactsindifferenttimeperiods,amid-centuryperiod(2040's)with function. We chose the years 1980–1982 as a warm-up period, atimeframeof2021–2060,andalate-centuryperiod(2080’s)witha 1990–2005 for model calibration, and two different periods timeframeof2061–2100,arealsoconsidered.Finally,wedividedthe 1034 N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 Table1 Sedimentrelatedparametersconsideredforthesensitivityanalysis. Name Description Unit Min. Max. Default value value value v__ADJ_PKR.bsn Peakrateadjustmentfactorforsedimentroutinginthesubbasin(tributarychannels)- – 0 2 1 prftributary v__PRF_BSN.bsn Peakrateadjustmentfactorforsedimentroutinginthemainchannel(prfmain) – 0 2 1 v__SPCON.bsn Linearparameterforcalculatingthemaximumamountofsedimentthatcanbereentrained – 0.0001 0.01 0.0001 duringchannelsedimentrouting(csp) v__SPEXP.bsn Exponentparameterforcalculatingsedimentreentrainedinchannelsedimentrouting – 1 2a 1 (spexp) v__CH_COV1.rte Channelerodibilityfactor(Kch) – −0.05 0.6 0 v__CH_COV2.rte Channelcoverfactor(Cch) – −0.001 1 0 v__CH_ERODMO.rte Monthlychannelerodabilityfactor(Kch,monthly) – 0 1 0 v__USLE_C.plant.dat MinimumvalueofUSLECfactorapplicabletothelandcover/plant – 0.001 0.5 Plantb v__USLE_P.mgt USLEequationsupportpractice – 0 1 HRUc r__USLE_K.sol USLEequationsoilerodibility(K)factor 0.013metric −10% 10% Soil ton·m2·ha/(m3·metrictoncm) layerd v=parametervalueisreplacedbygivenvalue;r=parametervalueismultipliedby1±agivenvalue a Maximumlimitwidened. b Plantdependent. c HRUdependent. d Soillayerdependent(maximumvalue=0.65andminimumvalue0). Fig.2.Thebasindivisions(Headwater,Foothill,Prairie,LesserSlaveandBoreal)withstreamflowrecording,sedimentmonitoring,andpointsourcesofpollution(industrialandwaste watertreatmentplant)stations. N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 1035 Table2 3.Resultsanddiscussion Valuesofchosengoodness-of-fitstatisticsofsedimentloadsimulationresultsinthecali- brationperiodwithp-andr-statisticsatfiveselectedsedimentmonitoringstations. TheSWATmodelisabletosimulatethestreamflowatvariousloca- Station Figure n PBIAS NSE RSR p-Stat r-Stat tionswithvaryingdegreesofaccuracy(Fig.S4)asconfirmedbythe Headwater(Athabasca 7(a) 55 −6.5 0.42 0.76 0.47 1.15 valuesofgoodness-of-fitstatistics(TableS3).However,wedidnotre- riveratHilton) (V) (U) (U) producestreamflowresultsinthispaperandreadersarethusreferred Foothill(Athabascariver 7(b) 59 59.8 −0.2 1.10 0.15 1.16 to(Shresthaetal.,2017)forfurtherdetails. atWindfall) (U) (U) (U) LesserSlave(Athabasca 7(c) 115 8.90 0.72 0.53 0.57 0.93 3.1.Parametersensitivity RiveratAthabasca) (V) (V) (V) Boreal(Athabascariverat 7(d) 115 6.80 0.75 0.50 0.37 0.84 FortMcMurray) (V) (V) (V) WerefertoShresthaetal.(2017)fordetailsonsensitiveparameters Boreal(Athabascariver 7(e) 136 0.10 0.74 0.51 0.73 1.01 relatedtostreamflows.Outofthesedimentrelatedparametersconsid- atOldFort) (V) (V) (V) eredforsensitivityanalysis,thechannelcoverfactor(CH_COV2)and monthlychannelerodibilityfactor(CH_ERODMO)werefoundtobe Statisticsarecalculatedaftertransformingthesedimentloadinlog(10-based) scale themostsensitiveparameters.Theexponentparameterforcalculating sedimentcarryingcapacityinthechannel(SPEXP)andpeakrateadjust- n=numberofobservations,p-stat=percentageofobservationcapturedby95% predictiveuncertaintyband. mentfactorforsedimentroutinginthetributarychannel(ADJ_PKR) PBIAS=percentageofbias(%),r-stat=thicknessof95%predictiveuncertainty werefoundtobethethirdandfourthmostsensitiveparameters.Only band. one parameter related to erosion from upland processes, the land NSE=Nash-SutfliffeEfficiency(−). coverfactor(USLE_C)forvariousplanttypes,wasinthetop5ranked RSR=ratioofroot-mean-squared-errortostandarddeviationofobservations. sensitiveparameters.Thisindicatesthatchannelerosionisthedomi- Qualitativeratingforsediment,asperMoriasietal.(2007) nantprocessinsedimenttransportintheARBratherthanuplandero- V:VeryGoodRating:PBIASb15%;0.70bNSE≤1.00;0.00bRSR≤0.55. sion or sediment yield from sub-basins. This is expected, as the G:GoodRating:±15%≤PBIAS≤±30%;0.60bNSE≤0.70;0.55bRSR≤0.63. dominantland-usetypeinallregionsoftheARBisforest(TableS1), S:SatisfactoryRating:±30%≤PBIAS≤±55%;0.45bNSE≤0.60;0.63bRSR≤0.71. andsedimentyieldfromforestland-useisgenerallylow.Furthermore, U:Unsatisfactory:PBIAS≥±55%;NSE≤0.45;RSRN0.71. intensesummerrainfallandhighstreamflowduringspringdueto snowmeltwouldgenerallycausesubstantialchannelerosion.Thesensi- tivityoftheparametersobtainedinthisstudyissimilartootherstudies (Betrieetal.,2015;Vigiaketal.,2016)insimilarwatersheds. 3.2.Sedimentyieldfromsub-basins ARBintofiveregions,namely–headwaters,foothills,prairie,Lesser Slaveandboreal(Fig.2)inordertoquantifyclimatechangeimpacts Fig.3showsspatialdistributionoftheannualaveragesediment onaregionalscale. yield from the delineated sub-basins of theARB, and coefficient of Fig.3.Yearlyaveraged(left)andcoefficientofvariation(CV)sedimentyieldfromsub-basinsofthebasininbaseperiod(1983–2013). 1036 N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 slopeofthetrendline(Fig.5)indicatesthatsedimentyieldfromthe foothillregionismostlystable.WhileintheprairieandLesserSlavere- gions, the average sediment yield is fairly comparable (0.78 and 0.8t/ha/yr,respectively),somesub-basinsoftheregionshaveresulted inhighersedimentyieldastheseregionshaveasubstantialpercentage oftheirareaasagriculturalland.Themanagementoperationscarried outintheagriculturalareas(e.g.plowing)wouldexposethemtoa higherriskoferosion.Further,agriculturalareashavelowvegetation coverduringthecoldseason.Asaresult,althoughthemajorityofthe areaintheseregionshaveaslopeb5%,higherinter-annualvariation insedimentyield(Fig.4)alsoindicateshighersusceptibilityofthere- Fig.4.Annualaveragedsedimentyieldfromdifferentregionsofthebasininbaseperiod giontoerosion.Thisisalsoreflectedinthehigherslopeofthetrendline (1983–2013). (Fig.5).Attheborealplains,asthetopographyisgenerallyflat(slope b 5%), and N95% of its area is forest, the erosion potential is low, variationduringthebase(1983–2005)period.Thesub-basinaverage whichisreflectedinthesedimentyieldplot(Fig.3).Thenarrowest sedimentyieldoftheARBisfoundtobe0.4t/ha/yr,whichiswithin boxplotofinter-annualsedimentyield(Fig.4),andaveryflatslope therangeofvaluesreportedintheliteratureforthisregion.Forin- ofthetrendlinealsoconfirmthis.Theaveragesedimentyieldofthere- stance,Benderetal.(2000)reportederosionratesforAlbertaranging gionisverylow(average:0.02t/ha/yr). from0.05–46.8t/ha/yr,and0.05–2.6t/ha/yrintheOil-Sandsregions Asexpected,theforestandrangelandhaveresultedinthelowest of the basin. Similarly, Golder-Associates (1996) reported erosion sedimentyield,andtheagriculturallandhasthehighestyield(Fig.6). ratesintheUSandCanadarangingfrom0.16–27t/ha/yr.AstheARB Thiscanbemainlyrelatedtolandcoverfactors.Therangelandsandfor- hasflattopography(Fig.S2)andthemajorityofland-usetypeisforest estconsistofwoodyand/orherbaceousperennials,andtopsoillayers (TableS1),itisquitenaturalthatouraverageestimatefallsintothe arebarelyexposedtotheerosiveeffectsofextremerainfall,thereby lowerend of the reported ranges in theliterature. However, some leadingtolowererosion.Ontheotherhand,plantsgrownontheagri- sub-basinsattheheadwaterregionhavesedimentyieldashighas culturallandsareannualones,meaningthatthetopsoilisexposedas 10t/ha/yr(Fig.3). bare(orlowvegetationcover)foralmosthalfoftheyear.Further,agri- Asexpected,theheadwaterregionisthemainsourceofsediment culturalrelatedoperationssuchasplowingfurtherloosenthetopsoil. withanaveragesedimentyieldof3.23t/ha/yr,asthisregionhassteep Hence,erosiveextremerainfallwouldeasilyerodethetopsoiland topographyandahigherpercentageofbare-land.However,marked theseareaswouldyieldhigheramountsofsediment.Moreover,agricul- spatial heterogeneity in the sediment yield is evident in the basin turalareasareoftensubjectedtoephemeralgullyerosion(Daggupati (Fig.3).Higherinter-annualvariationsofsedimentyield,asindicated etal.,2014)albeitassistedbyrowcropping.Insuchacase,theconcen- bythewiderinter-quartilerangeoftheboxplot(Fig.4)intheheadwa- trationofchannelizedflowwouldleadtoanevenhigheramountofero- terregionindicatesthatthesedimentyieldfromthisregionoftheARB sionfromagriculturalareas.Aswehaveseen,thereiswiderinter- issensitivetoclimaticforcing(e.g.precipitation)andland-usetype.The quartilerangeofsedimentyieldfromagricultureland,whichalsocon- scatterplotofannualprecipitationandsedimentyield(Fig.5),andthe firmsthehighererosionpotentialofagriculturalland.Ourestimates slopeofthelineartrendlinefittedbetweenthem,however,confirms ofsedimentyieldfromdifferentland-usetypesarefairlycomparable thatclimaticforcingexertsgreatercontrolonerosionratesinthehead- tothevaluesreportedinliteratureforsimilarwatersheds.Forinstance, waterregion.Itshouldbenotedthattheseverityofinstantaneous,ex- forforestland-use,Benderetal.(2000)reportedcitingGrayandLeiser tremehighrainfallisofhighersignificancethanthetotalprecipitation (1982), US-EPA (1973), and US-EPA (1976), sediment yield of amountforthesedimentyieldfromsub-basins. 0.078t/ha/yr;HuangandLo(2015)reportedarangesedimentyield Atthefoothills,whiletheslopeisprimarilyb5%(Fig.S2),andforest value(0.02–0.07t/ha/yr);andRodríguez-Blancoetal.(2016)reported isthedominantland-usetype(Fig.S1,TableS1),thesedimentyield(av- nearzero(0.002t/ha/yr)sedimentyield.Thesevaluesarefairlycompa- erage:0.6t/ha/yr)reduceddrasticallyincomparisontotheheadwater rabletothemediansedimentyield(0.02t/ha/yr)fromtheforestobtain- region.Anarrowerinter-annualvariation(Fig.4)andafairlystable ed in this study. Similarly, our estimate of mean sediment yield Fig.5.Rateofsedimentyieldasfunctionoftotalannualprecipitationfromdifferentregionsofthebasininbaseperiod(1983–2013). N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 1037 (Stephensetal.,1977)forwoodland.However,ourmeansediment yieldestimateof2.91t/ha/yrfromagriculturallandseemstobeabit lowerthanmostofthereportedvalues;15.6t/ha/yrbyBenderetal. (2000),18.67t/ha/yrbyStephensetal.(1977),21.6–30t/ha/yrby Huang and Lo (2015), and 3.09 t/ha/yr by Rodríguez-Blanco et al. (2016).Whilethesedimentyielddependsonvariousfactors,alower yieldcouldbeduetotherelativelyflatslope(b5%)inagriculturaldom- inatedareasoftheARB.Further,themeanannualprecipitationinthese regions is quite low (~500 mm), of which a significant proportion (~20%)issnowfall.However,wemadeanefforttoincreasethesedi- mentyieldatHRUshavingagriculturalareasastheland-usetype,byin- Fig.6.Annualaveragedsedimentyieldfromdifferentland-usetypesofthebasininbase creasingtherelatedparameterstotheupperendoftheallowablerange period(1983–2013). (e.g.,C calibratedvalue=0.45,maximumvalue=0.5;andK USLE USLE fixedtoitsmaximumvalueof0.65,ADJ_PKRandPRF_BSN=2).Simi- (0.78t/ha/yr)fromrangelandiscomparabletoavalueof0.78t/ha/yrby larly,themeansedimentyieldfrompastureis1.53t/ha/yr,whichis Bender et al. (2000) for grassland, and to a value of 1.01 t/ha/yr also comparable to values reported in literature (0.78 t/ha/yr by Fig.7.Observedandsimulatedsedimentloadtransportedthrough(a)Headwater(atHilton),(b)Foothill(atWindfall),(c)LesserSlave(atAthabasca),(d)Boreal(atFortMcMurray), (e)Boreal(atOldFort)incalibrationperiod(1990–2005)with95%totalpredictiveuncertaintybands. 1038 N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 (Benderetal.,2000)and4.33t/ha/yrbyStephensetal.(1977),and theuplandcatchmentswouldbeminimal,orevenzeroduringsuchpe- higherthantheestimate(0.005t/ha/yr)of Rodríguez-Blancoetal. riods,theoverestimationshouldthusberelatedtothesedimentcarry- (2016).TheoptimizedvaluesforC foragriculture,forest,pasture ingcapacityofthechannel.Therefore,wepurposefullyloweredthe USLE andrangelandwere0.475,0.009,0.4505and0.005respectively.Simi- valuesSPEXPandSPCONtotheirallowableminimumvaluesandset larly,theoptimizedvalueforP wascloseto1.0,andtheoptimized CH_ERODMOvaluetozero.However,theloweredvaluesoftheparam- USLE value for K for agriculture, forest, pasture and rangeland were etersalsoloweredthehighersedimentvaluesandthemodelmissedthe USLE 0.65, 0.05, 0.3and0.05respectively.Theseparametersweretuned high sediment loads. To overcome this problem, we increased the basedontheinitialestimateprovidedbyAAFC(2002). SPEXPbeyondtheirallowablelimitof2.0,soastogetthedesiredeffect ofloweringsedimentloadduringlowflowperiodsandincreasingsed- 3.3.Sedimentloadtransportedthroughreaches imentloadduring storm conditions.An illustration of the effect of SPEXPonthesedimentcarryingcapacityofachannelfordifferentsets Ingeneral,themodelisabletoreproducethetrendinobservations ofchannelvelocity(Vpk,ch)isshowninFig.S5.Itisevidentthatwhen ofsedimentloadsatallstations.Qualitativeratingsofsedimentload Vpk,chislowerthan1.0(lowflowperiods),thesedimentcarryingcapac- simulationsindicatethatthesedimentloadissimulatedwitha‘Very itydecreasesastheSPEXPincreases.Conversely,whenVpk,chisN1.0 Good’accuracy(PBIASb15%,NSEN0.7andRSRb0.55)atdownstream (stormconditions),thesedimentcarryingcapacityincreasesasSPEXP stations(Fig.7c–e),whilethesedimentloadissimulatedwith‘Satisfac- increases. In the Bagnold's equation, which was mainly for non- tory’ accuracy in upstream stations (Fig. 7 a–b). Graphical plotting cohesiveparticles,SPEXPensuresnonlinearitiesinthecarryingcapacity showsthat,whilethemodeltendstocapturehighersedimentload ofachannelasvelocitiesincrease(forSPEXP≠1.0).Duringlowflowpe- quitewell,thelowersedimentloadhasbeenslightlyoverestimated,es- riods,cohesivesedimentmightonlyslightlyerode,butwhenvelocity peciallyatdownstreamstations.Suchoverestimationistypicallyob- increases,erosionofcohesivesedimentmightincreaseexponentially servedinlowflowperiods(coldseason).Asthesedimentyieldfrom morethannon-cohesivesediments.Hence,theuseofSPEXPbeyond Fig.8.(a)Percentagechangeinaveragemonthlyprecipitation,(b)absolutechangeinaveragemonthlyairtemperatureoverthebasinbetweenbaseandtwofutureperiodsfortwo emissionscenarios(iandii). N.K.Shrestha,J.Wang/ScienceoftheTotalEnvironment625(2018)1030–1045 1039 Fig.9.Annualaveragedchangesinsedimentyield(SYLD)fromsub-basinsofthebasinintwofutureperiodsfortwoemissionscenarios,relativetobaseperiod. the maximum allowable limit might bejustified. This issue indeed 2017;Tothetal.,2006).Moreextremeseasonalvariationsareexpected needsfurtherinvestigation.Theoptimizedvaluesfortheparameters; indifferentregionsoftheARB(TableS4).ExceptfortheCanESM2based SPCON, SPEXP, CH_COV2, CH_ERODOMOJan → Mar & Nov → Dec, projections,summerprecipitation,whichisofparticularrelevanceto CH_ERODOMOApr → Oct were 0.0002, 2.99, 0.975, 0.01 and 0.99, theerosionandsedimenttransport,isexpectedtodecreaseinallre- respectively. gionsoftheARB.However,substantialincreasesinspringprecipitation (upto53%)andearlyspringfreshetduetoincreasesinspringtemper- 3.4.Climatechangeimpact ature(upto4.4°C)wouldindicatethatbothsoilerosionandsediment transportwouldincreaseinthefuture,especiallyinthespringseason. Basin-wideaveragedmonthlypercentageandabsolutechangesof Further,frequencyanalysisofextremeprecipitation(dailyprecipitation precipitationandtemperature,respectively,intwofutureperiodsrela- N25mm,Fig.S6)revealedthatthiseventswouldbecomeslightlymore tivetothebaseperiodfortwoemissionscenarios(Fig.8)showedthat extreme,especiallythosecorrespondingtohigherreturnperiods(e.g. weatherintheARBisprojectedtobewarmerandwetter(exceptin N100 years)andin thelate-centuryperiod.Reflectingthetrendof Summerseason),especiallyinthelate-centuryperiodforthehigher changesinprecipitation,thestreamflow,onaverage,isprojectedtoin- emissionscenario.However,therearenoticeabledifferencesbetween creaseinallseasonsexceptatthefoothills,prairieandLesserSlavere- theprojectionsofdifferentclimatemodels.Ingeneral,CanESM2based gionsduringthesummerseason(TableS5). projectionsarerelativelywetterandwarmerthanACCESS1–0and CNRM-CM5basedprojections.Themid-centurymeanannualtempera- 3.4.1.Sedimentyieldfromdifferentregions tureisprojectedtochangeby0.4–2.0°C,dependingontheclimatic Thechangesintheannualaveragesedimentyieldshowmarkedspa- modelsandemissionscenarios.Furtherincreases(1.7–5.2°C)areex- tial(Fig.9)andtemporal(Table3,TableS6)heterogeneity.Thechanges pected in the late-century period. These increments are consistent areregion,climaticmodel,futureperiod,andemissionscenariospecific. withobservationsmadebyseveralstudies,e.g.(Eumetal.,2017;Toth Attheheadwaterregion,theincreaseinannualsedimentyield,on etal.,2006).Similarly,increasesof3–15%and7–26%inannualaverage average,ishighest(+11%)inthemid-centuryperiodforthehigher precipitationareexpectedinthemid-centuryandlate-centuryperiods, emissionscenario(Table3),dominatedbysignificantincreases(upto respectivelyrelativetothebaseperiod.Theseincrementsareconsistent 70%)inautumnperiodseasonalsedimentyield(TableS6).Thismight (orslightlyhigher)withmostofthereportedvalues,e.g.(Eumetal., bedrivenbyhigheroccurrencesofextremeprecipitationforthemid- Table3 Percentagechangeinannualaverageinsedimentyieldintwofutureperiodsandfortwoemissionscenarios,relativetobaseperiod(t/ha)indifferentregionsofthebasin. Periods/regions Climatemodel Baseperiod(1983–2013) RCP4.5(2021–2060) RCP4.5(2061–2100) RCP8.5(2021–2060) RCP8.5(2061–2100) Headwater ACCESS1-0 3.23 3.17(−2%) 3.03(−6%) 2.92(−10%) 2.8(−13%) CanESM2 3.18(−1%) 3.59(11%) 3.02(−6%) 3.39(5%) CNRM-CM5 3.82(18%) 4.13(28%) 3.44(7%) 3.71(15%) Mean(%) 3.39(5%) 3.59(11%) 3.13(−3%) 3.3(2%) Foothill ACCESS1-0 0.60 0.49(−19%) 0.57(−6%) 0.41(−32%) 0.46(−24%) CanESM2 0.56(−7%) 0.73(20%) 0.56(−8%) 0.65(7%) CNRM-CM5 0.59(−3%) 0.56(−8%) 0.58(−4%) 0.69(14%) Mean(%) 0.55(−10%) 0.62(2%) 0.51(−15%) 0.6(−1%) Prairie ACCESS1-0 0.78 0.62(−20%) 0.73(−6%) 0.65(−16%) 0.64(−18%) CanESM2 0.76(−3%) 0.75(−3%) 0.69(−12%) 0.78(0%) CNRM-CM5 0.69(−12%) 0.61(−21%) 0.62(−20%) 0.82(6%) Mean(%) 0.69(−11%) 0.7(−10%) 0.65(−16%) 0.75(−4%) LesserSlave ACCESS1-0 0.80 0.73(−9%) 0.9(13%) 0.71(−12%) 0.78(−2%) CanESM2 1(25%) 1.38(71%) 0.99(23%) 1.63(103%) CNRM-CM5 0.83(3%) 0.75(−7%) 0.76(−6%) 1.12(39%) Mean(%) 0.85(6%) 1.01(26%) 0.82(2%) 1.18(47%) Boreal ACCESS1-0 0.02 0.01(−31%) 0.01(−14%) 0.01(−19%) 0.02(−2%) CanESM2 0.02(−8%) 0.02(41%) 0.02(5%) 0.03(70%) CNRM-CM5 0.01(−28%) 0.01(−21%) 0.01(−25%) 0.02(−5%) Mean(%) 0.01(−22%) 0.02(2%) 0.02(−13%) 0.02(21%)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.