ebook img

Predicting Aerodynamic Loads on Highly Flexible Membrane Wings PDF

131 Pages·2015·6.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Predicting Aerodynamic Loads on Highly Flexible Membrane Wings

AN ABSTRACT OF THE DISSERTATION OF Trenton James Carpenter for the degree of Doctor of Philosophy in Mechanical Engineering presented on June 4, 2015. Title: Predicting Aerodynamic Loads on Highly Flexible Membrane Wings Abstract approved: Roberto Albertani Throughpassiveadaptationtoincidentalflow, flexibleaerodynamicsurfacesexploit effects of increased lift, delayed stall and disturbance rejection. Wings of birds, bats, and insects exhibit these passive effects, and at the same time through the use of structural state feedback sensed from the loads on the wing, active control is applied to achieve stable and highly dynamic maneuvers. The goal of this research is to predict aerodynamic loads on flexible wings, by sensing their structural responses to static and dynamic air- flow conditions. Three approaches are presented to estimate aerodynamic loads on highly flexible membrane wings, under static and dynamic conditions, at low Reynolds number. The first applies a linear membrane formulation to correlate the wing’s structural strain to lift, through wing-tip vorticity. In the second, the Poisson equation for a 2D linear- elastic membrane with out-of-plane deformation was used to calculate normal pressure distribution from virtual strain sensors using proper orthogonal decomposition basis func- tions and a recursive least squares minimization. Finally, potential flow theory and a first order state space representation is applied to the transient flow effects around a pitching membrane airfoil to model the time varying loads due to dynamic pitching. (cid:13)cCopyright by Trenton James Carpenter June 4, 2015 All Rights Reserved Predicting Aerodynamic Loads on Highly Flexible Membrane Wings by Trenton James Carpenter A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented June 4, 2015 Commencement June 2016 Doctor of Philosophy dissertation of Trenton James Carpenter presented on June 4, 2015 APPROVED: Major Professor, representing Mechanical Engineering Head of the School of Mechanical, Industrial, and Manufacturing Engineering Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Trenton James Carpenter, Author ACKNOWLEDGMENTS IgreatlyappreciatetheconstantsupportofmyadviserRobertoAlbertani, andcommittee members Robert Paasch and Belinda Batten. Also invaluable, were the contributions of Cody Ray and Brent Osterberg to the presented work. CONTRIBUTION OF AUTHORS Contributions in Chapter 2 Acknowledge; Dr. Albertani for his conceptual direction, Cody Ray for his involvement in data collection and many a conceptual conversation. Contributions in Chapter 3 Acknowledge; Dr. Albertani for his conceptual direction, and Dr. Belinda Batten for her direction in singular value decomposition. Contributions in Chapter 4 Acknowledge; Dr. Albertani for his conceptual direction, Brent Osterberg for his involve- ment in data collection, and Dr. Masarati, Dr. Morandini and Mattia Alioli for their numerical membrane simulations. TABLE OF CONTENTS Page 1. INTRODUCTION ........................................................... 1 1.1. A Brief History of MAV’s and Flexible Wings........................... 2 1.2. Preface................................................................. 8 2. CORRELATION OF STRUCTURAL STRAIN TO TIP VORTICITY AND LIFT FOR A MAV PLIANT MEMBRANE WING .......................... 10 2.1. Abstract ............................................................... 10 2.2. Introduction............................................................ 10 2.3. Experimental Setup.................................................... 12 2.4. Force Estimation from Vorticity........................................ 16 2.4.1 Surface Reconstruction.......................................... 17 2.4.2 Numerical Fluid Model ......................................... 19 2.4.3 Lift from Circulation............................................ 21 2.5. Force Estimation From Poisson Model.................................. 24 2.6. Results and Discussion................................................. 25 2.6.1 Aerodynamic Loads............................................. 25 2.6.2 Surface Reconstruction.......................................... 26 2.6.3 Material Characterization....................................... 30 2.6.4 Lift Calculation................................................. 31 2.7. Conclusion............................................................. 33 2.8. Future Work ........................................................... 34 2.9. Acknowledgments ...................................................... 34 3. AERODYNAMICLOADESTIMATIONFROMVIRTUALSTRAINSENSORS FOR A PLIANT MEMBRANE WING ....................................... 36 3.1. Abstract ............................................................... 36 3.2. Introduction............................................................ 37 TABLE OF CONTENTS (Continued) Page 3.3. Methods................................................................ 39 3.3.1 Membrane Wing................................................ 39 3.3.2 Virtual Strain Sensors .......................................... 40 3.3.3 Strain Field Estimation ......................................... 41 3.3.4 Membrane Model ............................................... 43 3.3.5 Surface Deformation Estimation................................. 46 3.4. Experimental Setup.................................................... 48 3.4.1 Digital Image Correlation ....................................... 49 3.4.2 Hydrostatic Pressure Test....................................... 50 3.4.3 Wing Tunnel Experiment ....................................... 51 3.4.4 Numerical Fluid Model ......................................... 52 3.5. Results................................................................. 54 3.5.1 Material Properties ............................................. 54 3.5.2 Strain Fields.................................................... 54 3.5.3 Surface Deformation ............................................ 56 3.5.4 Pressure Distribution ........................................... 58 3.5.5 Aerodynamic Loads............................................. 64 3.6. Conclusion............................................................. 67 4. MODELING EFFECTS OF MEMBRANE TENSION ON DYNAMIC STALL FOR A THIN MEMBRANE WING .......................................... 70 4.1. Abstract ............................................................... 70 4.2. Nomenclature.......................................................... 70 4.3. Introduction............................................................ 71 4.4. Methods................................................................ 72 4.4.1 Static Lift Model ............................................... 72 Potential Flow.......................................................... 73 Leading Edge Separation ............................................... 73 Membrane Displacement................................................ 74 Membrane Stability .................................................... 76 Attached Flow Model................................................... 78 TABLE OF CONTENTS (Continued) Page Separated Flow Model.................................................. 80 4.4.2 Degree of Trailing Edge Separation.............................. 81 4.4.3 Dynamic Stall Model ........................................... 83 4.5. Experimental Setup.................................................... 86 4.5.1 Test Article..................................................... 86 4.5.2 Test Conditions................................................. 87 4.5.3 Membrane Pre-Tension ......................................... 91 4.5.4 Digital Image Correlation ....................................... 92 4.5.5 Wind Tunnel Testing ........................................... 94 4.6. Results................................................................. 95 4.6.1 Static Model.................................................... 95 4.6.2 Dynamic Stall Model ........................................... 101 4.7. Summary & Conclusion ................................................ 104 5. CONCLUSION .............................................................. 105 BIBLIOGRAPHY ............................................................... 108

Description:
Three approaches are presented to estimate aerodynamic loads on highly flexible membrane wings, under static and dynamic conditions, at low Reynolds number. The first applies a linear affected by the fact that the tip vortex does not contain the complete lift circulation energy and will therefore
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.