Precision Theoretical Analysis of Neutron Radiative Beta Decay A. N. Ivanov,1,∗ R. Ho¨llwieser,1,2,† N. I. Troitskaya,1,‡ M. Wellenzohn,1,3,§ and Ya. A. Berdnikov4,¶ 1Atominstitut, Technische Universita¨t Wien, Stadionallee 2, A-1020 Wien, Austria 2Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA 3FH Campus Wien, University of Applied Sciences, Favoritenstraße 226, 1100 Wien, Austria 4 Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, Russian Federation (Dated: January 18, 2017) In the Standard Model of electroweak interactions and in the tree–approximation we calculate the rate and branching ratio of the neutron radiative β−–decay with one–real photon emission by takingintoaccountthecontributionsoftheweakmagnetismandprotonrecoiltoorder1/mp ofthe large proton mass mp expansion. We find that the obtained contributions of the weak magnetism andprotonrecoilincreasetherateandbranchingratiooftheneutronradiativeβ−–decaybyabout 0.70%. This is large compared with the contribution of the weak magnetism and proton recoil of about 0.16% to therate of theneutron β−–decay,calculated in Phys. Rev. D 88, 073002 (2013). 7 PACSnumbers: 12.15.Ff,13.15.+g,23.40.Bw,26.65.+t 1 0 2 n a I. INTRODUCTION J 7 Foralongtimetheradiativeβ−–decayofafreeneutronn p+e−+ν¯ +γ wasusedintheanalysisoftheradiative e 1 corrections to the neutron β−–decay for the cancellation of→the infrared divergences, coming from the one–virtual photonexchanges[1]–[7]. Forthefirsttimetotreattheradiativeβ−–decayofafreeneutronasaphysicalprocesswas ] h proposedby Gaponov andKhafizov[8], who made the firstcalculationofthe energyspectrum anddecay rate. Then, p the radiativeβ−–decaywasreinvestigatedin[9]and[10]. ThebranchingratioBR =2.87 10−3,calculatedforthe βγ - lifetime of the neutron τ = 879.6(1.1)s in [10, 11] for the photon energy region 15keV ×ω 340keV, agrees well ep withinonestandarddeviantionwiththefirstexperimentalvaluesBRβγ =3.13(35) 10−3an≤dBR≤βγ =3.09(32) 10−3, h measured by Nico et al. [12] and Cooper et al. [13], respectively. The experime×ntal values agree also well w×ith the [ resultBR =2.85 10−3, calculatedby Gardner[12]using the theoreticaldecayrate,publishedin [9]. The analysis ofthe T–oβdγdmome×ntum correlationsevento orderO(α2)andthe CP–violationby interactionsbeyondthe Standard 1 v Model in the neutron radiative β−–decay has been performed by Gardner and He in [14] and [15], respectively. 3 Recently the new preciseexperimentalvaluesofthe branchingratiosofthe radiativeβ−–decayofa freeneutronhave 1 been reported by the RDK II Collaboration Bales et al. [16]: BR = 0.00335 0.00005[stat] 0.00015[syst] and βγ 6 BR = 0.00582 0.00023[stat] 0.00062[syst], measured for the photon energy±regions 14keV± ω 782keV and βγ 4 ± ± ≤ ≤ 0.4keV ω 14keV, respectively. 0 This p≤aper≤is addressed to the calculation of the rate of the neutron radiative β−–decay n p+e−+ν¯ +γ in . → e 1 the Standard Model and in the tree–approximationby taking into account the contributions of the weak magnetism 0 and proton recoil to order 1/M, where M =(m +m )/2 is the averaged nucleon mass. The latter is important for n p 7 a calculation of a robust theoretical background for the experimental analysis of interactions beyond the Standard 1 Model [10, 11]. The paper is organized as follows. In section II we give the analytical expressions for the amplitude : v and rate of the neutron radiative β−-decay. In section III in Table I we adduce the results of the numerical analysis Xi of the branching ratios of the neutron radiative β−–decay for the experimental regions of photons energies. We discuss the obtained results and perspectives of the further theoretical analysis of the neutron radiative β−–decay. r a In the Appendix we give the detailed calculation of the amplitude and rate of the neutron radiative β−–decay in the tree–approximation. ∗Electronicaddress: [email protected] †Electronicaddress: [email protected] ‡Electronicaddress: [email protected] §Electronicaddress: [email protected] ¶Electronicaddress: [email protected] 2 FIG. 1: Feynman diagrams, definingthe amplitudeof theneutron radiative β−–decay in thetree–approximation. II. RADIATIVE β−–DECAY OF NEUTRON IN THE TREE–APPROXIMATION TO NEXT–TO–LEADING ORDER IN THE LARGE M EXPANSION In the Standard Model the neutron radiative β−–decay is described by the following interactions (x)= (x)+ (x). (1) int W em L L L Here (x) is the effective Lagrangian of low–energy V A interactions with a real axial coupling constant λ = W L − 1.2750(9)[17] and the contribution of the weak magnetism [10] − G κ (x)= F V [ψ¯ (x)γ (1+λγ5)ψ (x)]+ ∂ν[ψ¯ (x)σ ψ (x)] [ψ¯ (x)γµ(1 γ5)ψ (x)], (2) W ud p µ n p µν n e ν L −√2 n 2M o − invariantunder time reversal,where G =1.1664 10−11MeV−2 is the Fermicouplingconstant, V =0.97417(21) F ud × | | is the Cabibbo–Kobayashi–Maskawamatrix element and κ = κ κ = 3.7058 is the isovector anomalous magnetic p n − moment of the nucleon, defined by the anomalous magnetic moments of the proton κ = 1.7928 and the neutron p κ = 1.9130andmeasuredinnuclearmagneton[18]. Then, ψ (x), ψ (x), ψ (x)andψ (x)arethefieldoperatorsof n p n e ν the pr−oton,neutron,electronandantineutrino,respectively,γµ, γ5 andσµν = i(γµγν γνγµ)arethe Diracmatrices 2 − [19]. Then, (x) is the Lagrangianof the electromagnetic interaction em L (x)= e [ψ¯ (x)γ ψ (x)] [ψ¯ (x)γµψ (x)] A (x), (3) em p µ p e e µ L − n − o where e is the proton electric charge, related to the fine–structure constant α by e2 = 4πα, and A (x) is the µ electromagnetic potential [19]. In the tree–approximation the Feynman diagrams of the amplitude of the neutron radiative β−–decay are shown in Fig.1. The amplitude of the neutron radiative β−–decay, defined by the diagrams in Fig.1, we describe by the expression [10] G M(n pe−ν¯eγ)λ′ =e F Vud (n pe−ν¯eγ)λ′, (4) → √2 M → where (n pe−ν¯eγ)λ′ is equal to M → 1 1 M(n→pe−ν¯eγ)λ′ = hu¯p(~kp,σp)εˆ∗λ′(k)m kˆ kˆ i0Oµun(~kn,σn)ihu¯e(~ke,σe)γµ(1−γ5)vν(~k,+2)i p p − − − 1 1 − hu¯p(~kp,σp)Oµun(~kn,σn)ihu¯e(~ke,σe)εˆ∗λ′(k)m kˆ kˆ i0γµ(1−γ5)vν(~k,+2)i. (5) e e − − − The matrix O is given by [10] µ κ O =γ (1+λγ5)+i σ (k k )ν. (6) µ µ µν p n 2M − Then, u¯ (~k ,σ ), u (~k ,σ ), u¯ (~k ,σ ) and v (~k ,+1) are the Dirac wave functions of the free proton, neutron, p p p n n n e e e ν ν 2 electron and electron antineutrino with 3–momenta ~k , ~k = ~0, ~k and ~k and polarizations σ = 1, σ = 1, p n e ν p n σ = 1 and +1 [10, 23], respectively, ε∗α(k) is the polarization vector of the photon in the pola±rization st±ate λe′ = 1±,2 with a24–momentum k, obeyingλt′he constraint ε∗ (k) k = 0. The amplitude Eq.(5) is gauge invariant. Indeed, one may show that, replacing εα∗(k) kα and usiλn′g th·e Dirac equations for the free proton and electron, λ′ → the amplitude Eq.(5) vanishes. 3 The rate of the neutron radiative β−–decay, described by the Feynman diagrams in Fig.1 with photon from the energy region ω ω ω , is equal to (see [10] and Eq.(A-33) of the Appendix) min max ≤ ≤ αG2 V 2 ωmaxdω E0−ω λ (ω ,ω )=(1+3λ2) F| ud| dE E E2 m2(E E ω)2F(E ,Z =1)ρ (E ,ω), βγ max min π 2π3 Z ω Z e e e − e 0− e− e βγ e ωmin me p (7) where E =(m2 m2+m2)/2m is the end–point energy of the electron energy–spectrumof the neutron β−–decay 0 n− p e n [10] and F(E ,Z = 1) is the relativistic Fermi function, describing Coulomb proton–electron final–state interaction. e It is equal to [10] 1 4(2r m β)2γ eπα/β α 2 p e F(E ,Z =1)= 1+ γ Γ 1+γ+i , (8) e (cid:16) 2 (cid:17) Γ2(3+2γ) (1 β2)γ (cid:12) (cid:16) β(cid:17)(cid:12) − (cid:12) (cid:12) (cid:12) (cid:12) whereβ =k /E = E2 m2/E istheelectronvelocity,γ =√1 α2 1,r istheelectricradiusoftheprotonand e e e − e e − − p α = 1/137.036 is thepfine–structure constant. In numerical calculations we will use r = 0.841fm [22]. The function p ρ (E ,ω) is calculated in the Appendix. It is given by the integral βγ e dΩ ω E ~k ~n 3 1 λ2 2(κ+1)λ+1 E E ω eγ e e 0 e ρ (E ,ω)= 1+2 − · + E +ω E + − − − βγ e Z 4π h M E0 Ee ω M (cid:16) e − 3 0(cid:17) 1+3λ2 M i − − ω k2 (~k ~n)2 ω2 1 3λ2 1 1 k2+ω~k ~n k2 (~k ~n)2 ω 1+ e − e· + + − e e· e − e· + ×h(cid:16) Ee(cid:17)(Ee ~ke ~n)2 Ee Ee ~ke ~ni 1+3λ2 M n Ee (cid:16)(Ee ~ke ~n)2 Ee ~ke ~n(cid:17) − · − · − · − · ω ω m2 ω λ2+2(κ+1)λ 1 1 k2+ω2+2ω~k ~n +(ω+~k ~n) 1+ e − e e· e· h(cid:16) Ee(cid:17)Ee ~ke ~n − Ee (Ee ~ke ~n)2io− 1+3λ2 M h Ee − · − · k2 (~k ~n)2 ω k2 (~k ~n)2 ω2 ω+~k ~n λ(λ 1) 1 ω k2 (~k ~n)2 ω2 e − e· + e − e· + e· − e − e· +3 . (9) ×(Ee ~ke ~n)2 Ee Ee ~ke ~n Ee Ee ~ke ~ni− 1+3λ2 M hEe Ee ~ke ~n Eei − · − · − · − · Here dΩ is an infinitesimal solid angle of the electron–photon momentum correlations ~k ~n = k cosθ , where eγ e e eγ · ~n = ~k/ω is a unit vector along the photon 3–momentum [10, 11]. The results of the numerical analysis of the rate of the neutron radiative β−–decay, calculated relative to the neutron lifetime τ = 879.6(1.1)s [10, 11], we give and n discuss in section III. III. DISCUSSION AND CONCLUSION Recent new experimental measurements of the branching ratio of the neutron radiative β−–decay, reported by the RDK II Collaboration Bales et al. [16], have been the impetus for our theoretical analysis of the neutron radiative β−–decay. We have performed the calculation of the amplitude of the neutron radiative β−–decay in the tree–approximation to next–to–leading order in the large proton mass expansion. We have taken into account the completesetofcontributionsoftheweakmagnetismandprotonrecoiltoorder1/M,whereM istheaveragednucleon mass. Theobtainedresultsweconsiderasafirststeptowardstheprecisiontheoreticalanalysisoftheneutronradiative β−–decay in the Standard Model to a relative order 10−3 [10, 11]. The detailed calculations of the amplitude and decay rate we give in the Appendix. The numerical values of the branching ratiosof the neutron radiativeβ−–decay, calculated relative to the neutron lifetime τ = 879.6(1.1)s [10, 11], for the experimental regions of photon energies n are adduced in the TableI. ω[keV] BR (Experiment) BR (Theory) BR (Theory)M→∞ ∆BR (Theory) βγ βγ βγ βγ 15≤ω≤340 (3.09±0.32)×10−3 [13] 2.89×10−3 2.87×10−3 0.70% 14≤ω≤782 (3.35±0.05[stat]±0.15[syst])×10−3 [16] 3.04×10−3 3.02×10−3 0.66% 0.4≤ω≤14 (5.82±0.23[stat]±0.62[syst])×10−3 [16] 5.08×10−3 5.05×10−3 0.60% TABLEI:Branchingratiosoftheradiativeβ−–decayoftheneutronforthreephotonenergyregions,calculatedforthelifetime of the neutron τn =879.6(1.1)s [10]. In the last column we give a relative contribution of the 1/M corrections, caused by the weak magnetism and proton recoil. Ofcourse,the numericalvaluesofthe branchingratiosshouldnotbe practicallychangedifwe woulduse the world averaged value of the lifetime of the neutron τ = 880.2(1.0)s [18], which agrees perfectly well with the theoretical n 4 oneτ =879.6(1.1)s[10]. Fromthe comparisonofthe branchingratiosofthe neutronradiativeβ−–decay,calculated n to leading order in the large proton mass expansion, one may see that the contributions of the weak magnetism and proton recoil make up of about 0.70%, 0.66% and 0.60% for the photon energy regions 15keV ω 340keV, ≤ ≤ 14keV ω 782keV and 0.4keV ω 14keV, respectively. Thus, at first glimpse, the contributions of the weak magnet≤ism a≤nd proton recoil to th≤e neu≤tron radiative β−–decays seem to be not very important. Moreover, that such contributions are small compared to the values of the statistic errors of the new experimental data 1.49% and 3.95% for the photon energy regions 14keV ω 782keV and 0.4keV ω 14keV, respectively. The account ≤ ≤ ≤ ≤ for the systematic errors, making up of about 4.78% and 11.34% of the new experimental values, measured for the photon energy regions 14keV ω 782keV and 0.4keV ω 14keV, respectively, makes the contribution of the ≤ ≤ ≤ ≤ weak magnetism and proton recoil fully intangible. Nevertheless, we would like to emphasize that the values of the 1/M corrections, caused by the weak magnetism and proton recoil, to the branching ratios of the neutron radiative β−–decay are large compared by a factor of 4 to the contribution of the weak magnetism and proton recoil of about 0.16% to the neutron lifetime, calculated to order 1/M in [10]. Thus, one may conclude that the weak magnetism and proton recoil,taken to order 1/M, play more important role for the rate of the neutron radiative β−–decay than for the rate of the neutron β−–decay. On the whole they give a relative corrections of order 10−2. Combing the statistic and systematic errors the experimental values for the branching ratios we obtain BR(exp) = βγ 3.35(16) 10−3andBR(exp) =5.82(66) 10−3forthephotonenergyregions14keV ω 782keVand0.4keV ω × βγ × ≤ ≤ ≤ ≤ 14keV,respectively. Onemayseethatthe theoreticalvaluesofthe branchingratiosmayagreewiththe experimental ones only within 2 and 1.2 standarddeviations,respectively. The theoreticalvalues of the branching ratios are below the experimental mean-values by about 9% and 13%. This leaves room for the analysis of other contributions to the neutron radiative β−–decay. Following Bernard et al. [9] these contributions in the tree–approximation can be collected from the baryon resonances [18]. For example, the contribution of the ∆(1232)–resonance with spin and parity Jπ = 3+, the mass of which m 1232MeV is not far from the proton mass [18], has been calculated by Bernard et al2. [9]. According to Coop∆er≃et al. [13], the contribution of the ∆(1232)–resonance makes up only of about 0.5% of the branching ratio, measured for the photon energy region 15keV ω 340keV [13]. This implies ≤ ≤ that other baryon resonances with heavier masses [18] should give contributions to the rate of the neutron radiative β−–decay, which are small compared even to that by the ∆(1232)–resonance. Thus,onemayexpectthatthetheoreticalanalysisoftheneutronradiativeβ−–decay,whichcanbeperformedinthe Standard Model and in the tree–approximation, may in principle change the rate of the neutron radiative β−–decay not stronger than by about 1.5% or even smaller. Hence, as a next step towards a precision theoretical analysis of the neutron radiative β−–decay, which can be performed in the Standard Model, we may relate only to the analysis beyond the tree–approximation. To our point of view this should concern the radiative corrections to order O(α/π), calculatedtoleadingorderinthelargeprotonmassexpansion[10]. Itiswell–known[5]thattheradiativecorrections, calculated to order O(α/π) and to leading order in the large proton mass expansion, change the rate of the neutron β−–decay by about 3.75%[10]. Taking into accountthat the correctionsof the weak magnetism and protonrecoilof order1/M totheneutronradiativeβ−–decayratearebyafactor4largecomparedtothe1/M correctionstotherate oftheneutronβ−–decayonemayexpectthattherelativecontributionoftheradiativecorrectionsoforderO(α/π)to the rate of the neutron radiative β−–decay can be also substantially enhanced. The first step in the direction of the account for the radiative corrections of order O(α/π) to the neutron radiative β−–decay has been made by Gardner and He [14, 15]. However, the results, obtained by Gardner and He [14, 15], concern only the radiative corrections of order O(α/π) to T–odd momentum correlations in the neutron radiative β−–decay. We are planning to give a detailed analysis of the radiative corrections of order O(α/π), allowing to describe the rate of the neutron radiative β−–decay to order O(α2/π2), in our forthcoming publication. IV. ACKNOWLEDGEMENTS TheworkofA.N.IvanovwassupportedbytheAustrian“FondszurF¨orderungderWissenschaftlichenForschung” (FWF) under Contracts I689-N16, I862-N20 and P26781-N20 and by the O¨AW within the New Frontiers Groups Programme, NFP 2013/09. The work of R. Ho¨llwieser was supported by the Erwin Schr¨odinger Fellowship program of the Austrian Science Fund FWF (“Fonds zur F¨orderung der wissenschaftlichen Forschung”) under Contract No. J3425-N27. The work of M. Wellenzohn was supported by the MA 23 (FH-Call 16) under the project “Photonik - Stiftungsprofessur fu¨r Lehre”. 5 Appendix A: Amplitude of radiative β−–decay of neutron, described by Feynman diagrams in Fig.1, with “weak magnetism” and proton recoil corrections to order 1/M The amplitude of the neutron radiative β−–decay, given by Eq.(5), we transcribe into the form [10, 20] 1 1 (n pe−ν¯eγ)λ′ = u¯p(~kp,σp)Oµun(~kn,σn) u¯e(~ke,σe) Qeγµ(1 γ5)vν(~kν,+ ) M → h ih 2ke k − 2 i · 1 1 u¯ (~k ,σ )Q O u (~k ,σ ) u¯ (~k ,σ )γµ(1 γ5)v (~k ,+ ) , (A-1) p p p p µ n n n e e e ν ν −h 2kp k ih − 2 i · where u¯ (~k ,σ ), u (~k ,σ ), u¯ (~k ,σ ) and v (~k ,+1) are the Dirac bispinor wave functions of the free proton, p p p n n n e e e ν ν 2 neutron, electron and electron antineutrino with 3–momenta ~k , ~k = ~0, ~k and ~k and polarizations σ = 1, p n e ν p σ = 1, σ = 1 and +1 [10, 23], respectively, Q and Q are defined by ± n ± e ± 2 e p Qe = 2ε∗λ′ ·ke+εˆ∗λ′kˆ, Qp = 2ε∗λ′ ·kp+εˆ∗λ′kˆ. (A-2) For the derivation of Eq.(A-1) we have used the Dirac equations for the free proton and electron. Replacing ε∗ k and using k2 = 0 we get M(n → pe−ν¯eγ)|ε∗λ′→k = 0. The matrix Qµ is given by Eq.(6). For the analysisλo′f→the neutronradiativeβ−–decayinthenon–relativisticapproximationwehavetorewritetheamplitudeEq.(A-1)interms of time and space components of the matrix O =(O , O~) [10]. We get µ 0 − 1 1 (n pe−ν¯eγ)λ′ = u¯p(~kp,σp)O0un(~kn,σn) u¯e(~ke,σe) Qeγ0(1 γ5)vν(~kν,+ ) M → h ih 2ke k − 2 i · 1 1 u¯ (~k ,σ )O~ u (~k ,σ ) u¯ (~k ,σ ) Q ~γ(1 γ5)v (~k ,+ ) p p p n n n e e e e ν ν −h i·h 2ke k − 2 i · 1 1 u¯ (~k ,σ )Q O u (~k ,σ ) u¯ (~k ,σ )γ0(1 γ5)v (~k ,+ ) p p p p 0 n n n e e e ν ν −h 2kp k ih − 2 i · 1 1 + u¯ (~k ,σ ) O~ u (~k ,σ ) u¯ (~k ,σ )~γ(1 γ5)v (~k ,+ ) . (A-3) p p p n n n e e e ν ν h 2kp k i·h − 2 i · The time O and spatial O~ components of the matrix O we determine to order 1/M in the large M expansion [10] 0 µ κ 1 λ+ (~σ ~k ) p O0 = λ+ κ (~σ ~k ) 2M1 · (A-4) p − 2M · − and κ κ λ~σ+i (~σ ~k ) ~σ 1 (E +E +ω) p e ν O~ = κ2M × (cid:16) − 2M κ (cid:17) . (A-5) ~σ 1+ (E +E +ω) λ~σ+i (~σ ~k ) e ν p − (cid:16) 2M (cid:17) − 2M × ForthederivationofEq.(A-4)andEq.(5)wehavekeptonlythetermsoforder1/M andusedtheenergyconservation m =E +E +E +ω, where m , E = m2+~k2, E , E and ω are the neutron mass and the proton, electron, n p e ν n p p p e ν q antineutrino and photon energies, respectively. Then, ~σ are the Pauli 2 2 matrices [19]. Forthe calculationofthe amplitude ofthe neutronradiativeβ−–decay×wedefine the Diracbispinor wavefunctions of the neutron and the proton as follows ϕ p ϕ u (~0,σ )=√2m n , u (~k ,σ )= E +m ~σ ~k , (A-6) n n n(cid:16) 0 (cid:17) p p p p p p E +· mp ϕp p p where the Paulispinorialwave functions ϕ and ϕ depend on the polarizationsσ and σ , respectively. The matrix n p n p elements [u¯ (~k ,σ )O u (~0,σ )] and [u¯ (~k ,σ )O~u (~0,σ )] are equal to [10] p p p 0 n n p p p n n λ [u¯ (~k ,σ )O u (~0,σ )]= 2m (E +m ) [ϕ†ϕ ]+ [ϕ†(~σ ~k )ϕ ] (A-7) p p p 0 n n q n p p n p n 2M p · p n o 6 and κ 1 [u¯ (~k ,σ )O~u (~0,σ )]= 2m (E +m ) λ[ϕ†~σϕ ]+i [ϕ†(~σ ~k )ϕ ]+ [ϕ†(~σ ~k )~σϕ ] . (A-8) p p p n n q n p p n p n 2M p × p n 2M p · p n o For the calculation of the matrix elements 1 1 [u¯ (~k ,σ )Q O u (~0,σ )], [u¯ (~k ,σ )Q O~u (~0,σ )] (A-9) p p p p 0 n n p p p p n n 2k k 2k k p p · · we have to define the products Q (1/2k k)Q and Q (1/2k k)O~. For this aim we define the matrix Q (1/2k k) p p 0 p p p p · · · as follows 2ε∗ k ~σ (~ε∗ ~k) ε0∗(~σ ~k)+ω(~ε∗ ~σ) λ′ · p +i · λ′ × − λ′ · λ′ · 1 2k k 2k k 2k k Op 2k k = εp0∗·(~σ ~k)+ω(~εp∗· ~σ) 2ε∗ k p~σ· (~ε∗ ~k) , (A-10) p· − λ′ · λ′ · λ′ · p +i · λ′ × 2kp k 2kp k 2kp k · · · where we have denoted ε∗α =(ε0∗,~ε∗) and kα =(ω,~k). Replacing ε∗α =(ε0∗,~ε∗) kα =(ω,~k) we get the matrix λ′ λ′ λ′ λ′ λ′ λ′ → Qp(1/2kp·k) equal to a unit matrix Qp(1/2kp·k)|ε∗λα′→k =1. Thus, the product Qp(1/2kp·k)Q0 is given by 1 1 O Q O Q Op 1 Q0 = (cid:16) p2kp1·k 0(cid:17)11 (cid:16) p2kp1·k 0(cid:17)12 , (A-11) 2k k p O Q O Q · p 0 p 0 (cid:16) 2kp k (cid:17)21 (cid:16) 2kp k (cid:17)22 · · where we have denoted 1 ε0∗ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) O Q = λ′ +i · λ′ × +λ λ′ · − λ′ · , p 0 (cid:16) 2kp k (cid:17)11 ω 2Mω 2Mω · 1 ε0∗ κ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) O Q = λ′ λ+ (~σ ~k ) +iλ · λ′ × + λ′ · − λ′ · , p 0 p (cid:16) 2kp k (cid:17)12 ω (cid:16) 2M · (cid:17) 2Mω 2Mω · 1 ε0∗ κ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) O Q = λ′ λ+ (~σ ~k ) iλ · λ′ × λ′ · − λ′ · , p 0 p (cid:16) 2kp k (cid:17)21 ω (cid:16)− 2M · (cid:17)− 2Mω − 2Mω · 1 ε0∗ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) O Q = λ′ i · λ′ × λ λ′ · − λ′ · . (A-12) p 0 (cid:16) 2kp k (cid:17)22 − ω − 2Mω − 2Mω · In turn, the product Q (1/2k k)O~ reads p p · 1 1 O Q~ O Q~ Op2kp1 kQ~ = (cid:16)Op2kp1·kQ~(cid:17)11 (cid:16)Op2kp1·kQ~ (cid:17)12 , (A-13) · p p (cid:16) 2kp k (cid:17)21 (cid:16) 2kp k (cid:17)22 · · where we have denoted 1 ε0∗ κ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) O Q~ = λ′ λ~σ+i (~σ ~k ) +iλ · λ′ × ~σ+λ λ′ · − λ′ · ~σ, p p (cid:16) 2kp k (cid:17)11 ω (cid:16) 2M × (cid:17) 2Mω 2Mω · 1 ε0∗ κ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) O Q~ = λ′ 1 (E +E+ω) +i · λ′ × ~σ+ λ′ · − λ′ · ~σ, p e (cid:16) 2kp k (cid:17)12 ω (cid:16) − 2M (cid:17) 2Mω 2Mω · 1 ε0∗ κ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) O Q~ = λ′ 1+ (E +E+ω) i · λ′ × ~σ λ λ′ · − λ′ · ~σ, p e (cid:16) 2kp k (cid:17)21 − ω (cid:16) 2M (cid:17)− 2Mω − 2Mω · 1 ε0∗ κ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) O Q~ = λ′ λ~σ+i (~σ ~k ) iλ · λ′ × ~σ λ′ · − λ′ · ~σ. (A-14) p p (cid:16) 2kp k (cid:17)22 − ω (cid:16) 2M × (cid:17)− 2Mω − 2Mω · We would like to remind that because of the relation ε∗ k = 0 the time–component of the polarization vector λ′ · is equal to ε0∗ = (~ε∗ ~k)/ω. Replacing ~ε∗ ~k and using ~k = ω we get Q (1/2k k)Q = Q and λ′ λ′ · λ′ → | | p p · 0|ε~λ∗′→~k 0 7 Q (1/2k k)O~ =O~, respectively. Now we may define the matrix elements p p· |ε~λ∗′→~k 1 1 ε0∗ [u¯ (~k ,σ )Q O u (~0,σ )]= 2m (E +m ) ϕ† O O ϕ +λ λ′ ϕ†(~σ ~k )ϕ = p p p p2kp k 0 n n q n p p n p(cid:16) p2kp k 0(cid:17)11 n 2Mω p · p no · · ε0∗ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) ε0∗ = 2m (E +m ) ϕ† λ′ +i · λ′ × +λ λ′ · − λ′ · +λ λ′ (~σ ~k ) ϕ (A-15) q n p p h p(cid:16) ω 2Mω 2Mω 2Mω · p (cid:17) ni and 1 1 ε0∗ [u¯ (~k ,σ )Q O~u (~0,σ )]= 2m (E +m ) ϕ† O Q~ ϕ +λ λ′ ϕ†(~σ ~k )ϕ = p p p p2kp k n n q n p p n p(cid:16) p2kp k (cid:17)11 n 2Mω p · p no · · ε0∗ κ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) = 2m (E +m ) ϕ† λ′ λ~σ+i (~σ ~k ) +iλ · λ′ × ~σ+λ λ′ · − λ′ · ~σ q n p p h p(cid:16) ω (cid:16) 2M × p (cid:17) 2Mω 2Mω ε0∗ +λ λ′ (~σ ~k )~σ ϕ . (A-16) p n 2Mω · (cid:17) i Theamplitudeoftheneutronradiativeβ−–decay,calculatedtoorder1/M,causedbytheweakmagnetismandproton recoil, is equal to λ 1 1 M(n→pe−ν¯eγ)λ′ =q2mn(Ep+mp)nhϕ†p(cid:16)1+ 2M (~σ·~kp)(cid:17)ϕnihu¯e(~ke,σe)2ke k Qeγ0(1−γ5)vν(~k,+2)i · κ 1 1 1 ϕ† λ~σ+i (~σ ~k )+ (~σ ~k )~σ ϕ u¯ (~k ,σ ) Q ~γ(1 γ5)v (~k,+ ) −h p(cid:16) 2M × p 2M · p (cid:17) ni·h e e e 2ke k e − ν 2 i · ε0∗ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) ε0∗ 1 ϕ† λ′ +i · λ′ × +λ λ′ · − λ′ · +λ λ′ (~σ ~k ) ϕ u¯ (~k ,σ )γ0(1 γ5)v (~k,+ ) −h p(cid:16) ω 2Mω 2Mω 2Mω · p (cid:17) nih e e e − ν 2 i ε0∗ κ ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) ε0∗ + ϕ† λ′ λ~σ+i (~σ ~k ) +iλ · λ′ × ~σ+λ λ′ · − λ′ · ~σ+λ λ′ (~σ ~k )~σ ϕ h p(cid:16) ω (cid:16) 2M × p (cid:17) 2Mω 2Mω 2Mω · p (cid:17) ni 1 u¯ (~k ,σ )~γ(1 γ5)v (~k,+ ) . (A-17) e e e ν ·h − 2 io Since the factor 2m (E +m ) to order 1/M is equal to m p p p E +E +ω e ν 2m (E +m )=2m 1 , (A-18) m p p n q (cid:16) − 2M (cid:17) the amplitude Eq.(A-17) can be transcribed into the form E +E +ω λ 1 1 M(n→pe−ν¯eγ)λ′ =2mnnhϕ†p(cid:16)1− e 2Mν + 2M (~σ·~kp)(cid:17)ϕnihu¯e(~ke,σe)2ke k Qeγ0(1−γ5)vν(~k,+2)i · E +E +ω κ 1 1 1 ϕ† λ~σ λ e ν ~σ+i (~σ ~k )+ (~σ ~k )~σ ϕ u¯ (~k ,σ ) Q ~γ(1 γ5)v (~k,+ ) −h p(cid:16) − 2M 2M × p 2M · p (cid:17) ni·h e e e 2ke k e − ν 2 i · ε0∗ ε0∗E +E +ω ~σ (~ε∗ ~k) ε0∗(~σ ~k) ω(~ε∗ ~σ) ε0∗ ϕ† λ′ λ′ e ν +i · λ′ × +λ λ′ · − λ′ · +λ λ′ (~σ ~k ) ϕ −h p(cid:16) ω − ω 2M 2Mω 2Mω 2Mω · p (cid:17) ni 1 ε0∗ E +E +ω κ ~σ (~ε∗ ~k) u¯ (~k ,σ )γ0(1 γ5)v (~k,+ ) + ϕ† λ′ λ~σ λ e ν ~σ+i (~σ ~k ) +iλ · λ′ × ~σ ×h e e e − ν 2 i h p(cid:16) ω (cid:16) − 2M 2M × p (cid:17) 2Mω ε0∗(~σ ~k) ω(~ε∗ ~σ) ε0∗ 1 +λ λ′ · − λ′ · ~σ+λ λ′ (~σ ~k )~σ ϕ u¯ (~k ,σ )~γ(1 γ5)v (~k,+ ) . (A-19) p n e e e ν 2Mω 2Mω · (cid:17) i·h − 2 io The hermitian conjugate amplitude is equal to †(n pe−ν¯eγ)λ′ = M → E +E +ω λ 1 1 =2m ϕ† 1 e ν + (~σ ~k ) ϕ v¯ (~k,+ ) γ0Q¯ (1 γ5)u (~k ,σ ) nnh n(cid:16) − 2M 2M · p (cid:17) pih ν 2 2ke k e − e e e i · E +E +ω κ 1 1 1 ϕ† λ~σ λ e ν ~σ i (~σ ~k )+ ~σ(~σ ~k ) ϕ v¯ (~k,+ ) ~γQ¯ (1 γ5)u (~k ,σ ) −h n(cid:16) − 2M − 2M × p 2M · p (cid:17) pi·h ν 2 2ke k e − e e e i · ϕ† ε0λ′ ε0λ′ Ee+Eν +ω i~σ·(~ελ′ ×~k) +λε0λ′(~σ·~k)−ω(~ελ′ ·~σ) +λ ε0λ′ (~σ ~k ) ϕ −h n(cid:16) ω − ω 2M − 2Mω 2Mω 2Mω · p (cid:17) pi 8 v¯ (~k,+1)γ0(1 γ5)u (~k ,σ ) + ϕ† ε0λ′ λ~σ λEe+Eν +ω~σ i κ (~σ ~k ) iλ~σ~σ·(~ελ′ ×~k) ×h ν 2 − e e e i h n(cid:16) ω (cid:16) − 2M − 2M × p (cid:17)− 2Mω +λ~σ ε0λ′(~σ·~k)−ω(~ελ′ ·~σ) +λ ε0λ′ ~σ(~σ ~k ) ϕ v¯ (~k,+1)~γ(1 γ5)u (~k ,σ ) , (A-20) p p ν e e e 2Mω 2Mω · (cid:17) i·h 2 − io whereQ¯e =2ke k+kˆεˆλ′ [10]. Thesquaredabsolutevalueofthe amplitude Eq.(A-19)summedoverthe polarizations · of the proton and electron and averagedover polarizations of the neutron is equal to |M(n→pe−ν¯eγ)λ′|2 = 1 1 Ee+Eν +ω tr (kˆ +m )Q γ0kˆ γ0Q¯ (1 γ5) 1 λ2+1 Xpol 4m2n (ke·k)2 (cid:16) − M (cid:17) { e e e ν e − }− (ke·k)2 2M ε0 1 E +E +ω ~k tr (kˆ +m )Q γ0kˆ ~γQ¯ (1 γ5) 2 λ′ 1 e ν tr (kˆ +m )Q γ0kˆ γ0(1 γ5) p e e e ν e e e e ν × · { − }− ω ke k (cid:16) − M (cid:17) { − } · 1 ε0 λ2+λ λ λ 1 λ2+1 +ke k (cid:16) ωλ′ M ~kp+ Mω (ε0λ′~k−ω~ελ′)− Mω i(~ελ′ ×~k)(cid:17)·tr{(kˆe+me)Qeγ0kˆν~γ(1−γ5)}− (ke k)2 2M · · 1 E +E +ω λ(κ+1) ~k tr (kˆ +m )Q ~γkˆ γ0Q¯ (1 γ5) + λ2 1 e ν δij + iεijℓ(~k )ℓ × p· { e e e ν e − } (ke k)2 h (cid:16) − M (cid:17) M p i · 1 λ2+1 λ2 λ ×tr{(kˆe+me)Qe~γikˆν~γjQ¯e(1−γ5)}+ ke k (cid:16) Mω ε0λ′~kp+ Mω (ε0λ′~k−ω~ελ′)− Mω i(~ελ′ ×~k)(cid:17) · 1 E +E +ω ε0 λ2 ·tr{(kˆe+me)Qe~γkˆνγ0(1−γ5)}−2ke k hλ2(cid:16)1− e Mν (cid:17) ωλ′ δij + 2Mω (cid:16)~ελi′~kj −~ελj′~ki(cid:17) · λ2+(2κ+1)λ λ2 + 2Mω ε0λ′iεijℓ(~kp)ℓ+ 2Mω iεijℓ(cid:16)ε0λ′~kℓ−ω~ελℓ′(cid:17)itr{(kˆe+me)Qe~γikˆν~γj(1−γ5)} 1 ε0∗ E +E +ω 1 λ2+1 λ2 −2ke k ωλ′(cid:16)1− e Mν (cid:17)tr{(kˆe+me)γ0kˆνγ0Q¯e(1−γ5)}+ ke k (cid:16) Mω ε0λ∗′~kp+ Mω (ε0λ∗′~k−ω~ελ∗′) · · λ ε0∗ε0 E +E +ω +iMω (~ελ∗′ ×~k)(cid:17)·tr{(kˆe+me)γ0kˆν~γQ¯e(1−γ5)}+4 λω′2λ′ (cid:16)1− e Mν (cid:17)tr{(kˆe+me)γ0kˆνγ0(1−γ5)} λ2+λ λ2 λ λ −2h Mω2 ε0λ∗′ε0λ′~kp+ Mω2 (ε0λ∗′~k−ω~ελ∗′)ε0λ′ + Mω2 ε0λ∗′(ε0λ′~k−ω~ελ′)+ Mω2 i(cid:16)(~ελ∗′ ×~k)ε0λ′ −ε0λ∗′(~ελ′ ×~k)(cid:17)i 1 λ2+λ λ λ ·tr{(kˆe+me)γ0kˆν~γ(1−γ5)}+ ke k (cid:16) Mω ε0λ∗′~kp+ Mω (ε0λ∗′~k−ω~ελ∗′)+ Mω i(~ελ∗′ ×~k)(cid:17) · 1 E +E +ω ε0∗ λ2 ·tr{(kˆe+me)~γkˆνγ0Q¯e(1−γ5)}−2ke k hλ2(cid:16)1− e Mν (cid:17) ωλ′ δij − 2Mω(cid:16)~ελi∗′~kj −~ελj′∗~ki(cid:17) · λ2+(2κ+1)λ λ2 + 2Mω ε0λ∗′ iεijℓ~kpℓ+ 2Mω iεijℓ(cid:16)ε0λ∗′~kℓ−ω~ελℓ∗′(cid:17)itr{(kˆe+me)~γikˆν~γjQ¯e(1−γ5)} λ2+λ λ2 λ λ −2h Mω2 ε0λ∗′ε0λ′~kp+ Mω2 ε0λ∗′(ε0λ′~k−ω~ελ′)+ Mω2 (ε0λ∗′~k−ω~ελ∗′)ε0λ′ − Mω2 i(cid:16)ε0λ∗′(~ελ′ ×~k)−(~ελ∗′ ×~k)ε0λ′(cid:17)i ε0∗ε0 E +E +ω λ2+κλ ·tr{(kˆe+me)~γkˆνγ0(1−γ5)}+4nλ2 λω′2λ′ (cid:16)1− e Mν (cid:17)δij +i Mω2 ε0λ∗′ε0λ′εijℓ(~kp)ℓ λ2 −2Mω2 h(cid:16)~ελi∗′~kj −~ελj′∗~ki(cid:17)ε0λ′ −ε0λ∗′(cid:16)~ελi′~kj −~ελj′~ki(cid:17)i λ2 +2Mω2 iεijℓh(cid:16)ε0λ∗′~kℓ−ω~ελℓ∗′(cid:17)ε0λ′ +ε0λ∗′(cid:16)ε0λ′~kℓ−ω~ελℓ′(cid:17)iotr{(kˆe+me)~γikˆν~γj(1−γ5)}. (A-21) One may show that the expression in Eq.(A-21) is gauge invariant. For this aim one has to replace ε∗ k and λ′ → ελ′ k and collect the coefficients in font of the traces tr (kˆe+me)γαkˆνγβ(1 γ5) . Now we may proceed to the → { − } calculation of the traces over electron and antineutrino degrees of freedom. Using the following relations [10] (see Appendix B of Ref.[10]) γαγνγµ =γαηνµ γνηµα+γµηαν +iεανµβγ γ5, (A-22) β − whereηαβ istheMinkowskimetrictensorandεανµβ istheLevi–Civitatensordefinedbyε0123 =1andε = εανµβ ανµβ − [19] and [10] (see Appendix B of Ref.[10]), we obtain 1 4tr{kˆeQeγµQ¯e(1−γ5)}=4(ε∗λ′ ·ke)(ελ′ ·ke)(ke+k)µ−2(ε∗λ′ ·ελ′)(ke·k)kµ 9 −2(cid:16)(ε∗λ′ ·ke)εµλ′ +(ελ′ ·ke)εµλ′∗(cid:17)(ke·k)+2iεµαβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2ikµεαβρνε∗λ′αελ′βkρkeν (A-23) for a photon on–mass shell k2 =0. Then, we get 1 4tr{kˆeQeγµ(1−γ5)}=(ε∗λ′ ·ke)(2ke+k)µ−(ke·k)εµλ′∗−iεµαβνε∗λ′αkβkeν, 1 4tr{kˆeγµQ¯e(1−γ5)}=(ελ′ ·ke)(2ke+k)µ−(ke·k)εµλ′ +iεµαβνελ′αkβkeν. (A-24) Using Eq.(A-23) and Eq.(A-24) for the traces over the electron and antineutrino degrees of freedom, containing both Q and Q¯ matrices, we obtain the following expressions e e 1 4tr{(kˆe+me)Qeγ0kˆνγ0Q¯e(1−γ5)}=Eνh4(ε∗λ′ ·ke)(ελ′ ·ke)(Ee+ω)−2ω(ε∗λ′ ·ελ′)(ke·k) −2(cid:16)(ε∗λ′ ·ke)ε0λ′ +(ελ′ ·ke)ε0λ′(cid:17)(ke·k)+2iε0αβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2iωεαβρνε∗λ′αελ′βkρkeνi+~kνih4(ε∗λ′ ·ke)(ελ′ ·ke)(~ke+~k)i−2(ε∗λ′ ·ελ′)(ke·k)~ki −2(cid:16)(ε∗λ′ ·ke)(~ελi′ +(ελ′ ·ke)~ελi∗′(cid:17)(ke·k)+2iεiαβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2i~kiεαβρνε∗λ′αελ′βkρkeν , i 1 4tr{(kˆe+me)Qeγ0kˆν~γiQ¯e(1−γ5)}=Eνh4(ε∗λ′ ·ke)(ελ′ ·ke)(~ke+~k)i−2(ε∗λ′ ·ελ′)(ke·k)~ki −2(cid:16)(ε∗λ′ ·ke)~ελi′ +(ελ′ ·ke)~ελi∗′(cid:17)(ke·k)+2iεiαβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2i~kiεαβρνε∗λ′αελ′βkρkeνi+~kνih4(ε∗λ′ ·ke)(ελ′ ·ke)(Ee+ω)−2ω(ε∗λ′ ·ελ′)(ke·k) −2(cid:16)(ε∗λ′ ·ke)ε0λ′ +(ελ′ ·ke)ε0λ′(cid:17)(ke·k)+2iε0αβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2iωεαβρνε∗λ′αελ′βkρkeνi+iεijℓ~kνjh4(ε∗λ′ ·ke)(ελ′ ·ke)(~ke+~k)ℓ−2(ε∗λ′ ·ελ′)(ke·k)(~k)ℓ −2(cid:16)(ε∗λ′ ·ke)(~ελℓ′ +(ελ′ ·ke)(~ελℓ∗′(cid:17)(ke·k)+2iεℓαβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2i~kℓεαβρνε∗λ′αελ′βkρkeν , i 1 4tr{(kˆe+me)Qe~γikˆνγ0Q¯e(1−γ5)}=Eνh4(ε∗λ′ ·ke)(ελ′ ·ke)(~ke+~k)i−2(ε∗λ′ ·ελ′)(ke·k)~ki −2(cid:16)(ε∗λ′ ·ke)(~ελi′ +(ελ′ ·ke)(~ελi∗′(cid:17)(ke·k)+2iεiαβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2i~kiεαβρνε∗λ′αελ′βkρkeνi+~kνih4(ε∗λ′ ·ke)(ελ′ ·ke)(Ee+ω)−2ω(ε∗λ′ ·ελ′)(ke·k) −2(cid:16)(ε∗λ′ ·ke)ε0λ′ +(ελ′ ·ke)ε0λ′(cid:17)(ke·k)+2iε0αβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2iωεαβρνε∗λ′αελ′βkρkeνi−iεijℓ~kνjh4(ε∗λ′ ·ke)(ελ′ ·ke)(~ke+~k)ℓ−2(ε∗λ′ ·ελ′)(ke·k)~kℓ −2(cid:16)(ε∗λ′ ·ke)~ελℓ′ +(ελ′ ·ke)~ελℓ′∗(cid:17)(ke·k)+2iεℓαβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2i~kℓεαβρνε∗λ′αελ′βkρkeν , i 1 tr (kˆ +m )Q ~γikˆ ~γjQ¯ (1 γ5) = e e e ν e 4 { − } 1 1 =E tr kˆ Q ~γiγ0~γjQ¯ (1 γ5) ~kℓ tr kˆ Q ~γi~γℓ~γjQ¯ (1 γ5) = ν4 { e e e − }− ν4 { e e e − } =δijEνh4(ε∗λ′ ·ke)(ελ′ ·ke)(Ee+ω)−2ω(ε∗λ′ ·ελ′)(ke·k)−2(cid:16)(ε∗λ′ ·ke)ε0λ′ +(ελ′ ·ke)ε0λ′(cid:17)(ke·k) +2iε0αβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2iωεαβρνε∗λ′αελ′βkρkeνi−iεijℓEν 10 ×h4(ε∗λ′ ·ke)(ελ′ ·ke)(~ke+~k)ℓ−2(ε∗λ′ ·ελ′)(ke·k)~kℓ−2(cid:16)(ε∗λ′ ·ke)~ελℓ′ +(ελ′ ·ke)~ελℓ∗′(cid:17)(ke·k) +2iεℓαβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2i(~k)ℓεαβρνε∗λ′αελ′βkρkeνi−δij~kνℓ ×h4(ε∗λ′ ·ke)(ελ′ ·ke)(~ke+~k)ℓ−2(ε∗λ′ ·ελ′)(ke·k)~kℓ−2(cid:16)(ε∗λ′ ·ke)~ελℓ′ +(ελ′ ·ke)~ελℓ∗′(cid:17)(ke·k) +2iεℓαβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2i~kℓεαβρνε∗λ′αελ′βkρkeνi+~kνi ×h4(ε∗λ′ ·ke)(ελ′ ·ke)(~ke+~k)j −2(ε∗λ′ ·ελ′)(ke·k)~kj −2(cid:16)(ε∗λ′ ·ke)~ελj′ +(ελ′ ·ke)~ελj′∗(cid:17)(ke·k) +2iεjαβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2i~kjεαβρνε∗λ′αελ′βkρkeνi+~kνj ×h4(ε∗λ′ ·ke)(ελ′ ·ke)(~ke+~k)i−2(ε∗λ′ ·ελ′)(ke·k)~ki−2(cid:16)(ε∗λ′ ·ke)~ελi′ +(ελ′ ·ke)~ελi∗′(cid:17)(ke·k) +2iεiαβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2i~kiεαβρνε∗λ′αελ′βkρkeνi−iεijℓ~kνℓ ×h4(ε∗λ′ ·ke)(ελ′ ·ke)(Ee+ω)−2ω(ε∗λ′ ·ελ′)(ke·k)−2(cid:16)(ε∗λ′ ·ke)ε0λ′ +(ελ′ ·ke)ε0λ′(cid:17)(ke·k) +2iε0αβν(cid:16)(ε∗λ′ ·ke)ελ′α−(ελ′ ·ke)ε∗λ′α(cid:17)kβkeν +2iωεαβρνε∗λ′αελ′βkρkeνi (A-25) For the traces over the electron and antineutrino degrees of freedom, containing either Q or Q¯ , we get e e 1 4tr{(kˆe+me)Qeγ0kˆνγ0(1−γ5)}=Eνh(ε∗λ′ ·ke)(2Ee+ω)−(ke·k)ε0λ∗′ −iε0αβνε∗λ′αkβkeνi +~kνih(ε∗λ′ ·ke)(2~ke+~k)i−(ke·k)~ελi∗′ −iεiαβνε∗λ′αkβkeνi, 1 4tr{(kˆe+me)Qeγ0kˆν~γi(1−γ5)}=Eνh(ε∗λ′ ·ke)(2~ke+~k)i−(ke·k)~ελi∗′ −iεiαβνε∗λ′αkβkeνi +~kνih(ε∗λ′ ·ke)(2Ee+ω)−(ke·k)ε0λ∗′ −iε0αβνε∗λ′αkβkeνi +iεijℓ~kνjh(ε∗λ′ ·ke)(2~ke+~k)ℓ−(ke·k)~ελℓ∗′ −iεℓαβνε∗λ′αkβkeνi, 1 4tr{(kˆe+me)Qe~γikˆνγ0(1−γ5)}=Eνh(ε∗λ′ ·ke)(2~ke+~k)i−(ke·k)~ελi∗′ −iεiαβνε∗λ′αkβkeνi +~kνih(ε∗λ′ ·ke)(2Ee+ω)−(ke·k)ε0λ∗′ −iε0αβνε∗λ′αkβkeνi −iεijℓ~kνjh(ε∗λ′ ·ke)(2~ke+~k)ℓ−(ke·k)~ελℓ∗′ −iεℓαβνε∗λ′αkβkeνi, 1 4tr{(kˆe+me)Qe~γikˆν~γj(1−γ5)}=δijEνh(ε∗λ′ ·ke)(2Ee+ω)−(ke·k)ε0λ∗′ −iε0αβνε∗λ′αkβkeνi −iεijℓEνh(ε∗λ′ ·ke)(2~ke+~k)ℓ−(ke·k)~ελℓ∗′ −iεℓαβνε∗λ′αkβkeνi −δij~kνℓh(ε∗λ′ ·ke)(2~ke+~k)ℓ−(ke·k)~ελℓ′∗−iεℓαβνε∗λ′αkβkeνi +~kνih(ε∗λ′ ·ke)(2~ke+~k)j −(ke·k)~ελj′∗−iεjαβνε∗λ′αkβkeνi +~kνjh(ε∗λ′ ·ke)(2~ke+~k)i−(ke·k)~ελi∗′ −iεiαβνε∗λ′αkβkeνi −iεijℓ~kνℓh(ε∗λ′ ·ke)(2Ee+ω)−(ke·k)ε0λ∗′ −iε0αβνε∗λ′αkβkeνi (A-26) and 1 4tr{(kˆe+me)γ0kˆνγ0Q¯e(1−γ5)}=Eνh(ελ′ ·ke)(2Ee+ω)−(ke·k)ε0λ′ +iε0αβνελ′αkβkeνi +~kνih(ελ′ ·ke)(2~ke+~k)i−(ke·k)~ελi′ +iεiαβνελ′αkβkeνi, 1 4tr{(kˆe+me)γ0kˆν~γiQ¯e(1−γ5)}=Eνh(ελ′ ·ke)(2~ke+~k)i−(ke·k)~ελi′ +iεiαβνελ′αkβkeνi +~kνih(ελ′ ·ke)(2Ee+ω)−(ke·k)ε0λ′ +iε0αβνελ′αkβkeνi