Precisely Predictable Dirac Observables Fundamental Theories of Physics An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application Editor: ALWYN VAN DER MERWE, University of Denver, U.S.A. Editorial Advisory Board: GIANCARLO GHIRARDI, University of Trieste, Italy LAWRENCE P. HORWITZ, Tel-Aviv University, Israel BRIAN D. JOSEPHSON, University of Cambridge, U.K. CLIVE KILMISTER, University of London, U.K. PEKKAJ. LAHTI, University of Turku, Finland ASHER PERES, Israel Institute of Technology, Israel EDUARD PRUGOVECKI, University of Toronto, Canada FRANCO SELLERI, Università di Bara, Italy TONYSUDBERY, University of York, U.K. HANS-JÜRGEN TREDER, Zentralinstitut für Astrophysik der Akademie der Wissenschaften, Germany Volume154 Precisely Predictable Dirac Observables by Heinz Otto Cordes Professor Emeritus, Department of Mathematics, University of California, Berkeley, CA, U.S.A. AC.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-10 1-4020-5168-9 (HB) ISBN-13 978-1-4020-5168-5 (HB) ISBN-10 1-4020-5169-7 (e-book) ISBN-13 978-1-4020-5169-2 (e-book) Published by Springer, P.O. Box 17, 3300 AADordrecht, The Netherlands. www.springer.com Printed on acid-free paper All Rights Reserved © 2007 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. To the memory of F. Rellich, R.S. Phillips, C.B. Morrey, and T. Kato Contents Preface xi 1 Dirac Observables and ψdo-s 1 1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Some Special Distributions . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Strictly Classical Pseudodifferential Operators . . . . . . . . . . . . 14 1.3 Ellipticity and Parametrix Construction . . . . . . . . . . . . . . . 18 1.4 L2-Boundedness and Weighted Sobolev Spaces . . . . . . . . . . . 20 1.5 The Parametrix Method for Solving ODE-s . . . . . . . . . . . . . 26 1.6 More on General ψdo-Results . . . . . . . . . . . . . . . . . . . . . 31 2 Why Should Observables be Pseudodifferential? 37 2.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1 Smoothness of Lie Group Action on ψdo-s . . . . . . . . . . . . . . 39 2.2 Rotation and Dilation Smoothness . . . . . . . . . . . . . . . . . . 42 2.3 General Order and General H -Spaces . . . . . . . . . . . . . . . . 46 s 2.4 A Useful Result on L2-Inverses and Square Roots . . . . . . . . . . 50 3 Decoupling with ψdo-s 55 3.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1 The Foldy-Wouthuysen Transform . . . . . . . . . . . . . . . . . . 59 3.2 Unitary Decoupling Modulo O(−∞) . . . . . . . . . . . . . . . . . 61 3.3 Relation to Smoothness of the Heisenberg Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4 Some Comments Regarding Spectral Theory. . . . . . . . . . . . . 67 3.5 Complete Decoupling for V(x)(cid:3)≡0 . . . . . . . . . . . . . . . . . . 70 3.6 Split and Decoupling are not unique - Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.7 Decoupling for Time Dependent Potentials. . . . . . . . . . . . . . 78 vii viii Contents 4 Smooth Pseudodifferential Heisenberg Representation 83 4.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.1 Dirac Evolution with Time-Dependent Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Observables with Smooth Heisenberg Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3 Dynamical Observables with Scalar Symbol . . . . . . . . . . . . . 96 4.4 Symbols Non-Scalar on S±. . . . . . . . . . . . . . . . . . . . . . . 101 4.5 Spin and Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.6 Classical Orbits for Particle and Spin. . . . . . . . . . . . . . . . . 110 5 The Algebra of Precisely Predictable Observables 117 5.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.1 A Precise Result on ψdo-Heisenberg Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.2 Relations between the Algebras P(t) . . . . . . . . . . . . . . . . . 125 5.3 About Prediction of Observables again . . . . . . . . . . . . . . . . 127 5.4 Symbol Propagation along Flows . . . . . . . . . . . . . . . . . . . 128 5.5 The Particle Flows Components are Symbols . . . . . . . . . . . . 132 5.6 A Secondary Correction for the Electrostatic Potential . . . . . . . 137 5.7 Smoothness and FW-Decoupling . . . . . . . . . . . . . . . . . . . 142 5.8 The Final Algebra of Precisely Predictables . . . . . . . . . . . . . 147 6 Lorentz Covariance of Precise Predictability 149 6.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.1 A New Time Frame for a Dirac State . . . . . . . . . . . . . . . . . 156 6.2 Transformation of P and PX for Vanishing Fields . . . . . . . . . 160 6.3 Relating Hilbert Spaces; Evolution of the Spaces H(cid:1) and H˜. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.4 The General Time-Independent Case . . . . . . . . . . . . . . . . . 171 6.5 The Fourier Integral Operators around R . . . . . . . . . . . . . . 175 6.6 Decoupling with Respect to H(cid:1) and H˜(t) . . . . . . . . . . . . . . 180 6.7 A Complicated ODE with ψdo-Coefficients . . . . . . . . . . . . . 183 √ 6.8 Integral Kernels of ei|D|t , ei 1−∆t and eiH0t . . . . . . . . . . . . 187 7 Spectral Theory of Precisely Predictable Approximations 193 7.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.1 A Second Order Model Problem . . . . . . . . . . . . . . . . . . . 195 7.2 The Corrected Location Observable. . . . . . . . . . . . . . . . . . 199 Contents ix 7.3 Electrostatic Potential and Relativistic Mass . . . . . . . . . . . . 202 7.4 Separation of Variables in Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 7.5 Highlights of the Proof of Theorem 7.3.2 . . . . . . . . . . . . . . . 216 7.6 The Regular Singularities . . . . . . . . . . . . . . . . . . . . . . . 222 7.6.1 The Regular Singularity at 0 . . . . . . . . . . . . . . . . . 222 7.6.2 The Regular Singularity at r = 1 . . . . . . . . . . . . . . . 223 λ 7.7 The Singularity at ∞. . . . . . . . . . . . . . . . . . . . . . . . . . 224 7.7.1 Asymptotic Behaviour of Solutions at Infinity . . . . . . . . 224 7.7.2 The Asymptotic Expansion at ∞; Dependence on λ . . . . 229 7.8 Final Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 7.8.1 Fitting Together our Wave Distributions . . . . . . . . . . . 230 7.8.2 Final Construction of the Distribution Kernel U(r,ρ) of (7.3.11). . . . . . . . . . . . . . . . . . . . . . . . 233 7.8.3 About the Negative Spectrum . . . . . . . . . . . . . . . . . 234 7.8.4 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . 234 8 Dirac and Schro¨dinger Equations; a Comparison 237 8.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 8.1 What is a C∗-Algebra with Symbol? . . . . . . . . . . . . . . . . . 241 8.2 Exponential Actions on A . . . . . . . . . . . . . . . . . . . . . . . 243 8.3 Strictly Classical Pseudodifferential Operators . . . . . . . . . . . . 245 8.4 Characteristic Flow and Particle Flow . . . . . . . . . . . . . . . . 249 8.5 The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 252 References 259 General Notations 263 Index 265 Preface In this book we are attempting to offer a modification of Dirac’s theory of the electronwebelievetobefreeoftheusualparadoxa,soasperhapstobeacceptable as a clean quantum-mechanical treatment. While it seems to be a fact that the classical mechanics, from Newton to Ein- stein’s theory of gravitation, offers a very rigorous concept, free of contradictions and able to accurately predict motion of a mass point, quantum mechanics, even in its simplest cases, does not seem to have this kind of clarity. Almost it seems that everyone of its fathers had his own wave equation. For the quantum mechanical 1-body problem (with vanishing potentials) let us focus on 3 different wave equations1: (I) The Klein-Gordon equation (cid:1)3 (1) ∂2ψ/∂t2+(1− ∆)ψ =0 , ∆=Laplacian= ∂2/∂x2 . j 1 This equation may be written as √ √ (2) (∂/∂t−i 1−∆)(∂/∂t+i 1−∆)ψ =0 . Hereitmaybenotedthattheoperator1−∆hasawelldefinedpositive square root as unbounded self-adjoint positive operator of the Hilbert space H=L2(R3). (II) The Dirac equation is of the form (“ =1/2 of (I)”) (3) (∂/∂t+iH )ψ =0 , D where H is a square root of 1−∆, but not the above positive one; D rather, Dirac introduces some hypercomplex units2α ,α ,α ,β such 1 2 3 that α α +α α = 2δ , α β +βα = 0 ,β2 = 1 . Then he defines j l l j jl j j 1Weuseunitsoflength,timeandenergymakingc=m=e=(cid:1)=1,cf. footnote1ofch.1. xi xii Preface H = α.D+β with D = (D ,D ,D ) D = −i∂/∂x , and then gets D 1 2 3 j j H2 =1−∆, so that, indeed, H is a square root of 1−∆. D D √ (III)TheSchr¨odingerequationarisesifwe“approximate” 1−∆≈ 1− 1∆, resulting in the equation 2 1 (4) (∂/∂t+i(− ∆+1))ψ =0 , 2 where the last term - corresponding to the rest mass of the particle - usually is eliminated by a substitution eitψ →ψ, so that we then get 1 (5) (∂/∂t+iH )ψ =0 with H =− ∆ . S S 2 Ifthereisanelectromagneticfieldpresent,representedbyascalarelectrostatic V and a 3-vector electromagnetic potential A, we get (6) H =α(D−A)+β+V , D and (cid:1) 1 (7) H = (D −A )2+V , S 2 j j as Dirac or Schro¨dinger “Hamiltionian”. We have presented above 3 wave equations to exhibit their interrelation: Most discussions of elementary quantum mechanics deal either with the Schro¨dinger equation or the Dirac equation, or with both. But it is clear at once, that the √ approximation 1+x ≈ 1+ 1x is good only for very small x. This means that 2 also the approximation between the operators (6) and (7) can be useful only for very small momenta3. So, only one - either Schro¨dinger or Dirac - can reflect the real world, one should think. Why then do both equations enjoy their existence, parallel to each other? OnefeelstemptedtodeclaretheDiracequationasthetruewaveequationofthe 1-bodyproblem. Indeed,firstofall,thespectrumoftheoperatorH of(6)exhibits D the split of basic hydrogen states, known as fine structure, while the operator H S only has these as states of higher multiplicity4, ignoring the fine structure split. Next, looking at both equations from a mathematical aspect, one finds that 2Suchαj,βmayberepresentedbyself-adjoint4×4-matriceswithcomplexcoefficients,making (3) a (hyperbolic symmetric) system of 4 linear first order PDE-s in 4 unknown functions. A varietyofsuchrepresentationsareinuse. 3Therestenergyofanelectronis≈500000eV,whiletheenergiesofthevariousboundstates ofthehydrogenatomrangearound10eV. So,forthespectrallinesofHtherelativeerrorshould bearound10−4,perhapsgoodenoughforeventheaccuraciesofspectralmeasurements. 4Formoredetailscf. sec.3.0.