Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica Dottorato di ricerca in Ingegneria Aerospaziale Ciclo XXV PRECISE ANGLE AND RANGE MEASUREMENTS: ADVANCED SYSTEMS FOR DEEP SPACE MISSIONS Author Advisor Francesco Barbaglio Prof. Luciano Iess Anno Accademico 2011-2012 Aknowledgements WorkingonthePh.D.hasbeenawonderfulandunforgettableexperience.Manypeople havehelpedandsupportedmeininnumerableways,duringthe3yearsspenttocarryout theresearchandcompletethisdissertation. Firstofall,IamdeeplygratefultomyadvisorProf. LucianoIessforhiscontinuossup- port. Hiswideknowledgeandhisenthusiasmhavebeenofgreatvalueforme. Moreover hegavemetheopportunitytobepartofasoexcitingscientificcommunityandtohavean extraordinarylearningexperience. I would like tothankAlessandroArditoandGabrieleRapino, who haveworked with me in the ∆DOR activities and have become true friends. Our collaboration has been a wonderfulexperienceandtheirconstantsupport,guidanceandgenerosityhavemadethis workpossible. IwouldlikealsotothankMattiaMercolino,fromESOC,forhissupport,his valuableadviceandforthefunnymomentsspentinDarmstadt. Inaddition,IhavebeenprivilegedtogettoknowandtocollaboratewithRadioscience laboratory colleagues. I wish to express my thanks to them, for their invaluable support and the fun we had during the working days. A special and warm thank goes to a good friend, MarcoDucci with whom I shared many experiences, professionalor otherwise, in these three years. Another particular mention to Mauro di Benedetto, whose friendship andsupportwasimportant. IespeciallythankmyMum,mysisterAnnaandmynephewFrancisco. Theirindescrib- ablelovingsupporttomethroughoutmywholelifeisinvaluable.Iamalsodeeplygrateful to my Dad. What I have become and what I have achieved is because of him. I am sure he would be veryproud of me. Mywarm thank goes also to my grandmother and other familymembers,fortheirinterestandsupport. Finally,IowemylovingthankstoAlessandra,forherunderstanding,endlesspatience andencouragement. Ourloveisthebestresulttomeinmylife. i Table of Contents ListofFigures iv ListofTables vi Introduction viii 1 Earth-basedradiotrackingsystemsfordeepspacemissions 1 1.1 Radiometricobservables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Errorsources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 ClockInstability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Instrumentaleffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 TransmissionMedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Platformparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ∆ I Delta DifferentialOne WayRanging ( DOR) 12 2 ∆DORsystemoverview 13 2.1 Spacecraftcorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Quasarcorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 ∆DORsystemaccuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 ThermalNoiseeffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 Quasarpositioningerror . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3 Errorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.4 Fragmentedcorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 ∆DORenhancement:WidebandandLow-SNR 33 3.1 Widebandfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Low-SNRfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 ∆DORenhancement:Testsandresults 43 4.1 Widebandfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.1 Quasaronly: wideband-likeacquisition . . . . . . . . . . . . . . . . . . 44 4.1.2 VenusEXpress: wideband-likeacquisition . . . . . . . . . . . . . . . . 45 ii TABLEOFCONTENTS iii 4.1.3 Juno: widebandacquisition . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 LOW-SNRfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.1 Realdatawithaddednoise . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.2 Simulateddata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 II Pseudonoise rangingsystem 57 5 Rangingsystemsoverview 58 5.1 Sequentialranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.1 NASAtoneranging: signalstructure. . . . . . . . . . . . . . . . . . . . 61 5.1.2 ESAcoderanging: signalstructure . . . . . . . . . . . . . . . . . . . . . 63 5.1.3 Powerallocationinatransparentchannel . . . . . . . . . . . . . . . . . 65 5.1.4 Acquisitionperformance . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Pseudonoise(PN)ranging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2.1 PNcodestructureandproperties. . . . . . . . . . . . . . . . . . . . . . 72 5.2.2 PNacquisition,trackingandmeasurementapproaches . . . . . . . . . 74 5.2.3 Powerallocationinaregenerativechannel . . . . . . . . . . . . . . . . 76 5.2.4 Acquisitionperformance . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Rangingsystemaccuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3.1 Rangingjitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3.2 Errorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 Pseudonoiseopenloopreceiver 92 6.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1.1 Mathematicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1.2 SWarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 Correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2.1 Mathematicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2.2 SWarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7 Pseudonoiseopenloopreceiver:Testsandresults 110 7.1 Nonoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2 Thermalnoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.3 Computationaloptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 Conclusions 121 A ESAmission:BepiColombo 123 B PhaseestimatethroughIandQintegration 126 C ChipTrackingLoopperformance 130 Bibliography 135 List of Figures 2.1 VLBItechniquescheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 ∆DORtrackingscheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 ESA∆DORacquisitionsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 ∆DORacquisitionbandwidths. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 VenusEXpress(2012-214)spectra. . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Topleveldiagramofthestandardspacecraftcorrelationmethod. . . . . . . . 20 2.7 Ambiguityremovalprocess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.8 QuasarS148spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.9 Topleveldiagramofthequasarcorrelationprocess. . . . . . . . . . . . . . . . 25 2.10 ∆DORerrorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1 GShardwareconfigurationfor∆DORacquisition. . . . . . . . . . . . . . . . . 33 3.2 ESA∆DORerrorbudgetwithstandardandwidebandconfiguration. . . . . . 37 3.3 Topleveldiagramoflow-SNRspacecraftcorrelationalgorithm. . . . . . . . . 39 4.1 Differentfuntionalitiesfor∆DORcomputation. . . . . . . . . . . . . . . . . . 44 4.2 QUASAR2012-173:Acquisitionconfiguration. . . . . . . . . . . . . . . . . . . 45 4.3 VEX2012-214:Acquisitionconfiguration. . . . . . . . . . . . . . . . . . . . . . 46 4.4 VEX2012-214:Resultsobtainedwithtwodifferentconfigurations,standard- narrowband(IFMS2)andwideband-like(IFMS3).Differentalgorithmsused. 48 4.5 Juno2012-267:Acquisitionconfiguration. . . . . . . . . . . . . . . . . . . . . . 48 4.6 Low-SNRVEX2012-214:Correlationresults. . . . . . . . . . . . . . . . . . . . 51 4.7 Low-SNRTESTA:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 53 4.8 Low-SNRTESTB:Noiseconfiguration. . . . . . . . . . . . . . . . . . . . . . . 54 4.9 Low-SNRTESTB:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 55 4.10 Low-SNRTESTC:Noiseconfiguration. . . . . . . . . . . . . . . . . . . . . . . 55 5.1 NASA-DSNsequentialrangingspectrum. . . . . . . . . . . . . . . . . . . . . . 62 5.2 ESAcodesequentialrangingspectrum. . . . . . . . . . . . . . . . . . . . . . . 64 5.3 PNRanging-Sequencewaveform.. . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4 PNrangingsignalspectrum.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.5 Functionalblockdiagramofregenerativerangingchannel. . . . . . . . . . . . 75 iv LISTOFFIGURES v 5.6 Downlink ranging power gain achievable using regenerative approach in- steadtransparentchannel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.7 Signal-spacerepresentationforthedecisionbetweenthein-phasecyclicshift andoneofitsout-of-phasecyclicshiftsofanarbitraryprobingsequence. . . 80 5.8 Rangeerrorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.1 Simulatorandcorrelator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2 Simulatortop-leveldiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.3 Frequenciesonatwo-waycommunications. . . . . . . . . . . . . . . . . . . . . 95 6.4 SimulatorSWdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.5 Datapackagingforcomplexsignal. . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.6 Openlooprangemeasurementprinciple. . . . . . . . . . . . . . . . . . . . . . 100 6.7 Openlooprangemeasurementtopleveldiagram. . . . . . . . . . . . . . . . . 102 6.8 CorrelatorSWdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.1 NonoiseTEST:Montecarlosimulationsresults. . . . . . . . . . . . . . . . . . . 112 7.2 TH.NOISETEST:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 116 7.3 TH.NOISETEST:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 117 7.4 TIMETEST:Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 C.1 CTLblockdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.2 Mid-phaseintegration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 C.3 CTLlinearizemodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 List of Tables 2.1 Parametersusedfor∆DORerrorbudget. . . . . . . . . . . . . . . . . . . . . . 31 2.2 ∆DORErrorbudget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 ∆DORErrorbudgetwithstandardandwidebandconfiguration. . . . . . . . 37 4.1 QUASAR2012-173:Correlationresults. . . . . . . . . . . . . . . . . . . . . . . 45 4.2 VEX2012-214:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3 VEX2012-214:Correlationsettings. . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 VEX2012-214:Correlationresultsinwideband-like(IFMS3)andnarrowband (IFMS2)configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5 VEX2012-214:Correlationresultsinwideband-likeconfiguration(IFMS3).. . 47 4.6 Juno2012-267:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.7 Juno2012-267:Correlationsettings. . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.8 Juno2012-267:Correlationresults. . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.9 Low-SNRVEX2012-214:Correlationsettings.. . . . . . . . . . . . . . . . . . . 50 4.10 Low-SNRVEX2012-214:Correlationresults. . . . . . . . . . . . . . . . . . . . 50 4.11 LOW-SNRTESTA:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . 51 4.12 Low-SNRTESTA:Montecarloresults . . . . . . . . . . . . . . . . . . . . . . . 52 4.13 Low-SNRTESTB:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.14 Low-SNRTESTB:Montecarloresults . . . . . . . . . . . . . . . . . . . . . . . 55 4.15 Low-SNRTESTC:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.16 Low-SNRTESTC:Montecarloresults . . . . . . . . . . . . . . . . . . . . . . . 56 5.1 TonesfrequenciesusedinNASA-DSNsequentialranging. . . . . . . . . . . . 61 5.2 Definitionforthemodulationscheme. . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 T2B/T4BPNcodes: DCproperties. . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4 T2B/T4BPNcodes: Correlationproperties. . . . . . . . . . . . . . . . . . . . . 73 5.5 T2B/T4BPNcodes: Rangeclockattenuation. . . . . . . . . . . . . . . . . . . . 74 5.6 Definitionforthemodulationscheme. . . . . . . . . . . . . . . . . . . . . . . . 77 5.7 T2B/T4BPNcodes: Acquisitionproperties. . . . . . . . . . . . . . . . . . . . . 82 5.8 T2B/T4BPNcodes: Acquisitiontime. . . . . . . . . . . . . . . . . . . . . . . . 84 5.9 Rangeerrorbudget: Systemconfigurations. . . . . . . . . . . . . . . . . . . . . 88 5.10 Rangeerrorbudget: Radiolinkconfigurationandlinkbudget. . . . . . . . . . 89 vi LISTOFTABLES vii 5.11 Rangeerrorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.1 Simulationparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 Correlationparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.1 NonoiseTEST:Generalparameterssetup.. . . . . . . . . . . . . . . . . . . . . 111 7.2 NonoiseTEST:Residualdynamicsetup.. . . . . . . . . . . . . . . . . . . . . . 111 7.3 NonoiseTEST:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.4 TH.NOISETEST:Generalparameterssetup. . . . . . . . . . . . . . . . . . . . 113 7.5 TH.NOISETEST:Residualdynamicsetup. . . . . . . . . . . . . . . . . . . . . 113 7.6 TH.NOISETEST:Noisesetup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.7 TH.NOISETEST:Montecarloresults. DynamiccaseA. . . . . . . . . . . . . . 115 7.8 TH.NOISETEST:Montecarloresults. DynamiccaseB. . . . . . . . . . . . . . 115 7.9 TH.NOISETEST:Montecarloresults. DynamiccaseC. . . . . . . . . . . . . . 115 7.10 TIMETEST:Generalparameterssetup. . . . . . . . . . . . . . . . . . . . . . . 118 7.11 TIMETEST:Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 A.1 BepiColomboscientificinstruments. . . . . . . . . . . . . . . . . . . . . . . . . 124 Introduction Thenavigationofspacevehiclesisperformedbymeansofradiowavescommunication withEarthgroundstations. Suchradiolinkpermitstosendcommands,receivetelemetry andtotrackthespaceprobes. Theradiometricobservables,providedbytheradiotracking system, are used to reconstruct, in a process called orbit determination, the space probe position and orbit, whose knowledge is fundamentalfor navigation aswell asfor science purposes. Infact,radioscienceandplanetarygeodesyexperimentsneedanaccurateorbit reconstruction;thereforethequalityofradiometricdatadeterminesultimatelynotonlythe navigationaccuracybutalsothesciencereturn. Forthisreasonthetrackingradiosystems aresubjecttocontinuousdevelopmentsandimprovements.Newandadvancedtechniques are implemented to reduce the contribution from the many errors sources and therefore toprovidehighlyaccurateobservablesdemandedbymorechallengingnavigationperfor- mance. The work here presented regardsthe radio tracking systems used, in deep space mis- sions,toprovideangularandrangemeasurements.Inparticular,afterachapteraboutradio trackingsystems(ch.1)ingeneral,theworkconsistsintwodistinctiveparts,involvingthe enhancements of the European Space Agency (ESA)∆DOR system and the development ofanopenloopsoftwarecorrelatorforrangingsystembasedonpseudonoise(PN)codes. DeltadifferentialOne-wayRanging(∆DOR),providingadirectmeasurementofthean- gularpositionofaspacecraft,isapowerfultechniqueusedfornavigationofinterplanetary probes.Itsprinciple,simplebuteffective,consistsinmeasuringthedifferenceinthearrival time of a spacecraftsignal at two ground stations, and calibrating it with an ICRF (Inter- national Celestial Reference Frame) quasar signal. In 2005, Sapienza University of Rome undertookthedevelopmentofa∆DORcorrelatorforEuropeanSpaceAgency(ESA).Since thefirstdevelopment,andforthelastsevenyears,thatsystemhasbeenusedsuccessfully to navigate the Venus Express and the Rosetta ESA probes. After first enhancements, in 2008 ESA provided support also to NASA (National Aeronautics and Space Administra- tion)missionPhoenixandthentoJAXA(JapaneseAerospaceExplorationAgency)mission Hayabusa.In2011,furtherenhancementsofthecorrelatorhavebeenundertaken. Thetwo enhancements presented in this work regard the increase of the ∆DOR system accuracy, extendingthebandwidthcurrentlylimitedbythegroundstationshardware,andtheoper- abilitywithsignalsatvery-lowsignaltonoiseratio(SNR).Thefirstpartoftheworkstarts with chapter 2, treating the ∆DOR system and in particular the ESA one. The new algo- viii ix rithmsandmethodsdesignedandimplementedtobecompliantwiththeESArequestsare explainedinthefollowingchapter3whilethecampaignofteststhathasbeencarriedout tovalidateoperativelythe newalgorithms andfunctionalities, and toinvestigate the per- formanceofthe∆DORcorrelator,isreportedinchapter4. Therangingsystemsarebasedonthesimpleprincipleofmeasuringthetimeofflightof anelectromagneticwaveinvacuum. Inparticular,thesesystemsconsist,inthemostcom- mon configuration, in a known ranging signal modulated onto an uplink, retransmitted bythespacecraftandthendetectedonthedownlink. Theround-triplighttime,measured correlating the received ranging signal with a replica of what was transmitted, yields a measurement of the range. The current ranging system uses as ranging signal a series of tones, or components with different frequencies, transmitted sequentially. The need for greater ranging accuracies required by the new generations of interplanetary space mis- sion, like ESA BepiColombo mission, or the need to travelto more distant planets results in a development of new kind of ranging systems based on PN codes. The ranging sig- nalconsistsinacode, comingfromalogicalcombinationofseveralsequences, whichhas particular cross correlation properties. This new system permits to adopt a regenerative approach at the spacecraft. The ranging signal, instead of being only de-modulated and re-modulated (transparentapproach) as for sequential ranging, is regenerated, before be- ingretransmittedtowardsEarth. Removing substantially the uplinknoise onthe ranging signal, this approach results in an increase of the signal-to-noise ratio at the ground sta- tionofupto30dBandthereforeinabettermeasurementsprecisionachievable. Currently ESAstationsdon’thavereceiverscapabletooperatewithPNrangingsignal,whileNASA Deep Space Network (DSN) has only a limited capability. Given the cost and complexity ofclosed-loopreceiver,asoftwarecorrelatorintrinsiccheapnessandflexibilitymakeitsde- velopmentmeaningful. Thesecondpartofthisworkregardsthereforethedesignandthe developmentofasoftwarecorrelator,aspartofanopenloopreceiver,abletoproviderange measurementsbymeans of anoffline processingof the signalacquiredatthe ground sta- tion. Afterafirstgeneralchapter(ch.5)onrangingsystem,thechapter6showsthesoftware architectureofthecorrelatorandthatofthesimulatoroftheradiolinkthathasbeendevel- oped.Then,acampaignoftestscarriedouttoinvestigatethebehaviorandtheperformance ofthecorrelatorisreportedinthe7thchapter.
Description: