ebook img

PRECISE ANGLE AND RANGE MEASUREMENTS: ADVANCED SYSTEMS FOR DEEP SPACE PDF

148 Pages·2013·3.89 MB·Italian
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PRECISE ANGLE AND RANGE MEASUREMENTS: ADVANCED SYSTEMS FOR DEEP SPACE

Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica Dottorato di ricerca in Ingegneria Aerospaziale Ciclo XXV PRECISE ANGLE AND RANGE MEASUREMENTS: ADVANCED SYSTEMS FOR DEEP SPACE MISSIONS Author Advisor Francesco Barbaglio Prof. Luciano Iess Anno Accademico 2011-2012 Aknowledgements WorkingonthePh.D.hasbeenawonderfulandunforgettableexperience.Manypeople havehelpedandsupportedmeininnumerableways,duringthe3yearsspenttocarryout theresearchandcompletethisdissertation. Firstofall,IamdeeplygratefultomyadvisorProf. LucianoIessforhiscontinuossup- port. Hiswideknowledgeandhisenthusiasmhavebeenofgreatvalueforme. Moreover hegavemetheopportunitytobepartofasoexcitingscientificcommunityandtohavean extraordinarylearningexperience. I would like tothankAlessandroArditoandGabrieleRapino, who haveworked with me in the ∆DOR activities and have become true friends. Our collaboration has been a wonderfulexperienceandtheirconstantsupport,guidanceandgenerosityhavemadethis workpossible. IwouldlikealsotothankMattiaMercolino,fromESOC,forhissupport,his valuableadviceandforthefunnymomentsspentinDarmstadt. Inaddition,IhavebeenprivilegedtogettoknowandtocollaboratewithRadioscience laboratory colleagues. I wish to express my thanks to them, for their invaluable support and the fun we had during the working days. A special and warm thank goes to a good friend, MarcoDucci with whom I shared many experiences, professionalor otherwise, in these three years. Another particular mention to Mauro di Benedetto, whose friendship andsupportwasimportant. IespeciallythankmyMum,mysisterAnnaandmynephewFrancisco. Theirindescrib- ablelovingsupporttomethroughoutmywholelifeisinvaluable.Iamalsodeeplygrateful to my Dad. What I have become and what I have achieved is because of him. I am sure he would be veryproud of me. Mywarm thank goes also to my grandmother and other familymembers,fortheirinterestandsupport. Finally,IowemylovingthankstoAlessandra,forherunderstanding,endlesspatience andencouragement. Ourloveisthebestresulttomeinmylife. i Table of Contents ListofFigures iv ListofTables vi Introduction viii 1 Earth-basedradiotrackingsystemsfordeepspacemissions 1 1.1 Radiometricobservables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Errorsources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 ClockInstability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Instrumentaleffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 TransmissionMedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Platformparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ∆ I Delta DifferentialOne WayRanging ( DOR) 12 2 ∆DORsystemoverview 13 2.1 Spacecraftcorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Quasarcorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 ∆DORsystemaccuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 ThermalNoiseeffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 Quasarpositioningerror . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3 Errorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.4 Fragmentedcorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 ∆DORenhancement:WidebandandLow-SNR 33 3.1 Widebandfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Low-SNRfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 ∆DORenhancement:Testsandresults 43 4.1 Widebandfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.1 Quasaronly: wideband-likeacquisition . . . . . . . . . . . . . . . . . . 44 4.1.2 VenusEXpress: wideband-likeacquisition . . . . . . . . . . . . . . . . 45 ii TABLEOFCONTENTS iii 4.1.3 Juno: widebandacquisition . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 LOW-SNRfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.1 Realdatawithaddednoise . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.2 Simulateddata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 II Pseudonoise rangingsystem 57 5 Rangingsystemsoverview 58 5.1 Sequentialranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.1 NASAtoneranging: signalstructure. . . . . . . . . . . . . . . . . . . . 61 5.1.2 ESAcoderanging: signalstructure . . . . . . . . . . . . . . . . . . . . . 63 5.1.3 Powerallocationinatransparentchannel . . . . . . . . . . . . . . . . . 65 5.1.4 Acquisitionperformance . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Pseudonoise(PN)ranging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2.1 PNcodestructureandproperties. . . . . . . . . . . . . . . . . . . . . . 72 5.2.2 PNacquisition,trackingandmeasurementapproaches . . . . . . . . . 74 5.2.3 Powerallocationinaregenerativechannel . . . . . . . . . . . . . . . . 76 5.2.4 Acquisitionperformance . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Rangingsystemaccuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3.1 Rangingjitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3.2 Errorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 Pseudonoiseopenloopreceiver 92 6.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1.1 Mathematicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1.2 SWarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 Correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2.1 Mathematicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2.2 SWarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7 Pseudonoiseopenloopreceiver:Testsandresults 110 7.1 Nonoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2 Thermalnoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.3 Computationaloptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 Conclusions 121 A ESAmission:BepiColombo 123 B PhaseestimatethroughIandQintegration 126 C ChipTrackingLoopperformance 130 Bibliography 135 List of Figures 2.1 VLBItechniquescheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 ∆DORtrackingscheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 ESA∆DORacquisitionsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 ∆DORacquisitionbandwidths. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 VenusEXpress(2012-214)spectra. . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Topleveldiagramofthestandardspacecraftcorrelationmethod. . . . . . . . 20 2.7 Ambiguityremovalprocess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.8 QuasarS148spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.9 Topleveldiagramofthequasarcorrelationprocess. . . . . . . . . . . . . . . . 25 2.10 ∆DORerrorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1 GShardwareconfigurationfor∆DORacquisition. . . . . . . . . . . . . . . . . 33 3.2 ESA∆DORerrorbudgetwithstandardandwidebandconfiguration. . . . . . 37 3.3 Topleveldiagramoflow-SNRspacecraftcorrelationalgorithm. . . . . . . . . 39 4.1 Differentfuntionalitiesfor∆DORcomputation. . . . . . . . . . . . . . . . . . 44 4.2 QUASAR2012-173:Acquisitionconfiguration. . . . . . . . . . . . . . . . . . . 45 4.3 VEX2012-214:Acquisitionconfiguration. . . . . . . . . . . . . . . . . . . . . . 46 4.4 VEX2012-214:Resultsobtainedwithtwodifferentconfigurations,standard- narrowband(IFMS2)andwideband-like(IFMS3).Differentalgorithmsused. 48 4.5 Juno2012-267:Acquisitionconfiguration. . . . . . . . . . . . . . . . . . . . . . 48 4.6 Low-SNRVEX2012-214:Correlationresults. . . . . . . . . . . . . . . . . . . . 51 4.7 Low-SNRTESTA:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 53 4.8 Low-SNRTESTB:Noiseconfiguration. . . . . . . . . . . . . . . . . . . . . . . 54 4.9 Low-SNRTESTB:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 55 4.10 Low-SNRTESTC:Noiseconfiguration. . . . . . . . . . . . . . . . . . . . . . . 55 5.1 NASA-DSNsequentialrangingspectrum. . . . . . . . . . . . . . . . . . . . . . 62 5.2 ESAcodesequentialrangingspectrum. . . . . . . . . . . . . . . . . . . . . . . 64 5.3 PNRanging-Sequencewaveform.. . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4 PNrangingsignalspectrum.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.5 Functionalblockdiagramofregenerativerangingchannel. . . . . . . . . . . . 75 iv LISTOFFIGURES v 5.6 Downlink ranging power gain achievable using regenerative approach in- steadtransparentchannel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.7 Signal-spacerepresentationforthedecisionbetweenthein-phasecyclicshift andoneofitsout-of-phasecyclicshiftsofanarbitraryprobingsequence. . . 80 5.8 Rangeerrorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.1 Simulatorandcorrelator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2 Simulatortop-leveldiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.3 Frequenciesonatwo-waycommunications. . . . . . . . . . . . . . . . . . . . . 95 6.4 SimulatorSWdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.5 Datapackagingforcomplexsignal. . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.6 Openlooprangemeasurementprinciple. . . . . . . . . . . . . . . . . . . . . . 100 6.7 Openlooprangemeasurementtopleveldiagram. . . . . . . . . . . . . . . . . 102 6.8 CorrelatorSWdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.1 NonoiseTEST:Montecarlosimulationsresults. . . . . . . . . . . . . . . . . . . 112 7.2 TH.NOISETEST:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 116 7.3 TH.NOISETEST:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 117 7.4 TIMETEST:Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 C.1 CTLblockdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.2 Mid-phaseintegration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 C.3 CTLlinearizemodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 List of Tables 2.1 Parametersusedfor∆DORerrorbudget. . . . . . . . . . . . . . . . . . . . . . 31 2.2 ∆DORErrorbudget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 ∆DORErrorbudgetwithstandardandwidebandconfiguration. . . . . . . . 37 4.1 QUASAR2012-173:Correlationresults. . . . . . . . . . . . . . . . . . . . . . . 45 4.2 VEX2012-214:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3 VEX2012-214:Correlationsettings. . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 VEX2012-214:Correlationresultsinwideband-like(IFMS3)andnarrowband (IFMS2)configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5 VEX2012-214:Correlationresultsinwideband-likeconfiguration(IFMS3).. . 47 4.6 Juno2012-267:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.7 Juno2012-267:Correlationsettings. . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.8 Juno2012-267:Correlationresults. . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.9 Low-SNRVEX2012-214:Correlationsettings.. . . . . . . . . . . . . . . . . . . 50 4.10 Low-SNRVEX2012-214:Correlationresults. . . . . . . . . . . . . . . . . . . . 50 4.11 LOW-SNRTESTA:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . 51 4.12 Low-SNRTESTA:Montecarloresults . . . . . . . . . . . . . . . . . . . . . . . 52 4.13 Low-SNRTESTB:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.14 Low-SNRTESTB:Montecarloresults . . . . . . . . . . . . . . . . . . . . . . . 55 4.15 Low-SNRTESTC:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.16 Low-SNRTESTC:Montecarloresults . . . . . . . . . . . . . . . . . . . . . . . 56 5.1 TonesfrequenciesusedinNASA-DSNsequentialranging. . . . . . . . . . . . 61 5.2 Definitionforthemodulationscheme. . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 T2B/T4BPNcodes: DCproperties. . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4 T2B/T4BPNcodes: Correlationproperties. . . . . . . . . . . . . . . . . . . . . 73 5.5 T2B/T4BPNcodes: Rangeclockattenuation. . . . . . . . . . . . . . . . . . . . 74 5.6 Definitionforthemodulationscheme. . . . . . . . . . . . . . . . . . . . . . . . 77 5.7 T2B/T4BPNcodes: Acquisitionproperties. . . . . . . . . . . . . . . . . . . . . 82 5.8 T2B/T4BPNcodes: Acquisitiontime. . . . . . . . . . . . . . . . . . . . . . . . 84 5.9 Rangeerrorbudget: Systemconfigurations. . . . . . . . . . . . . . . . . . . . . 88 5.10 Rangeerrorbudget: Radiolinkconfigurationandlinkbudget. . . . . . . . . . 89 vi LISTOFTABLES vii 5.11 Rangeerrorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.1 Simulationparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 Correlationparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.1 NonoiseTEST:Generalparameterssetup.. . . . . . . . . . . . . . . . . . . . . 111 7.2 NonoiseTEST:Residualdynamicsetup.. . . . . . . . . . . . . . . . . . . . . . 111 7.3 NonoiseTEST:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.4 TH.NOISETEST:Generalparameterssetup. . . . . . . . . . . . . . . . . . . . 113 7.5 TH.NOISETEST:Residualdynamicsetup. . . . . . . . . . . . . . . . . . . . . 113 7.6 TH.NOISETEST:Noisesetup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.7 TH.NOISETEST:Montecarloresults. DynamiccaseA. . . . . . . . . . . . . . 115 7.8 TH.NOISETEST:Montecarloresults. DynamiccaseB. . . . . . . . . . . . . . 115 7.9 TH.NOISETEST:Montecarloresults. DynamiccaseC. . . . . . . . . . . . . . 115 7.10 TIMETEST:Generalparameterssetup. . . . . . . . . . . . . . . . . . . . . . . 118 7.11 TIMETEST:Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 A.1 BepiColomboscientificinstruments. . . . . . . . . . . . . . . . . . . . . . . . . 124 Introduction Thenavigationofspacevehiclesisperformedbymeansofradiowavescommunication withEarthgroundstations. Suchradiolinkpermitstosendcommands,receivetelemetry andtotrackthespaceprobes. Theradiometricobservables,providedbytheradiotracking system, are used to reconstruct, in a process called orbit determination, the space probe position and orbit, whose knowledge is fundamentalfor navigation aswell asfor science purposes. Infact,radioscienceandplanetarygeodesyexperimentsneedanaccurateorbit reconstruction;thereforethequalityofradiometricdatadeterminesultimatelynotonlythe navigationaccuracybutalsothesciencereturn. Forthisreasonthetrackingradiosystems aresubjecttocontinuousdevelopmentsandimprovements.Newandadvancedtechniques are implemented to reduce the contribution from the many errors sources and therefore toprovidehighlyaccurateobservablesdemandedbymorechallengingnavigationperfor- mance. The work here presented regardsthe radio tracking systems used, in deep space mis- sions,toprovideangularandrangemeasurements.Inparticular,afterachapteraboutradio trackingsystems(ch.1)ingeneral,theworkconsistsintwodistinctiveparts,involvingthe enhancements of the European Space Agency (ESA)∆DOR system and the development ofanopenloopsoftwarecorrelatorforrangingsystembasedonpseudonoise(PN)codes. DeltadifferentialOne-wayRanging(∆DOR),providingadirectmeasurementofthean- gularpositionofaspacecraft,isapowerfultechniqueusedfornavigationofinterplanetary probes.Itsprinciple,simplebuteffective,consistsinmeasuringthedifferenceinthearrival time of a spacecraftsignal at two ground stations, and calibrating it with an ICRF (Inter- national Celestial Reference Frame) quasar signal. In 2005, Sapienza University of Rome undertookthedevelopmentofa∆DORcorrelatorforEuropeanSpaceAgency(ESA).Since thefirstdevelopment,andforthelastsevenyears,thatsystemhasbeenusedsuccessfully to navigate the Venus Express and the Rosetta ESA probes. After first enhancements, in 2008 ESA provided support also to NASA (National Aeronautics and Space Administra- tion)missionPhoenixandthentoJAXA(JapaneseAerospaceExplorationAgency)mission Hayabusa.In2011,furtherenhancementsofthecorrelatorhavebeenundertaken. Thetwo enhancements presented in this work regard the increase of the ∆DOR system accuracy, extendingthebandwidthcurrentlylimitedbythegroundstationshardware,andtheoper- abilitywithsignalsatvery-lowsignaltonoiseratio(SNR).Thefirstpartoftheworkstarts with chapter 2, treating the ∆DOR system and in particular the ESA one. The new algo- viii ix rithmsandmethodsdesignedandimplementedtobecompliantwiththeESArequestsare explainedinthefollowingchapter3whilethecampaignofteststhathasbeencarriedout tovalidateoperativelythe newalgorithms andfunctionalities, and toinvestigate the per- formanceofthe∆DORcorrelator,isreportedinchapter4. Therangingsystemsarebasedonthesimpleprincipleofmeasuringthetimeofflightof anelectromagneticwaveinvacuum. Inparticular,thesesystemsconsist,inthemostcom- mon configuration, in a known ranging signal modulated onto an uplink, retransmitted bythespacecraftandthendetectedonthedownlink. Theround-triplighttime,measured correlating the received ranging signal with a replica of what was transmitted, yields a measurement of the range. The current ranging system uses as ranging signal a series of tones, or components with different frequencies, transmitted sequentially. The need for greater ranging accuracies required by the new generations of interplanetary space mis- sion, like ESA BepiColombo mission, or the need to travelto more distant planets results in a development of new kind of ranging systems based on PN codes. The ranging sig- nalconsistsinacode, comingfromalogicalcombinationofseveralsequences, whichhas particular cross correlation properties. This new system permits to adopt a regenerative approach at the spacecraft. The ranging signal, instead of being only de-modulated and re-modulated (transparentapproach) as for sequential ranging, is regenerated, before be- ingretransmittedtowardsEarth. Removing substantially the uplinknoise onthe ranging signal, this approach results in an increase of the signal-to-noise ratio at the ground sta- tionofupto30dBandthereforeinabettermeasurementsprecisionachievable. Currently ESAstationsdon’thavereceiverscapabletooperatewithPNrangingsignal,whileNASA Deep Space Network (DSN) has only a limited capability. Given the cost and complexity ofclosed-loopreceiver,asoftwarecorrelatorintrinsiccheapnessandflexibilitymakeitsde- velopmentmeaningful. Thesecondpartofthisworkregardsthereforethedesignandthe developmentofasoftwarecorrelator,aspartofanopenloopreceiver,abletoproviderange measurementsbymeans of anoffline processingof the signalacquiredatthe ground sta- tion. Afterafirstgeneralchapter(ch.5)onrangingsystem,thechapter6showsthesoftware architectureofthecorrelatorandthatofthesimulatoroftheradiolinkthathasbeendevel- oped.Then,acampaignoftestscarriedouttoinvestigatethebehaviorandtheperformance ofthecorrelatorisreportedinthe7thchapter.

Description:
Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica. Dottorato di ricerca in Ingegneria Aerospaziale. Ciclo XXV. PRECISE Secular increases in LOD of about 1ms per century due to tidal dissipation of lunar forces.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.