ebook img

Precambrian Geology of the USSR PDF

522 Pages·1993·10.178 MB·ii-vi, 1-528\522
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Precambrian Geology of the USSR

DEVELOPMENTS IN PRECAMBRIAN GEOLOGY Advisory Editor B.F. Windley Further titles in this series 1. B.F. WINDLEY and S.M. NAQVl (Editors) Archaean Geochemistry 2. D.R. HUNTER (Editor) Precambrian of the Southern Hemisphere 3. K.C. CONDIE Archean Greenstone Belts 4. A. KRONER (Editor) Precambrian Plate Tectonics 5. Y.P. MEL'NIK Precambrian Banded Iron-formations. Physicochemical Conditions of Formation 6. A.F. TRENDALL and R.C. MORRIS (Editors) Iron-Formation: Facts and Problems 7. B. NAGY, R. WEBER, J.C. GUERRERO and M. SCHIDLOWSKI (Editors) Developments and Interactions of the Precambrian Atmosphere, Lithosphere and Biosphere 8. S.M. NAQVI (Editor) Precambrian Continental Crust and its Economic Resources DEVELOPMENTS IN PRECAMBRIAN GEOLOGY 9 PRECAMBRIAN GEOLOGY OF THE USSR Edited by D.V. RUNDQVIST Institute of Ph ysics of the Earth, Russian Academy of Sciences, B. Gruzinskaya 10, 723810 Moscow, Russia and F.P. MITROFANOV Institute of Precambrian Geology and Geochronology, Academy of Sciences of Russia, nab. Makarova 2, Leningrad 199164, Russia Translated by C. Gillen The University of Edinburgh ELSEVIER, Amsterdam - London - New York - Tokyo 1993 ELSEVIER SCIENCE PUBLISHERS B.V. Sara Burgerhartstraat 25 P.O. Box 211,1000 AE Amsterdam, The Netherlands Library of Congress Cataloging-ln-Publlcatlon Data Dokembriiskah geologlh SSSR. English. Precambrian geology of the USSR / edited by D.V. Rundqvist and F.P. Mitrofanov. -- p. cm. (Developments in Precambrian geology ; 9) Translation of. Dokembr i iskah geo logi SSSR. Includes blbliographical references and index. ISBN 0-444-89380-6 1. Geology, Stratigraphic--Precambrian. 2. Geology--Soviet Union. I. Rundkvist. D. V. (Dmitril Vasil’evich) 11. Mitrofanov. F. P. 111. Title. IV. Series. PE653.D643513 1992 551.7’1’0947--dC20 92-8594 CIP Precambrian Geology of the USSR was first published in Russian in 1988 as “Dokembriyskaya geologiya SSSR” by Nauka Publishers, Leningrad. ISBN 5-02-024367-1,440 pp. Q 1988 Nauka, Leningrad ISBN: 0-444-893806 0 1993 Elsevier Science Publishers B.V. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V., Copyright and Permis- sions Department, P.O. Box 521,1000 AM Amsterdam, The Netherlands. Special regulations for readers in the U.S.A. - This publication has been registered with the Copy- right Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the U.S.A. All other copyright questions, including photocopying outside of the U.S.A., should be referred to the publisher. No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. This book is printed on acid-free paper. Printed in The Netherlands V FOREWORD Precambrian Geology of the USSR is an attempt to draw together and generalise new geological, geochronological, petrological and geophysical material for the two fundamental continental geostructures within the Soviet Union - ancient cratons and Phanerozoic fold belts. This material reflects the results of research by a large team of geologists in the Institute of Precambrian Geology and Geochronlogy of the USSR Academy of Sciences (in Leningrad) who have been studying Precambrian regions for over 30 years. The book also takes account of the achievements of other scientific and industrial organisations in this area. It has been written by a team of authors who are the leading specialists in problems of the Precambrian and in the geology of individual Precambrian regions. Material for the major regions - tectonic provinces or “geoblocks” - is basically presented according to a unified pattern. Since the book was written by a large team, individual chapters are to a certain extent independent essays in which the understanding of scientific questions is given from the author’s point of view, The book gives the complete Precambrian history of each region, al- though the early Precambrian is treated more fully than the late Precam- brian, which for many regions is presented in outline only. It is not possible in a single book to describe all aspects of early Precambrian geology for each region equally comprehensively. Therefore, certain individual aspects are treated as fully as possible for one or two regions and in a more condensed form for the others. For example, the lithological composition and petro- chemistry of lower Archaean rocks in high grade metamorphic complexes is given in detail for the Aldan Shield; deformation sequences and their relation to migmatites and granites are given in detail for the Belomorides and Svecofennides. The exhaustive reference lists for each region will allow the interested reader to obtain further information. Problems in the regional geology of the Precambrian of such major regions as ancient cratons require many questions to be resolved in relation to the establishment of the time and space correlation of tectonic structures at various stages in crustal evolution; the construction of vertical and horizontal crustal sections; and an explanation of the commonest patterns in the development of the Precambrian lithosphere and in the evolution of processes taking place in the lithosphere. These questions are far from being finally resolved, and their discussion in the book VI Foreword reveals only the trends and directions of research in the Institute of Precambrian Geology and Geochronology. Attempts are being made in this research to combine the results of analysing recent data on Precambrian regions into a unified system. Some problems in Precambrian geology are: the evolution of sedimentation, defining the conditions existing in upper sections of the Precambrian crust in different geological periods; features of metamorphic processes of different ages at various crustal depths, reflecting the thermodynamic conditions in the Precambrian crust at various stages in its growth; the conditions pertaining to the appearance of igneous melts and the origin of magmatic bodies, which characterise P-T parameters in the crust and mantle; the definition of metallogenic cycles and ore-bearing structures - these relate to a number of topical problems which are reflected in several sections in the book and in the conclusions. The work was designed by G.P Pleskach and A.A. Mikhaylova. Enormous help was given in the preparation of the manuscript by G.A. Buyko and E.N. Turunova. All the tables on features of mineral deposits and ore shows were prepared by Dr. RA. Gorelov. The authors express their sincere gratitude to them. Dr. A.N. Kazakov and Dr. G.M. Belyayev are thanked for their helpful and constructive suggestions on the manuscript. D.V RUNDQVIST and El? MITROFANOV Authors: RYa. Khiltova, A.B. Vrevsky, S.B. Lobach-Zhuchenko, K.A. Shurkin, VA. Glebovitsky, A.K. Zapolnov, A.N. Berkovsky, VB. Dagelaysky, D.V: Rund- qvist, Yu.M. Sokolov, RL. Dook, G.M. Drugova, R.I. Milkevich, S.I. Turchen- ko, N.I. Moskovchenko, L.Ye. Shustova, F.E Mitrofanov, I.K. Kozakov, R.Z. Levkovsky, A.R Sochava, RA. Gorelov. Referees: G.M. Belyayev, A.N. Kazakov Introduction The Precambrian developed in the USSR presents an ideal opportunity to study it in all its structural forms. Different vertical levels of the early Precambrian crust are exposed in the continental basement. The upper Precambrian plays an important role in the structures of the sedimentary cover. Precambrian rocks of various ages are exposed in Late Proterozoic and Phanerozoic fold belts. Ancient cratons, in which the Precambrian is the main constituent, and Phanerozoic fold belts, in which the Precambrian is of minor importance, occupy approximately equal areas within the Soviet Union (Fig. 1-1). The boundaries between them separate late Precambrian (< 1650 Ma) sediments, formed on ancient continental platforms in a stable regime, from the geosynclinal sediments in younger fold belts. The basement to cratons is exposed in regions amounting to a little over 12% of the area of each craton. The East European and Siberian cratons are almost mirror images of each other in terms of the distribution of areas of exposure. In the East European craton, the northern part of the basement, the Baltic Shield, is best exposed, while the southern part, the Ukrainian Shield, is much less so. In the Siberian craton, on the other hand, areas of exposure are situated mainly in the south - in the Aldan Shield, the Stanovoy region and the marginal uplifts in the south-west of the craton, while in the north the Anabar Shield accounts for only a small area. There are many points of view concerning the nature of the boundaries between exposed shields and cratonic areas. We take them to be historical- geological boundaries which had already been initiated in the Precambrian. Huge areas of Precambrian rocks of the cratons are hidden beneath a sedimentary cover. Investigating them by geological and geophysical methods is of great significance in defining the space-time boundaries of the major categories of early Precambrian tectonic structures. The basement to ancient cratons is subdivided by persistent lineaments into a system of blocks. Major crustal segments, or provinces (geoblocks), correspond to tectonic regions which developed independently and are 2 I n tr Fig. 1-1. Tectonic regions of the USSR. 1 = younger fold belts: a = exposed, b = beneath platform cover; 2 = Upper Precambrian in younger od fold belts; 3 = Lower (Upper in part) Precambrian in younger fold belts; 4 = Precambrian of cratons: a = exposed (shields), b = buried uc basement; 5 = geological boundaries; 6 = craton margins. tio n Introduction 3 thereby distinguished from one another. The main difference is in the timing of the final processes: Archaean for example in the Kola and Karelian provinces of the Baltic Shield; Early Proterozoic in the West Ukrainian province of the Ukrainian Shield, etc. The block structure of the crust, identified during the analysis of geo- logical and geophysical data, probably reflects the earliest subdivision of the lithosphere. This is indicated by important statistical relations discov- ered between the composition of Archaean igneous rocks and a number of geophysical characteristics of the modern lithosphere, including the gravity potential and some parameters of the geomagnetic field (Abramovich and Klushin, 1978). Although the exposed Precambrian, especially the earlier, in younger fold belts amounts to a tiny percentage, it is nevertheless documented in belts which completed folding at different times. The Pre- cambrian is exposed in two types of tectonic structure: median massifs and anticlinal elevations. The study of the Precambrian in the territory of the USSR began over 100 years ago. From the 1880s to the 1940s, research was mainly carried out in crystalline shield areas. Investigations in this period by N.I. Inostrantsev, VM. Timofeyev, A.A. Polkanov, VA. Obruchev, M.A. Usov and others were mainly directed at solving problems in practical geology and basic methods were evolved for the successful scientific study of various aspects of Precambrian geology. The idea emerged in this period that Precambrian geology possessed certain well-expressed specific features. The reason for this was a lack of study of the late Precambrian, while the early “crystalline” Precambrian could confidently be contrasted with the Phanerozoic. Since the 1950s, the techniques of isotope geochronology began to be applied widely by A.F? Vinogradov, E.K. Gerling, A.I. Tugarinov and N.l? Semenenko. This resulted in a qualitatively new understanding of geological processes in the Precambrian. One of the most important outcomes was the radiometric dating of major magmatic episodes, mainly granitic, and metamorphic episodes, which in reality were relatively brief intervals of intense activity, often defined as tectononietamorphic or tectonomagmatic cycles or epochs. Data from all Precambrian regions showed that they subdivided Precambrian geological history into major segnients-stages of continental crustal development lasting for 800-1000 Ma (Neyelov, 1965; Kratz et al., 1981). Internal processes affected all crustal levels. Up to the present, the application of tectono-metamorphic cycles or epochs is the only useful basis for the general subdivision and interregional correlation of Precambrian rocks. They form the basis of the general geological- geochronological scale for the early Precambrian (Keller et al., 1977). Each stage in the development of the early Precambrian crust - Early Archaean, Archaean and Early Proterozoic - is reflected in structural- lithological terrains. The geological and geochronological boundaries of 4 Introduction these terrains are defined by periods of intense internal processes, which are dated by radiometric methods. Structural-lithological terrains include volcanogenic-sedimentary rocks and intrusive rocks, formed in the time interval between these boundaries. Since these terrains evolved over very long periods, their supracrustal components could contain formations which accumulated under varied tectonic and palaeogeographic conditions - either relatively quiet or active. The early Precambrian terrains formed under varying P-T condi- tions. This book places great significance on sillimanite-andalusite and sillimanite-kyanite facies series when characterising metamorphic condi- tions. It is assumed that these series formed in response to different thermal gradients: high or low. High gradient metamorphism usually cor- responds to processes that occurred at low P (5-6 kbar for T = 700- 8OO0C), while low gradient metamorphism occurred at high P (7-13 kbar for T = 700-800°C). The study of the composition of Precambrian complexes - the division into primary sedimentary and primary volcanic, and the determination of which magmatic series volcanic rocks belong to - is based on the use of various petrochemical diagrams. For sedinientary-volcanogenicr ocks, the Neyelov et al. (1979), Predovsky (1979) and Golovenok (1977) diagrams were used; for igneous rock determinations, diagrams developed by the USSR Petrographic Committee were used (Andreyeva et al., 1980); and for distinguishing magmatic series, Na20 +KzO-A1203-MgO and others, triangular diagrams were used. The Neyelov petrochemical diagram is used throughout for analysing metamorphic rocks of the Aldan Shield; being a classification diagram for sedimentary and volcanic rocks, it provides an opportunity to compare simultaneously the compositions of the same rocks with different parageneses and to define the petrochemical features of the parageneses as a whole. In Precambrian regions which have evolved in a cyclical fashion, the structural development of individual complexes was reflected in numer- ous phases of folding, designated 8’1, 8’2, ...n,d uring deformational cycles ... n. Figure 1-2 illustrates the early Precambrian structural-lithological ter- rains in the main regions of the USSR which are described in this book. Periods of intense internal processes are shown in Fig. 1-2 as fold episodes, some of which - those that appeared over a whole region and at all crustal levels - correspond to major boundaries (solid lines), while others that appeared locally correspond to local boundaries (broken lines). Geological-geochronological boundaries are defined using the 1978 Pre- cambrian geochronological scale of the USSR (Keller et al., 1977; Mitro- fanov, 19791, in which the Precambrian is divided into the Archaean, lower Proterozoic and upper Proterozoic (Riphean+Vendian), the main bound- aries being 2600 f 100 Ma, 1650 f 50 Ma and 650 f 25 Ma, and the internal Introduction 5 Fig. 1-2. Correlation of structural-compositional complexes and tectonic epochs in the early Precambrian of the USSR. boundaries 2300 Ma, 1350 f 50 Ma and 1000 f 50 Ma. This scale differs in certain respects from the geochronological scales of other continents. In particular, the two-fold instead of three-fold division of the Proterozoic, and the lesser signficance compared to elsewhere of the 1000 f 100 Ma boundary. These differences relate significantly to the fact that the 1978 geochronological scale of the USSR was established on the basis of material from the Precambrian of ancient cratons, in the geological history of which the 1700 f 100 Ma date represents the boundary between the latest events in the mobile development of these regions and their aulacogen-pericratonic stage, which in Vendian to Palaeozoic times merged with the stage of formation of the platform cover succession. Geological and geochronological material for the early Precambrian, so far accumulated, has assisted the authors in a number of cases to subdivide major geochronological units into smaller ones. For example, three subdivisions are recognised, as in the Archaean of the Siberian craton: AR; > 3400 Ma, AR: > 3000 Ma and AR; > 2600 f 100 Ma. In determining the age of structural-lithological terrains, the timing of metamorphism and the age of igneous rocks, account has been taken of all dates using different radiometric methods: U-Pb and Rb-Sr isochrons, Pb-Pb zircon ages, K-Ar and Sm-Nd, the latter at present used only to a very small extent. Preference was given to U-Pb, Rb-Sr and Sm-Nd methods. Results from the Pb-Pb thernio-emission method (Zr evaporation technique) were regarded as reflecting the minimum age of an event, although in many cases the figures obtained by this technique were close to or even coincided with U-Pb zircon isochron dates. Dates obtained from the K-Ar method were taken into consideration when evaluating the time

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.