Merrill AdvancedMahematicalConcepts GLENCOE McGraw-Hill New York, New York Columbus, Ohio Woodland Hills, California Peoria, Illinois 1 1 Copyright© byGlencoe/McGraw-Hill. All rightsreserved.Permissionisgrantedtoreproducethematerialcontainedhereinonthe conditionthatsuchmaterialbereproducedonlyforclassroomuse;be providedtostudents, teachers,andfamilieswithoutch.arge;andbe usedsolelyinconjunctionwithMerrillAdvanced MathematicalConcepts.Any otherreproduction,foruseorsale, isprohibitedwithoutprior writtenpermissionofthepublisher. Sendallinquiriesto: Glencoe/McGraw-Hill 936EastwindDrive Westerville,OH43081 ISBN:0-02-824292-0 PrintedintheUnitedStatesofAmerica. 6789101112131415 009 0302 01009998 CONTENTS Lesson Title Page Lesson Title Page 1-1 Relationsand Functions..................1 5-8 AreaofTriangles...........................35 1-2 Composition andInverses of Functions....................................2 1-3 Linear Functionsand 6-1 GraphsoftheTrigonometric Inequalities..................................3 Functions..................................36 1-4 Distanceand Slope.........................4 6-2 Amplitude,Period,and 1-5 FormsofLinear Equations..............5 PhaseShift...............................37 1-6 Paralleland Perpendicular 6-3 Graphing'Trigonometric Lines ...........................................6 Functions..................................38 6-4 Inverse"l'rigonometric Functions..................................39 2-1 SolvingSystemsofEquations.........7 6-5 PrincipalValues ofthe 2-2 Introduction to Matrices...................8 InverseTrigonometric 2-3 Determinantsand Multiplicative Functions..................................40 InversesofMatrices....................9 6-6 GraphingInversesof 2-4 SolvingSystemsofEquations TrigonometricFunctions...........41 byUsingMatrices .....................10 6-7 SimpleHarmonicMotion...............42 2-5 SolvingSystemsof Inequalities....11 2-6 LinearProgramming......................12 7-1 BasicTrigonometric Identities ...................................43 3-1 Symmetry......................................13 7-2 VerifyingTrigonometric 3-2 FamiliesofGraphs........................14 Identities ...................................44 3-3 Inverse Functionsand 7-3 Sumand Difference Relations...................................1.5 Identities ...................................45 3-4 Rational Functionsand 7-4 Double-Angleand Half-Angle Asymptotes...............................16 Identities ...................................46 3-5 Graphsof Inequalities...................17 7-5 SolvingTrigonometric 3-6 Tangenttoa Curve .......................18 Equations.........................".........47 3-7 Graphsand CriticalPointsof 7-6 Normal Formofa Linear Polynomial Functions................19 Equation....................................48 3-8 ContinuityandEndBehavior..........20 7-7 Distancefroma Pointtoa Line ...........................................49 4-1 PolynomialFunctions....................21 4-2 QuadraticEquationsand 8-1 GeometricVectors ...................._..5.0 Inequalities................................22 4-3 The Remainderand Factor 8-2 AlgebraicVectors ..........................51 Theorems..................................23 8-3 Vectors inThree-Dimensional 4-4 The RationalRootTheorem..........24 Space........................................52 8-4 PerpendicularVectors ...................53 4-5 Locatingthe Zerosofa Function....................................25 8-5 Applications withVectors ..............54 4-6 RationalEquationsand 8-6 Vectors and Parametric PartialFractions........................26 Equations ..................................55 4-7 RadicalEquationsand 8-7 UsingParametricEquations Inequalities................................27 to ModelMotion........................56 5-1 Angles andTheir Measure............28 9-1 PolarCoordinates .........................57 5-2 CentralAngles andArcs ...............29 9-2 Graphsof PolarEquations............58 5-3 CircularFunctions....'.....................30 9-3 Polarand Rectangular 5-4 Trigonometric Functionsof Coordinates ..............................59 SpecialAngles ..........................31 9-4 PolarFormofaLinear 5-5 RightTriangles..............................32 Function....................................60 5-6 TheLawofSines ..........................33 9-5 SimplifyingComplex 5-7 TheLawofCosines ......................34 Numbers ...................................61 =I=ImI GlencoDeivisionM,acmillan/McGraw-Hill CONTENTS Lesson Title Page Lesson Title Page 9-6 PolarFormofComplex 13-6 The MandelbrotSet.......................93 Numbers ...................................62 9-7 ProductsandQuotientsof 14-1 Permutations.................................94 ComplexNumbersin 14-2 Permutationswith Repetitions PolarForm................................63 andCircularPermutations.........95 9-8 Powersand Rootsof 14-3 Combinations................................96 ComplexNumbers ....................64 14-4 Probabilityand Odds.-....................97 14-5 Probabilitiesof Independent 10-1 The Circle......................................65 and DependentEvents .............98 10-2 The Parabola.................................66 14-6 ProbabilitiesofMutuallyExclusive 10-3 The Ellipse....................................67 or InclusiveEvents....................99 10-4 The Hyperbola...............................68 14-7 ConditionalProbability ................100 10-5 ConicSections ..............................69 14-8 The BinomialTheoremand 10-6 TransformationsofConics ............70 Probability...............................101 10-7 SystemsofSecond-Degree EquationsandInequalities.........71 10-8 Tangents and Normalsto 15-1 The FrequencyDistribution.........102 the Conic Sections....................72 15-2 MeasuresofCentral Tendency .........................'.......103 11-1 Rational Exponents.......................73 .15-3 MeasuresofVariability................104 15-4 The NormalDistribution..............105 11-2 ExponentialFunctions...................74 11-3 The Numbere ...............................75 15-5 Sample Setsof Data...................106 15-6 Scatter Plots................................107 11-4 LogarithmicFunctions...................76 11-5 Common Logarithms.....................77 11-6 Exponentialand Logarithmic 16-1 Graphs ........................................108 Equations..................................78 " 16-2 Walksand Paths.........................109 11-7 NaturalLogarithms........................79 16-3 .EulerPathsand Circuits..............110 16-4 ShortestPathsand Minimal Distances ................................111 12-1 ArithmeticSequencesand 16-5 Trees ...........................................112 Series........................................80 16-6 Graphsand Matrices...................113 12-2 GeometricSequencesand Series................................._......81 12-3 InfiniteSequencesand 17-1 Limits............................................114 Series........................................82 17-2 Derivativesand 12-4 Convergentand Divergent DifferentiationTechniques.......115 Series................................i.......83 17-3 AreaUndera Curve....................116 12-5 SigmaNotationandthe nth 17-4 Integration...................................117 Term .........................................84 17-5 The FundamentalTheorem 12-6 The BinomialTheorem..................85 ofCalculus ..............................118 12-7 Special Sequencesand Series........................................86 12-8 Mathematical Induction.................87 . 13-1 IteratingFunctionswith Real Numbers ...................._..............88 13-2 Graphical Iterationof Linear Functions ..................................89 13-3 Graphical Iterationofthe Logistic Function.......................90 13-4 ComplexNumbersand Iteration.....................................91 13-5 EscapePoints, Prisoner Points,andJulia Sets...............92 iv GlencoDeivisionM,acmillan/McGraw-Hill NAME DATE 1-1 Practice Worksheet Relations and Functions State the domain and range of each relation. Then state whether the relation is a function. Write yes or no. 1. {(-1, 2), (3, 10), (-2, 20), (3, 11)} 2. {(0, 2), (13, 6), (2, 2), (3, 1) 3. {(1,4), (2, 8), (3, 24)} 4. {(-1,--2), (3, 54), (-2,-16), (3, 81)} Given that x is an integer, state the relation representing each of the following by fisting a set of ordered pairs. Then state whether the relation is a function. Write yes or no. 5. y = 3x2 - 5 and 0 < x < 5 6. y2 = 3x2and x = -3 7. 13y+41 =xandO<x<3 8. lyi = Ixl andO<x<2 The symbol [x] means the greatest integer not greater than x. If f(x) = [2x] • 3x, find ,each value. 9. f(o) 10. f(o.5) 11./(-3.5) 12. f(x- 1) Given f(x) = 13x- 41+ 5, find each value. 13. f(l/ 14. f(0.5) 15. f(-0.5) 16. f(5d) \°] Name all values of x that are not in the domain of the given function. 1 17. f_(x) - xx+- 24 18. f(x) =:_2x+ 51 19. f(x) = k/_x2-25 20. f(x) - x - 10 _16 21', f(x) -- xx22_+2255 22. f(x) - _x---17 1 Glencoe Division, Macmillan/McGraw-Hill NAME DATE 1-1 Practice Worksheet RelationsandFunctions State the domain and range of each relation. Then state whether the relation is a function. Write yes or no. 1. {(-1, 2), (3, 10), (-2, 20), (3, 11)} 2. {(0,2), (13, 6), (2, 2), (3, 1) {-2, -1, 3}, {2, 10, 11, 20}; no {0, 2, 3, 13}, {1, 2, 6}; yes 3. {(1,4), (2, 8), (3, 24)} 4. {(-1,-2), (3, 54), (-2,-16), (3, 81)} {1, 2, 3}, {4, 8, 24}; yes {-2,-13}, {-16,-2, 54, 81}; no Given that x is an integer, state the relation representing each of the following by listing a set of ordered pairs. Then state whether the relation is a function. Write yes or no. 5. y = 3x2 - 5 and 0 < x < 5 6. y2 = 3x 2and x = -3 {(1,-1), (2, 7), (3,22), (4,43)};yes {(-3, 3_/3-3,-3Vr3); no 7. 13y+41 =xandO<x<3 8. lyl = Ixl andO<x<2 5 2 {(1,-1),(1,- _),(2,-_),(2, =2)}; {(1, 1),(1,-1)}; no no The symbol [x] means the greatest integer not greater than x. If f(x) =[2x] - 3x, find each value. 9. f(O) 10. f(0.5) 11. f(-3.5) 12. f(x - 1) 0 -0.5 3.5 [2x]-3x+l Given f(x) =13x- 41+5,find each value. / \ 13. f(1) 14. f(0.5) 15. f(-0.5) 16. f(5d) 8 7.5 10.5 115d-41+5 Name all values of x that are not in the domain of the given function. 17. f(x)- x_+-42 18. f(x) - 12x1+5J -4 _5 2 19. f(x) = _- 25 20. f(x) - x - lO -5< x< 5 -4 _<x _<4 21. f(x) - x2+25 22. f(x) - x - 7 x2- 25 _ : ] ___5 ___1- T1 , GlencoeDivisionM,acmillan/McGraw-Hill NAME DATE 1-2 Practice Worksheet Composition and Inverses of Functions Given f(x) - x2+4 and g(x) = x2- 2, find each function. 1.(f+g)(x) 2.(f-g)(x) 3.(f'g)(x) 4. (f/(x) \_/ Find If og](x) and [g of](x). 5. f(x)= _1x + 5 6. f(x)= 2x3-3x 2+1 g(x) = x - 3 g(x) = 3x 7. f(x)=2x 2 5x+1 8. f(x)=3x 2-2x+5 g(x) = 2x - 3 g(x) = 2x - 1 Determine if the given functions are inverses of each other. Write yes or no. Show your work. 9. f(x) = 3x - 5 10. f(x) = x - 10 11. f(x) - 2x-5 3 g(x) - x +3 5 g(x) = x + 10 g(x) - 3x-3 5 12. f(x) = 2x 13. f(x) = 3x - 7 14. f(x) = 4(x + 2) 1 x_2 g(x) - 2x g(x) = _ x+ 7 g(x) = 4 Find the inverse of each function. Then state whether the inverse is a function. 15. f(x) = 3x + 7 16. f(x) = x5 17. f(x)= x2 + 4 GlencoeDivision,Macmillan/McGraw-Hill NAME DATE 1-2 Practice Worksheet Composition and Inverses of Functions Given f(x) -_ x 2+Z4_and g(x) = x2- 2, find each function. 1.(f+g)(x) 2.(f-g)(x) 3.(f'g)(x) 4. (f/(x) \s/ x3+4x2-2x-6 -x3-g'_2+2x+ 10 2x2-4 2 X+4 _ _'+_ ' X+4 _ (x+4)(X2-2) ' x _ -4 _ ¢ =4 x_¢ -4 x_i-4, _+V_ Find [f og](x) and [g of](x). 5. f (x) = 1 -_x + 5 6. f(x) = 2x3- 3x2 + 1 g(x) = x - 3 g(x) = 3x X +4, 54X3-27X2+ 1, 1 -_X + 2 6X3-gX2+3 7. f(x) = 2x2- 5x + 1 8. f(x) = 3x2- 2x + 5 g(x)= 2x- 3 g(x) = 2x- 1 8xz. 34x+ 34, 12xz- 16x+ 1O, 4x2-10x-1 6x2-4x+9 Determine if the given functions are inverses of each other. Write yes or no. Show your work. 9. f(x) = 3x - 5 10. f(x) = x - 10 11. f(x) = 2x5- 3 g(x) - x +5 3 g(x) = x + 10 g(x) = 3x-5 3 yes yes no 12. f(x) 2x 13. f(x) = 3x - 7 14. f(x) = 4(x + 2) =2_ 1 x -2 g(x) x g(x) = -_x + 7 .g(x) = 4 no no yes Find the inverse of each function. Then state whether the inverse is a function. 15. f(x) = 3x + 7 16. f(x) = x5 17. f(x) = x2 + 4 f_l(x) 1 s. =_x-_, yes f-l(x)=ffx, yes f-l(x)=_+_v/x-4; no T2 GlencoeDivision,Macmillan/McGraw-Hil Find the zero of each function. 4. f(x) = 0.2x + 10 5. f(x) = 11.5x 6. f(x) = 13x - 9 7. f(x) = -3 8. f(x) = -5x + 6 9. f(x) = 0.3x + 0.2 Graph each equation or inequality. 10. y = 3x-2 11. 1- y = 2x 12. x->-2 .-...-....._. y _ _- _ _--- y ...... _'=_ ._ *- c x _ x 5 i ' 13. y= 12x+41 14.-y>2x+2 15. -4-<x-2y-<6 __ __d _ ...... y.... :...... y&-- ....... -.---- __ ........... *" -- 0 __x_ _ x ..... (:..... ............. i I i I ' , 3 Glencoe Division, Macmillan/McGraw-Hill \ NAME DATE 1-3 F'l"acticeWorkstl 2c_t Linear Functions and Inequalities Write an inequafity that describes each graph. 1. 2. 3. _- _ ............... __- ___ _._ ...... .... ___ ............ .... .-...-.... -_-_--_ ._............ ........ E, __ y-> -2x-4 -2 -<y_< 4 _-3-< Y-< -5_-_+4 Findthezeroof eachfunction. 4. f(x) = 0.2x + 10 5. f(x) = 11.5x 6. f(x) = 13x - 9 9 -50 0 _3 7. f(x) = -3 8. f(x) = -5x + 6 9. f(x) = 0.3x + 0.2 6 2 none 5 3 Grapheachequationor inequality. 10. y = 3x-2 11. 1-y = 2x 12. x ->-2 .... L_L__...... ___z L__ _ _y __ .... _- _ ........ _- __.__ _ __ _-- ._... _-t..... T _,3-7 _--....._ ........ . -- _ ____/-:--- ..... _.... ; -........ _ _ _ x__ _ _ x -_ _-_--- ............. _ __-/ ............... _ ...... _ __ __ • x .'_-:2 T3 Glencoe Division, Macmillan/McGraw-Hill
Description: