ebook img

PreCalc AMC Practice worksheets PDF

240 Pages·2007·7.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PreCalc AMC Practice worksheets

Merrill AdvancedMahematicalConcepts GLENCOE McGraw-Hill New York, New York Columbus, Ohio Woodland Hills, California Peoria, Illinois 1 1 Copyright© byGlencoe/McGraw-Hill. All rightsreserved.Permissionisgrantedtoreproducethematerialcontainedhereinonthe conditionthatsuchmaterialbereproducedonlyforclassroomuse;be providedtostudents, teachers,andfamilieswithoutch.arge;andbe usedsolelyinconjunctionwithMerrillAdvanced MathematicalConcepts.Any otherreproduction,foruseorsale, isprohibitedwithoutprior writtenpermissionofthepublisher. Sendallinquiriesto: Glencoe/McGraw-Hill 936EastwindDrive Westerville,OH43081 ISBN:0-02-824292-0 PrintedintheUnitedStatesofAmerica. 6789101112131415 009 0302 01009998 CONTENTS Lesson Title Page Lesson Title Page 1-1 Relationsand Functions..................1 5-8 AreaofTriangles...........................35 1-2 Composition andInverses of Functions....................................2 1-3 Linear Functionsand 6-1 GraphsoftheTrigonometric Inequalities..................................3 Functions..................................36 1-4 Distanceand Slope.........................4 6-2 Amplitude,Period,and 1-5 FormsofLinear Equations..............5 PhaseShift...............................37 1-6 Paralleland Perpendicular 6-3 Graphing'Trigonometric Lines ...........................................6 Functions..................................38 6-4 Inverse"l'rigonometric Functions..................................39 2-1 SolvingSystemsofEquations.........7 6-5 PrincipalValues ofthe 2-2 Introduction to Matrices...................8 InverseTrigonometric 2-3 Determinantsand Multiplicative Functions..................................40 InversesofMatrices....................9 6-6 GraphingInversesof 2-4 SolvingSystemsofEquations TrigonometricFunctions...........41 byUsingMatrices .....................10 6-7 SimpleHarmonicMotion...............42 2-5 SolvingSystemsof Inequalities....11 2-6 LinearProgramming......................12 7-1 BasicTrigonometric Identities ...................................43 3-1 Symmetry......................................13 7-2 VerifyingTrigonometric 3-2 FamiliesofGraphs........................14 Identities ...................................44 3-3 Inverse Functionsand 7-3 Sumand Difference Relations...................................1.5 Identities ...................................45 3-4 Rational Functionsand 7-4 Double-Angleand Half-Angle Asymptotes...............................16 Identities ...................................46 3-5 Graphsof Inequalities...................17 7-5 SolvingTrigonometric 3-6 Tangenttoa Curve .......................18 Equations.........................".........47 3-7 Graphsand CriticalPointsof 7-6 Normal Formofa Linear Polynomial Functions................19 Equation....................................48 3-8 ContinuityandEndBehavior..........20 7-7 Distancefroma Pointtoa Line ...........................................49 4-1 PolynomialFunctions....................21 4-2 QuadraticEquationsand 8-1 GeometricVectors ...................._..5.0 Inequalities................................22 4-3 The Remainderand Factor 8-2 AlgebraicVectors ..........................51 Theorems..................................23 8-3 Vectors inThree-Dimensional 4-4 The RationalRootTheorem..........24 Space........................................52 8-4 PerpendicularVectors ...................53 4-5 Locatingthe Zerosofa Function....................................25 8-5 Applications withVectors ..............54 4-6 RationalEquationsand 8-6 Vectors and Parametric PartialFractions........................26 Equations ..................................55 4-7 RadicalEquationsand 8-7 UsingParametricEquations Inequalities................................27 to ModelMotion........................56 5-1 Angles andTheir Measure............28 9-1 PolarCoordinates .........................57 5-2 CentralAngles andArcs ...............29 9-2 Graphsof PolarEquations............58 5-3 CircularFunctions....'.....................30 9-3 Polarand Rectangular 5-4 Trigonometric Functionsof Coordinates ..............................59 SpecialAngles ..........................31 9-4 PolarFormofaLinear 5-5 RightTriangles..............................32 Function....................................60 5-6 TheLawofSines ..........................33 9-5 SimplifyingComplex 5-7 TheLawofCosines ......................34 Numbers ...................................61 =I=ImI GlencoDeivisionM,acmillan/McGraw-Hill CONTENTS Lesson Title Page Lesson Title Page 9-6 PolarFormofComplex 13-6 The MandelbrotSet.......................93 Numbers ...................................62 9-7 ProductsandQuotientsof 14-1 Permutations.................................94 ComplexNumbersin 14-2 Permutationswith Repetitions PolarForm................................63 andCircularPermutations.........95 9-8 Powersand Rootsof 14-3 Combinations................................96 ComplexNumbers ....................64 14-4 Probabilityand Odds.-....................97 14-5 Probabilitiesof Independent 10-1 The Circle......................................65 and DependentEvents .............98 10-2 The Parabola.................................66 14-6 ProbabilitiesofMutuallyExclusive 10-3 The Ellipse....................................67 or InclusiveEvents....................99 10-4 The Hyperbola...............................68 14-7 ConditionalProbability ................100 10-5 ConicSections ..............................69 14-8 The BinomialTheoremand 10-6 TransformationsofConics ............70 Probability...............................101 10-7 SystemsofSecond-Degree EquationsandInequalities.........71 10-8 Tangents and Normalsto 15-1 The FrequencyDistribution.........102 the Conic Sections....................72 15-2 MeasuresofCentral Tendency .........................'.......103 11-1 Rational Exponents.......................73 .15-3 MeasuresofVariability................104 15-4 The NormalDistribution..............105 11-2 ExponentialFunctions...................74 11-3 The Numbere ...............................75 15-5 Sample Setsof Data...................106 15-6 Scatter Plots................................107 11-4 LogarithmicFunctions...................76 11-5 Common Logarithms.....................77 11-6 Exponentialand Logarithmic 16-1 Graphs ........................................108 Equations..................................78 " 16-2 Walksand Paths.........................109 11-7 NaturalLogarithms........................79 16-3 .EulerPathsand Circuits..............110 16-4 ShortestPathsand Minimal Distances ................................111 12-1 ArithmeticSequencesand 16-5 Trees ...........................................112 Series........................................80 16-6 Graphsand Matrices...................113 12-2 GeometricSequencesand Series................................._......81 12-3 InfiniteSequencesand 17-1 Limits............................................114 Series........................................82 17-2 Derivativesand 12-4 Convergentand Divergent DifferentiationTechniques.......115 Series................................i.......83 17-3 AreaUndera Curve....................116 12-5 SigmaNotationandthe nth 17-4 Integration...................................117 Term .........................................84 17-5 The FundamentalTheorem 12-6 The BinomialTheorem..................85 ofCalculus ..............................118 12-7 Special Sequencesand Series........................................86 12-8 Mathematical Induction.................87 . 13-1 IteratingFunctionswith Real Numbers ...................._..............88 13-2 Graphical Iterationof Linear Functions ..................................89 13-3 Graphical Iterationofthe Logistic Function.......................90 13-4 ComplexNumbersand Iteration.....................................91 13-5 EscapePoints, Prisoner Points,andJulia Sets...............92 iv GlencoDeivisionM,acmillan/McGraw-Hill NAME DATE 1-1 Practice Worksheet Relations and Functions State the domain and range of each relation. Then state whether the relation is a function. Write yes or no. 1. {(-1, 2), (3, 10), (-2, 20), (3, 11)} 2. {(0, 2), (13, 6), (2, 2), (3, 1) 3. {(1,4), (2, 8), (3, 24)} 4. {(-1,--2), (3, 54), (-2,-16), (3, 81)} Given that x is an integer, state the relation representing each of the following by fisting a set of ordered pairs. Then state whether the relation is a function. Write yes or no. 5. y = 3x2 - 5 and 0 < x < 5 6. y2 = 3x2and x = -3 7. 13y+41 =xandO<x<3 8. lyi = Ixl andO<x<2 The symbol [x] means the greatest integer not greater than x. If f(x) = [2x] • 3x, find ,each value. 9. f(o) 10. f(o.5) 11./(-3.5) 12. f(x- 1) Given f(x) = 13x- 41+ 5, find each value. 13. f(l/ 14. f(0.5) 15. f(-0.5) 16. f(5d) \°] Name all values of x that are not in the domain of the given function. 1 17. f_(x) - xx+- 24 18. f(x) =:_2x+ 51 19. f(x) = k/_x2-25 20. f(x) - x - 10 _16 21', f(x) -- xx22_+2255 22. f(x) - _x---17 1 Glencoe Division, Macmillan/McGraw-Hill NAME DATE 1-1 Practice Worksheet RelationsandFunctions State the domain and range of each relation. Then state whether the relation is a function. Write yes or no. 1. {(-1, 2), (3, 10), (-2, 20), (3, 11)} 2. {(0,2), (13, 6), (2, 2), (3, 1) {-2, -1, 3}, {2, 10, 11, 20}; no {0, 2, 3, 13}, {1, 2, 6}; yes 3. {(1,4), (2, 8), (3, 24)} 4. {(-1,-2), (3, 54), (-2,-16), (3, 81)} {1, 2, 3}, {4, 8, 24}; yes {-2,-13}, {-16,-2, 54, 81}; no Given that x is an integer, state the relation representing each of the following by listing a set of ordered pairs. Then state whether the relation is a function. Write yes or no. 5. y = 3x2 - 5 and 0 < x < 5 6. y2 = 3x 2and x = -3 {(1,-1), (2, 7), (3,22), (4,43)};yes {(-3, 3_/3-3,-3Vr3); no 7. 13y+41 =xandO<x<3 8. lyl = Ixl andO<x<2 5 2 {(1,-1),(1,- _),(2,-_),(2, =2)}; {(1, 1),(1,-1)}; no no The symbol [x] means the greatest integer not greater than x. If f(x) =[2x] - 3x, find each value. 9. f(O) 10. f(0.5) 11. f(-3.5) 12. f(x - 1) 0 -0.5 3.5 [2x]-3x+l Given f(x) =13x- 41+5,find each value. / \ 13. f(1) 14. f(0.5) 15. f(-0.5) 16. f(5d) 8 7.5 10.5 115d-41+5 Name all values of x that are not in the domain of the given function. 17. f(x)- x_+-42 18. f(x) - 12x1+5J -4 _5 2 19. f(x) = _- 25 20. f(x) - x - lO -5< x< 5 -4 _<x _<4 21. f(x) - x2+25 22. f(x) - x - 7 x2- 25 _ : ] ___5 ___1- T1 , GlencoeDivisionM,acmillan/McGraw-Hill NAME DATE 1-2 Practice Worksheet Composition and Inverses of Functions Given f(x) - x2+4 and g(x) = x2- 2, find each function. 1.(f+g)(x) 2.(f-g)(x) 3.(f'g)(x) 4. (f/(x) \_/ Find If og](x) and [g of](x). 5. f(x)= _1x + 5 6. f(x)= 2x3-3x 2+1 g(x) = x - 3 g(x) = 3x 7. f(x)=2x 2 5x+1 8. f(x)=3x 2-2x+5 g(x) = 2x - 3 g(x) = 2x - 1 Determine if the given functions are inverses of each other. Write yes or no. Show your work. 9. f(x) = 3x - 5 10. f(x) = x - 10 11. f(x) - 2x-5 3 g(x) - x +3 5 g(x) = x + 10 g(x) - 3x-3 5 12. f(x) = 2x 13. f(x) = 3x - 7 14. f(x) = 4(x + 2) 1 x_2 g(x) - 2x g(x) = _ x+ 7 g(x) = 4 Find the inverse of each function. Then state whether the inverse is a function. 15. f(x) = 3x + 7 16. f(x) = x5 17. f(x)= x2 + 4 GlencoeDivision,Macmillan/McGraw-Hill NAME DATE 1-2 Practice Worksheet Composition and Inverses of Functions Given f(x) -_ x 2+Z4_and g(x) = x2- 2, find each function. 1.(f+g)(x) 2.(f-g)(x) 3.(f'g)(x) 4. (f/(x) \s/ x3+4x2-2x-6 -x3-g'_2+2x+ 10 2x2-4 2 X+4 _ _'+_ ' X+4 _ (x+4)(X2-2) ' x _ -4 _ ¢ =4 x_¢ -4 x_i-4, _+V_ Find [f og](x) and [g of](x). 5. f (x) = 1 -_x + 5 6. f(x) = 2x3- 3x2 + 1 g(x) = x - 3 g(x) = 3x X +4, 54X3-27X2+ 1, 1 -_X + 2 6X3-gX2+3 7. f(x) = 2x2- 5x + 1 8. f(x) = 3x2- 2x + 5 g(x)= 2x- 3 g(x) = 2x- 1 8xz. 34x+ 34, 12xz- 16x+ 1O, 4x2-10x-1 6x2-4x+9 Determine if the given functions are inverses of each other. Write yes or no. Show your work. 9. f(x) = 3x - 5 10. f(x) = x - 10 11. f(x) = 2x5- 3 g(x) - x +5 3 g(x) = x + 10 g(x) = 3x-5 3 yes yes no 12. f(x) 2x 13. f(x) = 3x - 7 14. f(x) = 4(x + 2) =2_ 1 x -2 g(x) x g(x) = -_x + 7 .g(x) = 4 no no yes Find the inverse of each function. Then state whether the inverse is a function. 15. f(x) = 3x + 7 16. f(x) = x5 17. f(x) = x2 + 4 f_l(x) 1 s. =_x-_, yes f-l(x)=ffx, yes f-l(x)=_+_v/x-4; no T2 GlencoeDivision,Macmillan/McGraw-Hil Find the zero of each function. 4. f(x) = 0.2x + 10 5. f(x) = 11.5x 6. f(x) = 13x - 9 7. f(x) = -3 8. f(x) = -5x + 6 9. f(x) = 0.3x + 0.2 Graph each equation or inequality. 10. y = 3x-2 11. 1- y = 2x 12. x->-2 .-...-....._. y _ _- _ _--- y ...... _'=_ ._ *- c x _ x 5 i ' 13. y= 12x+41 14.-y>2x+2 15. -4-<x-2y-<6 __ __d _ ...... y.... :...... y&-- ....... -.---- __ ........... *" -- 0 __x_ _ x ..... (:..... ............. i I i I ' , 3 Glencoe Division, Macmillan/McGraw-Hill \ NAME DATE 1-3 F'l"acticeWorkstl 2c_t Linear Functions and Inequalities Write an inequafity that describes each graph. 1. 2. 3. _- _ ............... __- ___ _._ ...... .... ___ ............ .... .-...-.... -_-_--_ ._............ ........ E, __ y-> -2x-4 -2 -<y_< 4 _-3-< Y-< -5_-_+4 Findthezeroof eachfunction. 4. f(x) = 0.2x + 10 5. f(x) = 11.5x 6. f(x) = 13x - 9 9 -50 0 _3 7. f(x) = -3 8. f(x) = -5x + 6 9. f(x) = 0.3x + 0.2 6 2 none 5 3 Grapheachequationor inequality. 10. y = 3x-2 11. 1-y = 2x 12. x ->-2 .... L_L__...... ___z L__ _ _y __ .... _- _ ........ _- __.__ _ __ _-- ._... _-t..... T _,3-7 _--....._ ........ . -- _ ____/-:--- ..... _.... ; -........ _ _ _ x__ _ _ x -_ _-_--- ............. _ __-/ ............... _ ...... _ __ __ • x .'_-:2 T3 Glencoe Division, Macmillan/McGraw-Hill

Description:
8-5. Applications with Vectors ..54. 4-6. Rational Equations and. 8-6. Vectors and . 14-8 The Binomial Theorem and . 1-1 Practice Worksheet.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.