ebook img

Prawda i mity w fizyce PDF

175 Pages·5.305 MB·Polish
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Prawda i mity w fizyce

Prawda i mity w fizyce Andrzej K. Wróblewski Spis treści Przedmowa do drugiego wydania ........................................................................................................... 3 Wstęp ...................................................................................................................................................... 3 1. Pseudohistoria nauki ........................................................................................................................... 6 2. Nauka na manowcach ....................................................................................................................... 34 Promienie N ....................................................................................................................................... 38 Subelektrony ..................................................................................................................................... 41 Efekt Barnesa-Davisa ......................................................................................................................... 44 Efekt Allisona ..................................................................................................................................... 46 Kanały na Marsie ............................................................................................................................... 48 Ogniskowanie neutronów ................................................................................................................. 53 Zmienność prędkości światła w czasie .............................................................................................. 53 Waritrony .......................................................................................................................................... 55 Rozszczepienie mezonu A ................................................................................................................ 58 2 3. Nauka przeciw autorytetom .............................................................................................................. 59 4. Nauka wobec nieznanego.................................................................................................................. 82 Biorytmy .......................................................................................................................................... 108 Wrażliwość roślin ............................................................................................................................. 109 Różdżkarstwo .................................................................................................................................. 111 5. Nauka i pseudonauka ...................................................................................................................... 114 Literatura ............................................................................................................................................. 140 Fotografie ............................................................................................................................................ 151 Przedmowa do drugiego wydania Niski, pięciotysięczny nakład pierwszego wydania tej książki przez Ossolineum w 1982 r. oraz bardzo życzliwe przyjęcie jej przez Czytelników sprawiły, że stała się ona zupełnie niedostępna. Reakcje krytyków i recenzentów były bardzo przychylne. Te przyczyny sprawiły, że z radością przyjąłem propozycję Wydawnictwa „Iskry” przygotowania drugiego, rozszerzonego wydania. Drugie wydanie zachowuje bez zmian układ rozdziałów książki, jest jednak znacznie rozszerzone w stosunku do wydania pierwszego. Uzupełnienia zostały wprowadzone do wszystkich rozdziałów. Wprowadzając do pierwszego rozdziału obszerną dyskusję fałszywych interpretacji odkrycia Roemera miałem na celu lepsze objaśnienie źródeł pseudohistorii nauki. W rozdziale drugim dodałem kilka przykładów fałszywych odkryć. Elementy historii odkrycia Neptuna i poszukiwań Wulkana dodane w rozdziale trzecim ilustrują tradycjonalizm w nauce; sądzę, że Czytelnicy z zaciekawieniem przyjmą też fragment o numerologii Keplera i Huygensa. W rozdziale czwartym dodałem dyskusję paru głośnych zagadnień, a mianowicie biorytmów, wrażliwości roślin i różdżkarstwa. Wreszcie rozdział piąty został uzupełniony o komentarze na temat piramidologii, astrologii, ufologii i innych pseudonauk. W drugim wydaniu zostały też poprawione drobne błędy, które zakradły się do pierwszego wydania. Mam nadzieję, że rozszerzone wydanie książki Prawda i mity w fizyce posłuży wielu osobom, podobnie jak wydanie pierwsze, w lepszym zrozumieniu złożonego procesu postępu w nauce, będzie też mogło być odtrutką na szerzącą się u nas pseudonaukę. Andrzej Kajetan Wróblewski Warszawa, grudzień 1983 r. Wstęp Chciałbym przede wszystkim wyrazić wdzięczność dyrektorowi Wszechnicy PAN, prof. dr. Włodzimierzowi Michajłowowi, za zaproszenie do wygłoszenia w 1980 r. w ramach Wszechnicy cyklu wykładów pt. „Prawda i mity w fizyce”, z których powstała niniejsza książka. Zaproszenie to umożliwiło mi bowiem przedstawienie zagadnień, które rzadko stają się przedmiotem popularyzacji, koncentrującej się raczej wokół spektakularnych odkryć i wynalazków i stroniącej od tego, co można by ogólnie nazwać duchem nauki. Zdefiniujmy na wstępie słowa składające się na tytuł cyklu. W encyklopediach i słownikach [1,2] znajdujemy stwierdzenie, że prawda to treść słów zgodna z rzeczywistością, z tym, co rzeczywiście jest, było, zdarzyło się; jest to obiektywna rzeczywistość. Powstaje pytanie, w jaki sposób sprawdzamy, czy dany sąd jest zgodny z rzeczywistością. Odpowiedź na to brzmi, że weryfikacja prawdziwości sądów następuje przez ich konfrontację z faktami szeroko pojętego doświadczenia. Stąd wynika, że prawda jest względna, może zmieniać się w czasie, jest to tylko przybliżone, niepełne odbicie rzeczywistości, dostatecznie jednak wierne, aby mogło spełniać wymogi praktyki ludzkiej w danym etapie jej rozwoju. Słowo mit jest pojęciem wieloznacznym. Jeśli pominiemy pierwotne, oryginalne znaczenie, które mówi, że mit jest to opowieść o charakterze religijnym, mówiące np. o początkach rodzaju ludzkiego czy o początkach świata, to pozostanie inne, zgodnie z którym mit to z reguły fałszywe, uznawane bez dowodu mniemanie o czymś, o kimś, o jakimś fakcie lub wydarzeniu; jest to wymysł, legenda, bajka, fantastyczna historia. Wreszcie słowo fizyka. W tej książce chcę mówić o fizyce w jej pierwotnym znaczeniu, pochodzącym od greckiego physis - natura. Fizyka oznacza więc naukę o poznawaniu natury. Przytoczmy tu piękny Wyjątek ze wstępu do podręcznika fizyki napisanego w 1825 r. przez Feliksa Drzewińskiego, profesora Uniwersytetu Wileńskiego [3]: „Fizyka nazwisko nauki pochodzące od wyrazu greckiego Physis, natura, przyrodzenie, oznacza naukę poznawania natury. Przyrodzeniem, albo naturą zmysłową, zowiemy to wszystko cokolwiek dziafci na zmysły nasze, i sprawuje w nas czucie. Wszystkie więc rzeczy nas otaczające, których się dotykamy, na które patrzymy, to co słyszymy, co działa na zmysły smaku, i powonienia, wszystko to stanowi naturę zmysłową, i poznawanie tego wszystkiego do Fizyki należy. Przeto Fizyka jest nauką poznawania rzeczy świat składających, badania i dochodzenia ich własności. Rzeczy składające świat fizyczny, to jest zmysłom naszym dostępny, są niezmiernie liczne, i rozmaitemi własnościami obdarzone. Cała ziemia i części ją składające, istoty na niey i wewnątrz jey umieszczone, niebo i to co niem postrzegamy, powietrze w którem żyjemy, budowa nas samych i innych podobnych nam jestestw, to wszystko stanowi świat zmysłowy. W epokach zaczęcia nauk, badania tych wszystkich rzeczy stanowiły jedną naukę, mającą ogólne nazwisko Fizyki: taką miały fizykę starożytne narody Egipcyan, Greków i Rzymian. Poznawaniem coraz bliżey tylu rozlicznych przedmiotów, i odkrywaniem w nich coraz więcey nowych własności, gdy nauka z czasem wzrosła, i stała się bardzo obszerną, uczeni wieków późnieyszych podzielili ją na wiele odnóg, albo części, z których głównieysze są następujące: lód Nauka uważania nieba, albo raczey położeń, ruchów i postaci brył światłych widzianych, w przestrzenie niebios; tę część fizyki Astronomiją nazywamy. 2re Oznaczanie kształtów istot znaydujących się na ziemi i w ziemi, w wodzie i powietrzu, należy do oddziału Fizyki zwanego Historyą naturalną. 3cie Uważanie wewnętrzney budowy tych istot, stanowi naukę zwaną Anatomiją. 4te Dochodzenie pierwiastków, czyli nayprostszych części, z jakich się składają istoty w naturze, i na jakie ostatecznie rozebrać się, rozdzielić, albo rozłożyć mogą, jest przedmiotem Chemii”. Będziemy więc zajmowali się fizyką jako szeroko pojętą filozofią przyrody, sięgając często do tych jej działów, które nazywa się również astronomią, chemią itp. Na zakończenie tych wstępnych uwag chciałbym przytoczyć piękny przykład, chyba znakomicie ilustrujący charakter zagadnień, o których w tej książce będzie mowa. Przykład ten wzięto z bardzo starej historii fizyki, tej ogólnej nauki o przyrodzie. Otóż Egipt starożytny był w zasadzie państwem Jednowymiarowym”, rozciągającym się wąskim pasmem wzdłuż Nilu, który płynie z południa na północ. Natomiast wiatry wieją w tej okolicy przeważnie z północy na południe. Wobec tego podróżny udający się rzeką na północ mógł płynąć z silnym prądem, natomiast udając się na południe musiał używać żagla. W piśmie hieroglificznym te dwie sytuacje były zatem oznaczane odmiennie. Hieroglif oznaczający „płynąć na północ” (a więc z prądem rzeki) przedstawiał łódź bez żagla, natomiast hieroglif o znaczeniu „płynąć na południe” - łódź z żaglem (rys. 1). Ponieważ Nil był jedyną dużą rzeką znaną Egipcjanom przez wiele stuleci, uznano za prawo przyrody, że woda w rzece płynie z południa na północ. Pojęcia i słowa północ - z prądem i południe - przeciw prądowi stopiły się z biegiem czasu. Wielkie więc było zdziwienie, gdy za panowania faraona Totmesa I armia egipska doszła do brzegów Eufratu, który akurat płynie z północy na południe. To zdziwienie udokumentowane zostało napisem wyrytym na steli Totmesa I ustawionej nad brzegiem tej „dziwnej” rzeki. Napis ten głosił mniej więcej tak: „Ta odwrócona woda, która płynąc w dół (na północ) płynie na południe (w górę)” [4]. W taki oto sposób uznawane przez stulecia prawo przyrody okazało się mitem. Rysunek 1 Hieroglify egipskie: „płynąć na północ” „płynąć na południe” Bardzo dawno temu Chińczycy zauważyli, że ich wielkie rzeki Jangtse-kiang, Si-kiang i Huang-ho płyną z zachodu na wschód. Pochodzenie tego „prawa przyrody” tłumaczyli mitem kosmogonicznym, według którego, gdy „...podtrzymująca nieboskłon góra rozleciała się na drobniutkie kawałki, niebo ze wszystkimi świecącymi na nim ciałami... zaczęło się pochylać ku zachodowi... ziemia zaś pochyliła się ku wschodowi, przez co wszystkie wody rzek popłynęły w tym właśnie kierunku...” [5]. Nie znane mi są doniesienia o tym, kiedy Chińczycy przekonali się, że ich „prawo przyrody” nie obowiązuje wszędzie. I jeszcze jeden przykład. W 1775 r. Akademia Nauk w Paryżu ogłosiła, że w przyszłości nie będzie więcej badała żadnego rozwiązania zagadnień podwojenia sześcianu, podziału kąta na trzy części lub kwadratury koła ani też żadnej maszyny ogłaszanej jako przykład ruchu wiecznego (perpetuum mobile). A trzy lata wcześniej, w 1772 r., słynny uczony Antoine Lavoisier (o którym będzie tu jeszcze mowa) podpisał memoriał uczonych do tejże Akademii Nauk, w którym stwierdzono, że kamienie, którym przypisuje się pochodzenie „z nieba”, są zwykłymi kamieniami ziemskimi o strukturze zmienionej przez uderzenia piorunów, gdyż przecież spadki „kamieni z nieba” są niemożliwe. Gdy w 1790 r. w Gaskonii spadł deszcz meteorytów i zeznania kilkuset naocznych świadków przesłano do Akademii Nauk w Paryżu, ta postanowiła nie wydawać żadnego orzeczenia. A jeden z fizyków stwierdził na łamach „Journal des Sciences Utiles”, że żałosne jest, gdy zarząd miejski próbuje poświadczyć formalnym protokółem bajania ludowe o faktach oczywiście, nieprawdziwych i niemożliwych fizycznie. Minęło niewiele lat i jedno z tych stwierdzeń Paryskiej Akademii Nauk trzeba było uznać za fałszywe, gdyż przekonano się ponad wszelką wątpliwość o spadkach meteorytów. Drugie orzeczenie zachowujemy do dziś, nie próbując rozważać perpetuum mobile. Jakie są więc właściwe kryteria w fizyce uznawania czegoś za prawdę czy za nieprawdę? To zagadnienie będzie centralnym tematem dalszych moich rozważań. 1. Pseudohistoria nauki Gdy weźmiemy do ręki książki o fizyce, czy to będą podręczniki, czy nawet książki traktujące o historii fizyki, znajdziemy tam bardzo wiele błędów i przeinaczeń. Oto szereg przykładów. 1. Co pisze się o Duńczyku Olausie Roemerze, który pierwszy mierzył prędkość światła? Pomijając nawet to, że daty jego osiągnięcia podawane przez różnych autorów różnią się o kilka czy kilkanaście lat, można spotkać różne wartości prędkości światła, które Roemer miał podać w swej pracy: od mniej więcej 190 000 do 350 000 km/s, a więc różniące się niemal o czynnik 2. Powstaje pytanie, co naprawdę Roemer zmierzył i jaką wartość podał światu. Gdy się dotrze do oryginalnej pracy Roemera, to okazuje się, że nie podał on żadnej wartości prędkości światła, lecz mówił wyłącznie o tym, że światło musi zużyć skończony czas na przebycie określonej odległości. Problem, który wówczas stał przed uczonymi, sprowadzał się do rozstrzygnięcia, czy prędkość światła jest skończona czy nieskończenie wielka. Wszystkie przypisywane Roemerowi wartości prędkości światła są po prostu wymysłem późniejszych autorów, którzy zapomnieli, o co naprawdę chodziło w fizyce XVII wieku [6]. 2. Wszyscy zapewne przypominają sobie ze szkoły prawo gazowe, które Anglosasi nazywają prawem Boyle'a, Francuzi - prawem Mariotte'a, a my i większość innych narodów - prawem Boyle'a-Mariotte'a. Otóż w rzeczywistości prawo to zostało odkryte przez Powera i Towneleya mniej więcej dwa lata przed pierwszym opisaniem go przez Boyle'a w 1662 r., znał je wcześniej także Robert Hooke (o tym wszystkim pisał Boyle w swym dziele New Experiments Physico-Mechanical Touching the Spring of the Air wydanym w Oxfordzie w 1662 r.). W kilkanaście lat później Francuz Mariotte ogłosił i rozpropagował to prawo na kontynencie europejskim (i nie jest jasne, czy doszedł doń niezależnie). Wobec tego powinno się mówić: prawo Powera-Towneleya-Hooke'a, ugruntowane i rozpropagowane przez Boyle'a i Mariotte'a [7]. 3. Pamiętamy też ze szkoły, że o innych prawach gazowych mówi się wymieniając nazwiska Charlesa i Gay-Lussaca. Nie wspomina się jednak, że wcześniej lub równocześnie to samo zrobili Alessandro Volta i John Dalton, którzy wyniki swe opublikowali [8]. 4. W fizyce bryły sztywnej mówi się o tzw. twierdzeniu Steinera. Steiner był matematykiem i fizykiem z XIX wieku, zaś wymienione twierdzenie po raz pierwszy ogłosił Christiaan Huygens już w połowie XVII wieku! 5. Mówi się, że Newton podał teorię korpuskularną światła i przeciwstawia się ją „dobrej” teorii falowej Huygensa, Younga i Fresnela. Gdy jednak zajrzymy do dzieł Newtona, możemy przekonać się, że sprawa wcale nie wygląda tak prosto, że Newton mówił też o drganiach i że jego teoria światła jest może najbliższa naszemu dualistycznemu wyobrażeniu [9] (patrz str. 99). 6. Mówi się często, że Yukawa wymyślił ideę mezonu, co dało impuls do poszukiwania takich cząstek przez fizyków eksperymentatorów. Okazuje się to mitem, gdyż w pierwszej pracy donoszącej o odkryciu mezonu nazwisko Yukawy w ogóle się nie pojawia. Jego praca była bowiem ogłoszona w mało znanym i trudno dostępnym japońskim periodyku matematycznym i dopiero odkrycie mezonu zwróciło uwagę na wcześniejsze przewidywania Yukawy [10] . 7. Mitem okazuje się też opowieść o eksperymentach Galileusza, który ponoć rzucał różne przedmioty z krzywej wieży w Pizie [11]. 8. Wiele podręczników podaje, jakoby Maxwell uzupełnił równania elektromagnetyzmu o tzw. prąd przesunięcia, gdyż chciał usunąć niezgodność między prawem Ampére'a i równaniem ciągłości. W rzeczywistości cel badań Maxwella był prozaiczny (i dawno zapomniany): chodziło mu o obliczenie sprężystości eteru kosmicznego [10]. 9. Szczytem wszystkiego jest przepisywanie historii fizyki tak, aby lepiej zgadzała się z naszymi obecnymi wyobrażeniami. I tak np. według niektórych autorów Max Planck podał swój słynny wzór na rozkład energii w widmie ciała doskonale czarnego jako odpowiedź na nieudane próby w ramach fizyki klasycznej podejmowane przez Rayleigha i Jeansa. Tylko że w rzeczywistości Planck podał swój wzór w 1900 r., a wzór Rayleigha-Jeansa w ostatecznej postaci pochodzi z 1905 r. [10]. Na razie tych przykładów wystarczy. Nasuwa się pytanie: Dlaczego materiał historyczny w zwykłych podręcznikach czy wykładach fizyki zawiera tak wiele fałszu i jest w znacznej mierze pseudohistorią nauki? Niektórzy autorzy sądzą zapewne, że wzmianki historyczne są tylko materiałem ubarwiającym wykład, który ma na celu nauczyć studentów rozumienia fizyki, jej zasad, technik i zastosowań. Mniejsza zatem o ścisłość informacji. Zdarza się też, jak widzieliśmy, że historię niektórych zagadnień przepisuje się tak, aby ugruntowywała przekazywane idee. Jeśli bowiem fizyka odznacza się porządkiem logicznym, to tak samo ma wyglądać jej historia. Jest to szczególnie niebezpieczne w tych przypadkach, gdy porządek logiczny jest akurat odwrotny do porządku chronologicznego. Innym spotykanym czasem podejściem autorów współczesnych jest pobłażliwe traktowanie starych osiągnięć i wręcz przeciwstawianie obecnych „dobrych” poglądów tym starym, naiwnym i błędnym [10]. Błędy zdarzają się, jak powiedziałem, nie tylko w podręcznikach fizyki, lecz także w książkach o historii fizyki, gdzie widocznie też autorzy starają się pokazać „logiczną” historię rozwoju idei. Jaka jest na to rada dla kogoś, kto chce poznać historię rzeczywistą? Otóż trzeba oprzeć się tylko na dziełach oryginalnych lub na tych pracach z historii nauki, które są na takich dziełach oparte i zawierają z nich cytaty. Znany fizyk i astrofizyk amerykański Samuel Langley w 1889 r. zajął się w swoim wykładzie sprawą właściwego rozumienia historii nauki. „Często porównuje się postęp nauki do marszu armii do określonego celu” - pisał Langley, ale „(...) Wydaje mi się, że nie jest to droga, którą zwykle kroczy nauka, lecz tylko droga, jaką zdaje się ona kroczyć, gdy patrzy nań kompilator, który prawdopodobnie nie wie nic o rzeczywistym braku zrozumienia, różnorodności posunięć, a nawet cofaniu się ludzi składających się na ciało nauki, droga pokazująca zaledwie te etapy rozwoju, które kompilator z obecnego punktu widzenia traktuje jako prowadzące we właściwym kierunku. Sądzę, że to porównanie rozwoju nauki do marszu armii, która kierowana jest rozkazami jednej głowy, ma w sobie więcej fałszu niż prawdy. Chociaż więc wszelkie porównania są mniej lub bardziej mylące, wolałbym, abyście raczej wyobrazili sobie poruszający się tłum, kiedy to kierunek całości jest wypadkową niezależnych zamiarów składających się nań ludzi; albo stado psów myśliwskich, które w końcu może dosięgnąć swą ofiarę, w którym jednak, gdy trop jest zgubiony, każdy członek stada porusza się własną drogą, kierując się raczej węchem niż wzrokiem, w którym bardziej hałaśliwy prowadzi za sobą wiele innych niemal równie często w błędnym kierunku jak w kierunku właściwym, że czasem całość sfory biegnie po fałszywym tropie. Choć jest to mniej dostojne porównanie, wydaje mi się zawierać w sobie prawdę, nie dostrzeganą przez autorów podręczników. W każdym razie rzeczywisty rozwój nauki był zawiły i kręty, często zawierał kroki do tyłu i to w takim stopniu, o którym nie można by się nic dowiedzieć z opisu w podręcznikach czy encyklopediach, które podają głównie tylko wypadkową tych wszystkich niezdecydowanych posunięć. Z rzadkimi wyjątkami kroki wstecz, tzn. błędy i omyłki, które w rzeczywistości stanowią niemal połowę, czasem ponad połowę całości, są opuszczane w historii nauki. Czytelnik, chociaż wie, że błędy się zdarzały, nie ma właściwego pojęcia o tym, jak ściśle błędy i prawda przeplatają się, niby w związku chemicznym, nawet w pracach wielkich odkrywców, jak również o tym, że to przeważnie czas pozwala nam stwierdzić, co naprawdę jest postępem, gdy sam człowiek tego nie potrafi. Jeżeli zdaje się to truizmem, to w każdym razie często zapominanym, ale o którym trzeba zawsze pamiętać” [12]. Ten cytat wydaje mi się bardzo właściwym wstępem do naszych rozważań. Sądzę, że tylko wtedy, gdy zdamy sobie sprawę z tego, jak skomplikowana jest historia nauki, będziemy mogli właściwie ocenić to, co reprezentuje nauka dzisiejsza, co w niej można uznać za prawdę już rzeczywiście dowiedzioną, a co za prawdę względną, z której być może jakiś przyszły wykładowca za lat 50 czy 100 będzie się wyśmiewał. A może nie będzie się wyśmiewał, jeśli będzie pojmował historię nauki właściwie, w sposób, który chciałbym spopularyzować. Jako główny temat tego rozdziału, jako przykład, który świetnie ilustruje tę niezwykłą złożoność rozwoju nauki, jej kręte ścieżki, wahania i częste kroki wstecz, obrałem ważny epizod z historii rozwoju nauki o cieple. Jest to dziedzina wyjątkowo wdzięczna, gdyż wydaje mi się, że obecnie wiemy już, na czym ciepło polega i że jest to wiedza prawdziwa. Natomiast w przeszłości bywały na ten temat różne opinie, prawdziwe i fałszywe, które przeplatały się tak, że nie zawsze porządek chronologiczny odpowiadał obecnemu porządkowi logicznemu w wykładzie z tej dziedziny fizyki. Opanowanie ognia, tzn. umiejętność jego rozniecania, kontrolowania i podtrzymywania, było wielkim odkryciem, które stanowiło przełom w postępie cywilizacji. Toteż ogień od bardzo dawna zajmuje ważne miejsce w poglądach człowieka na przyrodę, a pojęcia ciepła i zimna należą do tych, które człowiek poznał najdawniej. Spory o naturę ciepła rozpoczęły się już w starożytności. Tacy uczeni jak Heraklit z Efezu, Empedokles z Agrigento, Arystoteles i Platon sądzili, że istnieje w przyrodzie materia ognia, jeden z podstawowych elementów budowy świata. Platon był przekonany nawet, że atomy ognia mają kształt czworościanów foremnych. Natomiast atomiści, jak np. Lukrecjusz, mówili o związku ciepła z ruchem atomów zwykłej materii, a nie specjalnej materii ognia i ciepła. Na przełomie XVI i XVII wieku Galileusz konstruuje termoskop i to wydarzenie początkuje nowoczesną naukę o cieple, która bardzo powoli przekształca się w naukę ilościową. Jeden z pierwszych siedemnastowiecznych traktatów o naturze ciepła to De forma calidi Francisa Bacona z 1620 r. Bacon w traktacie tym wyliczył wszystkie znane mu fakty na temat ciepła i jego wytwarzania i doszedł do wniosku, że ciepło to rodzaj ruchu. Wniosek ten oparł głównie na rozważaniu takich sposobów wytwarzania ciepła, jak np. przez tarcie i uderzenie, kiedy ciepło pojawia się w ciałach nie stykających się z innymi, lecz podległych działaniu siły mechanicznej. Robert Boyle w jednym ze swych traktatów też sądził, że ciepło jest rodzajem ruchu. Później jednak, gdy zważył ogrzany metal I stwierdził przyrost jego ciężaru (ta obserwacja była oczywiście błędna!), uznał, że przemawia to za istnieniem materii ciepła (ognia), której cząstki wnikają do ogrzewanego ciała. W latach sześćdziesiątych XVII wieku odkryto prawo stałości iloczynu ciśnienia i objętości powietrza (nazywane dziś najczęściej prawem Boyle'a-Mariotte'a). Izaak Newton w swych Zasadach matematycznych filozofii naturalnej poświęcił jeden z ustępów temu zagadnieniu. Dowiódł mianowicie, że jeśli atomy odpychają się siłą odwrotnie proporcjonalną do odległości między ich środkami, to tworzą „fluid sprężysty”, którego gęstość jest proporcjonalna do ciśnienia (a więc objętość odwrotnie proporcjonalna do ciśnienia). Newton dodał jednak starannie, że: „(...) czy fluidy sprężyste rzeczywiście składają się z drobnych cząstek odpychających się wzajemnie, to już jest pytanie fizyczne. Udowodniliśmy matematycznie właściwość fluidów składających się z drobnych cząstek takiego rodzaju, aby dostarczyć filozofom przyrody punktu wyjścia do badania tego pytania” (Principia, Księga II, Prop. XXII). W modelu matematycznym Newtona pominięty został zupełnie ruch atomów. Obecnie wiemy, że ciśnienie gazu jest uwarunkowane niemal całkowicie uderzeniami atomów o ścianki naczynia, a nie stale działającymi siłami międzyatomowymi. Jednak ze względu na wielki autorytet Newtona większość fizyków trzymała się przedstawionego przez niego modelu, chociaż, jak widzieliśmy, dla Newtona była to tylko możliwa hipoteza. W XVIII wieku popularność tego poglądu nawet wzrosła, gdy pojawiła się idea, że z siłami odpychania międzyatomowego jest związane ciepło. W wielu podręcznikach, nawet jeszcze z początku XIX wieku, podawano, że zasugerowane przez Newtona prawo siły odpychającej między cząstkami gazu zostało udowodnione ponad wszelką wątpliwość. Do wyjątków należał Daniel Bernoulli (fot. 1), który w swym dziele Hydrodynamica (1738 r.) rozwinął kinetyczny model cząstek gazu uderzających sprężyście o ścianki naczynia i udowodnił, że w takim wypadku ciśnienie będzie odwrotnie proporcjonalne do objętości. To wyjaśnienie prawa Boyle'a- Mariotte'a nie zrobiło jednak wielkiego wrażenia na współczesnych i zostało szybko zapomniane. Pamiętajmy, że nauka o gazach i cieple była jeszcze wówczas w powijakach i Bernoulli nie mógł dać odpowiedzi na szereg podstawowych pytań, np.: 1) Jak ciepło wpływa na ruch cząstek gazu (jaki jest związek temperatury z energią kinetyczną cząstek)? 2) Jeśli ciepło jest ruchem cząstek, to jak może być przekazywane w pustej przestrzeni, np. od Słońca? W połowie XVII wieku dokonano w nauce o cieple przełomowego odkrycia. Joseph Black z Edynburga (fot. 2) rozróżnił mianowicie pojęcia ilości ciepła i temperatury. Odkrycie to było wynikiem badań Blacka nad zmianami stanu skupienia. Jak wiadomo, przy takich procesach (np. przemiana lodu w wodę lub odwrotnie) następuje pobieranie (lub oddawanie) pewnej ilości ciepła, tzw. ciepła przemiany (dawniej zwanego też ciepłem utajonym) bez zmiany temperatury ciała. Z wykładów Blacka na uniwersytecie w Edynburgu [13] dowiadujemy się o ważnym kroku w kierunku opracowania teorii fluidu ciepła, zwanego później cieplikiem. Mówiąc o cieple Black omawia najpierw poglądy Francisa Bacona (patrz wyżej), a następnie pisze: „Ale większość francuskich i niemieckich filozofów przyrody i dr Boerhaave było zdania, że ruch składający się na ciepło nie jest drganiem samych cząstek gorącego ciała, lecz cząstek subtelnego, bardzo sprężystego i przenikającego wszystko fluidu, który jest zawarty w porach gorących ciał, między ich cząstkami, fluidu, który, jak sobie wyobrażali, jest rozproszony w całym wszechświecie i przenika nawet najgęstsze ciała. Niektórzy uważają, że ta materia, zmieniona w różny sposób, wytwarza światło i zjawiska elektryczne. Lecz żadne z tych przypuszczeń nie było rozważane przez tych autorów w pełni dokładnie ani też nie było zastosowane do wyjaśnienia wszystkich faktów i zjawisk odnoszących się do ciepła. Nie dostarczyli więc nam oni właściwej teorii ani wyjaśnienia natury ciepła. Bardziej pomysłowa próba została podjęta ostatnio. Jej pierwszy zarys podał zmarły już dr Cleghorn w swej dysertacji na temat ciepła tutaj ogłoszonej [Uniwersytet w Edynburgu, 1779 r.]. Przyjął on, że ciepło zależy od obecności tego subtelnego i sprężystego fluidu, który według wyobrażeń innych filozofów jest obecny w całym wszechświecie i jest przyczyną ciepła. Ale ci inni filozofowie przyjmowali tylko jedną właściwość tej subtelnej materii, a mianowicie jej wielką sprężystość, czyli silne odpychanie wzajemne jej cząstek. Natomiast dr Cleghorn założył jeszcze inną jej właściwość, a mianowicie silne przyciąganie między jej cząstkami i innymi rodzajami materii w przyrodzie, które ogólnie wykazują mniejsze lub większe wzajemne przyciąganie grawitacyjne. Przyjął on zatem, że zwykłe rodzaje materii składają się z cząstek obdarzonych własnością silnego przyciągania się wzajemnego, i przyciągania materii ciepła; natomiast subtelna, sprężysta materia ciepła ma własność odpychania, jej cząstki wzajemnie się odpychają, chociaż są przyciągane przez inne rodzaje materii (...) Taka idea o naturze ciepła jest najbardziej prawdopodobna ze wszystkich, jakie znam. Bardzo pomysłowy z niej użytek zrobił dr Higgins w swej książce o kwasie roślinnym i innych zagadnieniach. Jest to jednak nadal tylko przypuszczenie”. Obok fluidu ciepła rozważano inny fluid sprężysty, flogiston. Pomysł pochodził od Johanna Joachima Bechera (1669 r.), a właściwą teorię podał w 1697 r. Georg Ernst Stahl. Oto co o tym fluidzie pisał Stahl [14j: „Ten materiał ognia sam przez się, inaczej niż inne rzeczy (specjalnie powietrze i woda), nie znajduje się zjednoczony i aktywny, ani jako ciecz, ani w stanie rozrzedzonym. Ale jeśli przez ruch ognia, przy dodatku powietrza, staje się rozrzedzony i ulatnia się, wtedy pozostaje rozproszony dzięki swej niepojętej subtelności i niemierzalnemu rozrzedzeniu i żadna wiedza znana człowiekowi, żadna ludzka umiejętność nie może go zebrać ponownie i zamknąć w małej przestrzeni, zwłaszcza jeśli zaszło to szybko na dużą skalę. Doświadczenie poucza nas o tym, jak niezmiernie rozrzedzonym i subtelnym staje się ten materiał wskutek ruchu ognia; daje nam to pole do rozmyślań i napawa zadowoleniem. Wobec tych jego własności, uważam, że zasługuje on na swą nazwę własną, jako pierwsza, jedyna, podstawowa zasada palności. Ale ponieważ dotychczas nie może być wyodrębniony sam, poza związkami i połączeniami z innymi materiałami i nie ma wobec tego podstaw, by nadać mu nazwę opisową wyjaśniającą własności, sądziłem, że najlepiej nadać mu nazwę od ogólnego działania, które

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.