Practical Handbook of Spectroscopy Edited by J. W. Robinson, Ph.D., D.Sc., F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana 0 ~'~~/:~;,~~"' Soca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Library of Congress Cataloging-in-Publication Data Practical handbook of spectroscopy/edited by J. W. Robinson. p. cm. Includes bibliographical references and index. ISBN 0-8493-3708-9 I. Spectrum analysis--Handbooks. manuals. etc. I. Robinson. James W., 1923- QD95.P73 1991 543' .0858--dc20 90-48265 CIP This book represents information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Every reasonable effort bas been made to give reliable data and information, but the authors and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. All rights reserved. This book. or any parts thereof. may not be reproduced in any form without written consent from the publisher. Direct all inquiries to CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida, 33431. c 1991 by CRC Press. Inc. International Standard Book Number 0-8493-3708-9 Library of Congress Card Number 90-48265 PREFACE This handbook is a distillation of the CRC Handbook of Spectroscopy, Volumes I, 11, and Ill, reduced in size to be presented in one convenient volume. The principal objective is to provide a readily accessible source of information on the major fields of spectroscopy. Specifically, these fields are X-ray spectroscopy; ESCA; atomic spectroscopy (atomic absorption, emission spectrography, flame photometry, and inductively coupled plasma); infrared and Raman spectroscopy; ultraviolet absorption spectroscopy; electron spin resonance; mass absorption coefficients; appearance potentials; activation anal ysis; neutron cross-sections; wavelength standards; and diatomic molecules of astrophysical importance. The book will provide some theoretical information, but is mostly dedicated to providing a reference for the spectroscopic data available on the most important materials in the particular field. The handbook will be of maximum value to the practicing spectroscopist. Many scientists are experts in one or two fields of spectroscopy, but relative novices in other similar fields. This handbook will be invaluable to people wishing to get information about these "other fields." It will be of particular use to analytical and organic chemists or to spectroscopists wishing to identify materials or compounds. The book will indicate to them which techniques may provide useful information and what kind of information the techniques will provide and will not provide. In short, it will be a companion to those spectroscopists who have a need to broaden their horizons into the major fields discussed. J. W. Robinson Louisiana State University THE EDITOR J. W. Robinson, B.Sc., Ph.D., D.Sc., F.R.C.S., earned his degrees at the University of Birmingham, England. He is Professor of Chemistry and Chairman of the Analytical Division at Louisiana State University, Baton Rouge, Louisiana. He has authored more than 177 publications and has written 3 books, Undergraduate Instrumental Analysis, Atomic Absorption Spectroscopy, and Atomic Spectroscopy. He is Editor of the international journals Spectroscopy Letters and Journal of Environmental Science and Health and Assistant Editor of Applied Spectroscopy Reviews. He is a past Gordon Conference Chairman, a Guggenheim Fellow, and a recipient of the Honor School of the American Institute of Chemistry. ACKNOWLEDGMENTS Materials in this book were derived from new material and Volumes I, Il, and HI of the CRC Handbook of Spectroscopy, edited by J. W. Robinson: Section 1. X-Ray Spectroscopy: derived from X-Ray Spectroscopy, Volume I (pages 3 to 154, 230 to 231, and 238 to 254). Section 2. ESCA-Photoelectron Spectroscopy: derived from ESCA Photoelectron Spec troscopy, Volume I (pages 257 and 512 to 752). Section 3. Atomic Spectroscopy: derived from Atomic Spectroscopy, Volume I (pages 809 to 815). Section 4. Emission Spectroscopy: derived from new material and Emission Spectroscopy, Volume I (pages 847 to 868). Section 5. Infrared Spectroscopy: derived from Infrared Spectroscopy, Volume ll (pages 3 to 16, 18, 24 to 36, 50 to 72, 76, 96 to 99, and IOJ to 102). Section 6. Raman Spectroscopy: derived from Raman Spectroscopy, Volume II (pages 107 to 130). Section 7. Ultraviolet Absorption Spectroscopy: derived from Ultraviolet Absorption Spec troscopy, Volume ll (pages 133 to 214). Section 8. Electron Spin Resonance: derived from new material and Electron Spin Res onance, Volume II (pages 217 to 229, 232 to 233, 235 to 238, 240 to 241, 243 to 244, 249, 252 to 254, 259 to 261, 268, 275 to 276, and 287 to 314). Section 9. Mass Photoelectric Absorption Coefficients: derived from Mass Photoelectric Absorption Coefficients, Volume III (pages 1 to 78). Section 10. Appearance Potential Spectroscopy: derived from Appearance Potential Spec troscopy, Volume III (pages 79 to 93). Section 11. Thermal Neutron Cross Sections and Resonance Integrals for Activation Analysis: derived from Thermal Neutron Cross Sections and Resonance Integrals for Ac tivation Analysis, Volume Ill (pages 95 to I 23). Section 12. X-Ray Fluorescence and Coster-Kronig Yields for the K-, L-, and M-Shells: derived from Tables of Experimental Values of Fluorescence and Coster-Kronig Yields for the K-. L-, and M-Shells, Volume ill (pages 125 to 139). Section 13. 14 MeV Neutron Activation Cross Sections: derived from 14 MeV Neutron Activation Cross Sections, Volume lii (pages 141 to 162). Section 14. Wavelength Standards in Visible, Ultraviolet, and Near-Infrared Spec troscopy: derived from Wavelength Standards in Visible, Ultraviolet, and Near-Infrared Spectroscopy, Volume Ill (pages 163 to 173). Section 15. Wavelength-Dependent and Electronic System OsciUator Strengths for Free Diatomic Molecules of Astrophysical Importance: derived from Wavelength-Dependent and Electronic System Oscillator Strengths for Free Diatomic Molecules of Astrophysical Importance, Volume Ill (pages 193 to 205). TABLE OF CONTENTS SECTION 1. X-RAY SPECTROSCOPY X-Ray Spectroscopy ...................................................................... 3 I. Characteristic X-Ray Emission Lines .............................................. 3 Table I Wavelength, Probable Error in Last Digit of Wavelength, and Energy of Some Characteristic Emission Lines .................. 4 References ........................................................................ 22 Il. Characteristic X-Ray Absorption Edges ........................................... 23 Table 2 X-Ray Absorption Edges ............................................ 24 References ........................................................................ 27 Ill. Mass Attenuation and Absorption Cross Sections for 94 Elements; 0.1 keY to l MeV ................................................................ 28 Table 3 Mass Attenuation and Absorption Cross Sections for 94 Elements; 0.1 keY to I Me V .................................... 28 TV. Approximate Jump Factors for K and L Absorption Edges ...................... 155 Table 4 K-Edge Jump Factors .............................................. !55 Table 5 L-Edge Jump Factors ............................................... 155 V. Schematic Energy Level Diagram Showing the X-Ray Lines .................... 156 VI. Crystals and Multilayer Langmuir-Blodgett Films Used as Analyzers in Wavelength-Dispersive X-Ray Spectrometers ................................. !57 Table 6 Crystals and Multilayer Langmuir-Biodgett Films Used as Analyzers in Wavelength-Dispersive X-Ray Spectrometers ...................................................... !58 Vll. Cross Sections for Ionization of K- and L-Shells by Electrons .................. 167 VUI . Electron Range and Electron Stopping Power ................................... 168 Table 7 A The Stopping Power for Electrons of Energy V in Targets of Atomic Number Z ...................................... 169 Table 7B The Stopping Power for Electrons of Energy V in Targets of Atomic Number Z ...................................... 170 Table 8 The Mass-Range ps (g/cm2) at which the Electron Energy Has Fallen from Its Initial Energy, Vo • to the K-Shell Ionization Energy in Targets of Atomic Number Z .......................................................... 171 Table 9 The Mass-Range ps (g/cm2 at which the Electron ) Energy Has Fallen from Its Initial Energy, Vo • to the L -Shell Ionization Energy in Targets of Atomic 111 Number Z .......................................................... 172 SECTION 2. ESCA - PHOTOELECTRON SPECTROSCOPY ESCA - Photoelectron Spectroscopy .................................................. 177 Table l X-Ray Molecular Orbital Spectra .................................. 178 Table 2 X-Ray Core Spectra ................................................ 183 References .................................................................... 416 SECTION 3. ATOMIC SPECTROSCOPY Atomic Spectroscopy ................................................................... 421 I. Oscillator Strengths (/-Values) of Interest in Atomic Absorption Spectroscopy .................................................................... 421 Table 1 Oscillator Strengths (f-Values) of Interest in Atomic Absorption Spectroscopy ........................................... 421 II. Doppler Half-Widths of Atomic Spectral Lines (Table 2) ...................... .422 fii. Ionization Potentials of the Elements, i.e., the Energy Required for the Process M ~ M+ + e- ................................................. 423 Table 3 Ionization Potentials of the Elements ............................... 423 IV. Dissociation Energies of Diatomic Oxide Molecules ............................. 424 Table 4 Dissociation Energies of Diatomic Oxide Molecules ............... 424 V. Properties of Premixed Flames Used in Atomic Spectroscopy ................... 425 Table 5 Properties of Premixed Flames Used in Atomic Spectroscopy ....................................................... 425 VI. Efficiences of Atomization of Metals in Flames ................................ .425 Table 6 Efficiencies of Atomization of Metals in Flames ................... 426 References .................................................................... 426 VII. Measured Degrees of Ionization of Metals in Flames ............................ 427 Table 7 Measured Degrees of Ionization of Metals in Flames .............. 427 Table 8 Salts Suitable for Preparing Calibration Curves .................... 428 Table 9 Primary Wavelengths and Sensitivities for Flame Atomic Absorption Analysis ....................................... 429 Table 10 Detection Limits Using Plasma MS Analysis ..................... .430 Table 11 Sensitivities (I% Absorption) and Detection Limits for Carbon Rod Atomizer (Mini-Massmann) ....................... 431 Table 12 Zeeman Background Correction Data for P.E. 5000 ............... 432 SECTION 4. EMISSION SPECTROSCOPY Emission Spectroscopy ................................................................. 437 I. Comparison of Some Experimentally Determined Emission-Spectroscopic Detection Limits ................................................................ .437 Table I Comparison of Some Experimentally Determined Emission-Spectroscopic Detection Limits .......................... 437 II. Reported Relative Detection Limits for Arc Excitation .......................... 438 Table 2 Reported Relative Detection Limits for Arc Excitation ............. 438 lli. Relative Detection Limits for Spark Excitation of Solids ........................ 440 Table 3 Relative Detection Limits for Spark Excitation of Solids ........... 441 IV. Detection Limits for Liquid Samples (tJ-g/ml) .................................... 442 Table 4 Detection Limits for Liquid Samples ............................... 442 V. Detection Limits for Micro or Residue Samples (ng) ............................ 444 Table 5 Detection Limits for Micro or Residue Samples .................... 444 VI. Detection Limits with the Laser Microprobe (tJ-g/g) ............................. 446 Table 6 Detection Limits with the Laser Microprobe ....................... 446 VII. Preconcentration-Separation Procedures Used for Emission Spectrometric Analyses ......................................................... .447 Table 7 Preconcentration-Separation Procedures Used for Emission Spectrometric Analyses .................................. 447 References .................................................................... 447 VIII. Sensitive Lines for Use in Atomic Emission Spectrometry ...................... 448 Table 8 Sensitive Lines for Use in Atomic Emission Spectrometry ......... 448 IX. Wavelengths Commonly Recommended for Use in Plasma Emission ........... .460 Table 9 Wavelengths Commonly Recommended for Use in Plasma Emission ................................................... 460 X. Prominent Lines Used in Plasma Emission ...................................... 462 Table 10 Prominent Lines Used in Plasma Emission with Detection Limits and Elements Which May Cause Spectral Interference ............................................... 462 XI. Comparison of Detection Limits for AES, AAS, and AFS ...................... 469 Table ll Comparison of Detection Limits for Atomic-Emission (AES), Atomic-Absorption (AAS), and Atomic-Fluorescence Spectroscopy (AFS) ................................................ 469 XlJ. Wavelength Used in Flame Emission ............................................ 472 Table 12 Wavelengths of Emission Lines Used for the Detection and Determination of Some Common Elements .................... 472 XIII. Sensitivity Results Obtained with Nitrous Oxide-Acetylene Flames ............. 474 Table 13 Sensitivity Results Obtained with Nitrous Oxide-Acetylene Flames ............................................................. 474 XIV. Results Obtained with Shielded Burners ......................................... 475 Table 14 Results Obtained with Shielded Burners ........................... 475 XV. Relative Sensitivities Detection Limits .......................................... .476 Table 15 Relative Sensitivities Detection Limits ............................ .476 SECTION 5. INFRARED SPECTROSCOPY Infrared Spectroscopy .................................................................. 481 I. Sampling ........................................................................ 481 Properties of Common Window Materials ....................................... 481 Properties of Common Solvents ................................................. 495 Spectra of Common Solvents .................................................... 496 11. Calibration: Secondary Standards for Wavelengths .............................. 509 Ill. Spectrometer Operation .......................................................... 512 The Coblentz Society Specifications for the Evaluation of Infrared Reference Spectra: Class IJ Spectra .............................................. 512 Class Ill Spectra ................................................................. 515 Table 1 Absorption Maxima Recommended for Calibration Purposes ........................................................... 515 Spectral Slit Width of a Grating Monochromator ................................ 518 Relationship Between Noise (N), Slit Width (s), and Response Time (T ) ............................................................... 518 Determination of Scan Speed from the Spectrometer Time Constant and the Half-Band Width .............................................. 518 Theoretical Transmittance of Mylar Beamsplitter Foils .......................... 518 I V. Interpretation .................................................................... 519 Common Spurious Absorption Bands and Their Origin .......................... 519 Wavelength-to-Wavenumber Conversion Tables and Refractive Index of Standard Air, 2-20 IJ.m ............................................... 520 Numbering of Fundamental Vibrational Frequencies in Molecules ............... 523 Infrared Correlation Charts and Tables .......................................... 524 Correlation Chart of Infrared Group Frequencies ................................ 529 V. Quantitative Analysis ............................................................ 534 Absorption Laws ................................................................ 534 Determination of Stray Radiation ................................................ 534 To Minimize Errors in Quantitative Analysis .................................... 534 References .................................................................... 535 Measurement of Absorbance ..................................................... 535 SECTION 6. RAMAN SPECTROSCOPY Raman Spectroscopy ................................................................... 539 I. Instrumentation .................................................................. 539 Sources .......................................................................... 539 Table I Major Wavelengths for Some Common Gas Lasers ................ 539 Monochromators ................................................................. 539 Detector and Amplification ...................................................... 539 11. Spectrometer Operation .......................................................... 539 Monochromator Parameters ...................................................... 539 Table 2 Possible Spurious Lines due to Emission from the Laser Plasma When an Argon Laser is Being Used as the Raman Exciting Source ........................................ 540 Spectrometer Calibration ......................................................... 542 Resolution Check ................................................................ 543 Intensity Dependencies .......................................................... 543 Table 3 Calibration of Laser Raman Spectrometers for Helium-Neon Excitation ............................................ 546 Table 4 Calibration of Raman Spectrometers for Argon Ion Laser Excitation ................................................ 546 Depolarization Ratios ............................................................ 547 Ill. Sampling and Geometry ......................................................... 547 Conventional Solid and Liquid Phase Geometry ................................. 547 Table 5 Routine Calibration of the Laser Raman Spectrometer with Indene ........................................................ 549 Table 6 Chlorine Isotope Bands ............................................ 549 Special Geomet:ries .............................................................. 549 Table 7 Comparison of Different Laser Excitation Frequencies ............. 550 Microsampling ................................................................... 550 IV. Interpretation .................................................................... 550 V. Representative Raman Spectra ................................................... 550 Table 8 A Summary of Characteristic Raman Frequencies .................. 551 VI. The Documentation of Raman Spectra ........................................... 556 Recommendation for the Presentation of Raman Spectra for Cataloging and Documentation in Permanent Data Collections .............................. 556 Recommendations ............................................................... 562 References ....................................................................... 562 SECTION 7. ULTRAVIOLET ABSORPTION SPECTROSCOPY Ultraviolet Absorption Spectroscopy ................................................... 565 I. Ultraviolet: Spectral Data Index ................................................. 565 SECTION 8. ELECTRON SPIN RESONANCE Electron Spin Resonance ............................................................... 649 I. Introduction ...................................................................... 649 ll. Physical Constants and Conversion Factors ...................................... 650 Table 2-1 Conversion Factors ................................................. 650 Table 2-2 Energy Conversion Factors ......................................... 650 Table 2-3 Nuclear Spins, Abundances, Moments and Hyperfine Couplings for Some Common Magnetic Nuclei .................... 651 Ill. Instrumentation .................................................................. 653 Block Diagram of Superheterodyne Spectrometer ................................ 653 Sensitivity ....................................................................... 653 Resonance Cavities .............................................................. 655 Table 3-1 Electrical Properties of Several Metals, Where f Is in the Units Hz ..................................................... 655 Table 3-2 Dielectric Properties of Materials Sometimes Encountered Inside Cavitjes ........................................ 660