ebook img

practical aspects of operating a neutron activation analysis laboratory PDF

251 Pages·2002·14.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview practical aspects of operating a neutron activation analysis laboratory

IAEA-TECDOC-564 PRACTICAL ASPECTS OF OPERATING A NEUTRON ACTIVATION ANALYSIS LABORATORY A TECHNICAL DOCUMENT ISSUED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1990 PRACTICAL ASPECTSF OO PERATING A NEUTRON ACTIVATION ANALYSIS LABORATORY IAEA, VIENNA, 1990 IAEA-TECDOC-564 ISSN 1011-4289 Printee htI dyAb EAn i Austria July 1990 PLEASE BE AWARE THAT E MHTIAS FSLOILN G PAGN ETISH IS DOCUMENT WERE ORIGINALLY BLANK FOREWORD This bs oioik nten odteadd vin isee veryday practical problems relatoetd operating a neutron activation analysis (NAA) laboratory. It gives answers to questions like "what to use NAA for", "how to find relevant research problems", "how to find users for the technique", "how to estimate the cost of the analysis and how to finance the work", "how to organize the work in a rational wd an"yah" o optw ere fhqoutra mlity contrt ogIli"v .es advice o desitgn fa cilitwies ohin chodosinng d sctoaanfsnfu,m a ebaqlueispm ent, and procedures accd oanro vndaateiien ldgable resources. e s hbdioeTos o kigdtnies dcuss prt obdoleneaml st n woiirAtd hiAnNar y textbooks, but also, in order to prevent it from being too voluminous, to avoid duplication of material described in normal NAA text books. There erhfeotarde e,r will find that some matf erioinat s lemriiess sting from this book and it is recommended that one or two of the textbooks listed in chapter 11 be read in addition to this one. e hT authors representa wide rangef o experience with biological, environmental, gd eionnldouagsitcrai la,l n scaoimnptlee xst,s from basic research to commercial analytical service. Their backgrounds also range from universo itgto yvernmental research instid tnpurati evate enterprise. Their summed experience exe cehtetidm se since Hd envLeaesv yy's first publication on activation analysis; nevertheless, other workers in the field may not agree with all the statements made herein. It is their hope that this publication will be of value, both in respect to practical aspects of running a modern NAA laboratory, and in recommending relevant appli aca ttniimioen s with abundant analytical teach ndinqaues requira ew mreeolnflt -founded cost/benefitl al acr taritovifio ties. EDITORIAL NOTE In preparing this me aphtrtee rrsiosaf,l staffe Ihnottf ernational Atomic Energy Agency have mound ptneaadg ina ethoetrd iginal manuscrd ignpaitvs en some attentioo ptn resentation. The viet wnoes cneexs psoraerdsislye d reflect the gohosevt eor fnm eeMnhtesmt ob fer States or organizations under whose auspices the manuscripts were produced. The use in this book of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authord iitnnie aesdhs tetit lufiomti iortnoast if oothn eir boundaries. The mentf ioospn ecific comf optha enrioire ps rodur cbotrs and names t dyoiomnneaps ly endorsement or recommendation on the part of the IAEA. CONTENTS 1. INTRODUCTION ..................................................................................... 7 . 2 PRINCIPLEF SOI NSTRUMENTAL NEUTRON ACTIVATION ANALYSIS ..........9.. 2.1. Historical background .........................................................................9.... 2.2. Characteristicf osn eutron activation analysis ..............................................9... 2.3. Sensitivities available with NAA .............................................................. 18 . 3 POTENTIAL APPLICATIONF OES CONOMD SNIACO CIAL IMPORTANCE ...0.2... 3.1. Major applications ................................................................................ 20 3.2. Other applications .............................................................................92... 4. IRRADIATION FACILITIES ........................................................................ 33 4.1. Research reactor types ........................................................................3.3.. 4.2. Sample encapsulation ............................................................................ 37 4.3. Irradiation sites ................................................................................3.4... 4.4. Irradiation in modified flux ..................................................................... 47 .5 COUNTIND DNGAA TA PROCESSING FACILITIES ....................................05... 5.1. Typical counting systems ...................................................................0.5.... 5.2. Semiconductor detectors ......................................................................... 51 5.3. Basic electronics ..............................................................................5.6... 5.4. Multichannel pulse height analyzer (MCA) ................................................. 81 5.5. Data processing .............................................................................5.8..... 5.6. Automation ...................................................................................8.8..... 5.7. Choicf oel ocation ............................................................................3.9... 6. RELATED TECHNIQUES .........................................................................69.. 6.1. Delayed neutron activation analysis ....................................................6..9..... 6.2. Prompt gamma neutron activation analysis .................................................. 99 6.3. Measurement of environmental radioactivity ................................................ 99 7. MAKING NAA AVAILABLE TO THE SCIENTIFIC AND TECHNICAL COMMUNITY ...............................................................1..0.1..... 7.1. Identification of possible consumers .......................................................... 101 7.2. Collecting background informatiod nnai dentificationf o applications ................4.01. 7.3. Consultation with potential consumers ....................................................... 104 7.4. Modesf o providingA AN services ...........................................................501 7.5 Cost analysis ...................................................................................... 108 . 8 ORGANIZATIOF WON ORK .................................................................5..1.1... 8.1. Staff .............................................................................................5.1.1.. 8.2. Sample bookkeeping and coding .............................................................. 116 8.3. Sample preparation .........................................................................9.1.1.... 8.4. Standards ........................................................................................... 126 8.5. Irradiation procedures ........................................................................... 128 8.6. Decay .......................................................................................6.3..1.... . 8.7. Measurements .............................................................................8..3.1.... . 8.8. Data processing ...................................................................................841 8.9. Reporting ........................................................................................... 150 . 9 QUALITY ASSURANCE ............................................................................65.1 9.1. Nr eoqefuda lity assurance .............................................................6..5..1.... 9.2. Methods for quality assurance ................................................................. 156 9.3. Assignement of uncertainty ..................................................................... 161 9.4. Location of sources of errors .................................................................. 163 10. RADIATION PROTECTION ........................................................................ 169 11. SUGGESTED READING ............................................................................. 172 REFERENCES ................................................................................................. 175 APPENDIX A. TABLES FOR NEUTRON ACTIVATION ANALYSIS ......................... 193 Introduction ......................................................................................3..9.1..... Refereno cItens troduction ....................................................................6..9.1..... Table I. Thermal neutron cross-sections and resonance integrals .......................... 197 Table II. Cross-sections averaged in a 235U fission neutron spectrum ..................... 202 Table III. Radioactive isotopes arranged by atomic number .................................. 203 Ta. VbGlIe amma rays arrang yeebnd ergy 1d a( <ty,) ............................1..2.2.... /2 Table V. Gamma rays arranged by energy (t > Iday) .................................... 228 1/2 . TIaVRblee commended gammar aornad faythnls yeasiirs interferences (t,5 <h ours) .........................................................................8.32. /2 Table VII. Recommended gamma rayr osfa nalysid nsat heir interferences (5 ho7 u< drta s <ys ) ......................................................0..4..2... . 1/2 Table VIII. Recommended gamma rays for analysis and their interferences (t > 7 days) ............................................................................ 243 1/2 Referenceo tst ables ................................................................................8.4.2.. CONTRIBUTORS TO DRAFTING AND REVIEW .................................................. 251 1. INTRODUCTION Nuclear research reactors are commonly purchased by governments or universities to form the basis for multidisciplinary research institutes. In many countries ther sei onle nyo research reas ci ttiio ndnrat endeodt support the scientific and technical development of the whole country. A research ra ema acsjtioorr s iail nstvoie s tedmxnepanent so itvre un. Therefore it is important to use it efficiently. Analytical chemistry is an essential part of science and technology. In most cases an analytical chemistry laboratory is established and used in the institutes whie htc ershue sults. Neutron activation analysis (NAAna) si exception to this. The expensive research reactor necessary to conduct NAA cannot be purchased by every analytical laboratory. Therefore NAA is commonly only perfort maerd eactor laboratories although some laboratories without reactors simple ht yyub irradiations. When short-lived nuclidese ra used close access to the reactor is obligatory. Although very sensitive and accurate non nuclear analytical techniques exist, Ns aAhsA everal advantages whicha csaso umeppsupl oestrmite o ntto ther techniques, as has been clearly shown on several occasions [i]. Therefore it is the duty of the institute running the reactor to make NAA available to ewhhotl e nucsioeurn stry., hl socTwt ilohesouivau nsecn tcr re,nisesisfu l or reactor laboratories. Several NAA laboratories are run in a way that is far from optimum as regards the needs of the country. One or several of the following reasons can be identified. - The NAA group has no motivation to make the technique available to outsides e waihuocsraT edkresm .ically ore ighernTotuepd .develops analytical methods to be published in scientific journals and only runs itsn wo research projects. - Co-operation with scientific institutid oninans dustrial enterprisseis limiA tANeg edhrTt .oo nu asipw e ahtrn feeo e ehtdc fsoo untrdnya the possible counterpart has no knowledge about the possibilities of using NAA to solve their analytical problems. There dt ooeenxs isa t mechanism thatA AsmNea rekhvetis ces avai Laebl to outside users. The increased use of NAA requires manpower and instrumentation, the cost of which must somehow be covered. e hTlaboratory dt ooenhse ahvtcea pabilr iotfly arge scale work. Delivery time of results is long and only a limited number of samples can be analyzed annually, because of lack of skill, manpower, instrumentation or proper procedures. The cost of services may also be high for this reason. et htogd no nuof see de oshwe ritoe hseqrnTu h koaTfulgoiht . y - analytical daethat caee nsrnhueotsd t u t ntlhnraoteeo srnl e yfoodr e NAA services. s aipo NpAe lttAld ieoe se r nmtadwnheemoahn cptitfhl ces en hisrqaue s optimal compared to available non-nuclear analytical techniques. e hT authors feel thate ht available articlesd na bookst on od AAN no deal with e phrtoblems outlined hn eItrhewi .n eston he beehtoromtooorp kn yh assii s techniques. Radiochemical NAA is not dealt with because (1) radiochemical NAA, with the exceptif oosn ome preirradiation applicat toeinc oosnniso, mically competitive with non-nuclear techniques, and (2) description of the numerous chemical separation techniques and radiochemical laboratory practices would enlarge the book too much. This book addresses itself to scientists who are starting with NAA or who are establishiA ANn lwegan boratori, esihs toI. wever, foreseen that ti will also be useful to scientists who have already been working a few years with NAA. 2. PRINCIPLES OF INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS 2.1 HISTORICAL BACKGROUND Neutron activation analysis (NAe Ab dna)ca ethtet odti mf eoH evesd nyaL evi o ph[uw2b] l,ished their firste mhretet n phf1oio9or d3 t6. Followie hntdg evelopmef notn uclear reace ht1to 9nr4d is0n sas odium-iodide scintillation dee theetca rtnloirys 195 e0hpsto, ssibilitr aiofpeps lyAiAnNg to trace element analysis of samples from many disciplines were recognized. Early development of NAA was rapid. The invention of high resolution solid-state Ge(Li) detectors in the 1960s and more recent advancements of computed rnasa utomation durie hntg1 970s aad 1080s have made possible o rtes eaAaprpAclNih c asfttoiuod nies involving very large numf bseoar msples. 2.2 CHARACTERISTIF NCOE SUTRON ACTIVATION ANALYSIS Neutron activation analysis has become a mainstay of geochemical and biochemical trace element research because the technique possesses several important advantages. (a) Substantial freedom from systematic errors. The physical processes involvee rda well understood. Radioactive growtd nha decaerya rigorously exponee nthniTuam flboe .en rergetically possible nuclear reactions fra om given target nucl ls lipiadsoe msdasnlialb,l e reace btie nonanucms erat yebdi nspec at itfooanb f loen uclides. High-resolution gamma-ray spectroscopy affords qualitative identification of the nuclides present as well as their quantitation. The density of known gamma-ray lines in energy space is small compared wit ehth resolutio fon modern detectot onr msdnaa,n y analytically important decay gamma raye s bdir seocmoe atvihpe nrTreesdfe .noc e possible interferences may often be readily tested when multiple lines of either component are emitted. (b) Complementarity to other methods. A different suite of elements is measurable by using nuclear rather than chemical reactions, and the detection limit esra quantitatively different. Equally important,eht kinds of errors to which nuclear methods are subject are due to different physical phenomena and are therefore likely to give a different bias in the results.

Description:
the gold comparator, detector efficiencies and neutron fluxes and applying the k -factors, the . PPM. PPM. PPM. EARTHS AND ACTINIDES. 0. 0. 1. 3.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.