ebook img

Practical Applications of Computational Intelligence Techniques PDF

391 Pages·2001·11.804 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Practical Applications of Computational Intelligence Techniques

PRACTICAL APPLICATIONS OF COMPUTATIONAL INTELLIGENCE TECHNIQUES INTERNATIONAL SERIES IN INTELLIGENT TECHNOLOGIES Prof. Dr. Dr. h.c. Hans-Jiirgen Zimmermann, Editor European Laboratory for Intelligent Techniques Engineering Aachen, Germany Other books in the series: Fuzzy Databases: Principles and Applications by Frederick E. Petry with Patrick Bose Distributed Fuzzy Control of Multivariable Systems by Alexander Gegov Fuzzy Modelling: Paradigms and Practices by Witold Pedrycz Fuzzy Logic Foundations and Industrial Applications by Da Ruan Fuzzy Sets in Engineering Design and Configuration by Hans-Juergen Sebastian and Erik K. Antonsson Consensus Under Fuzziness by Mario Fedrizzi, Janusz Kacprzyk, and Hannu Nurmi Uncertainty Analysis in Enginerring Sciences: Fuzzy Logic, Statistices, and Neural Network Approach by Bilal M. Ayyub and Madan M. Gupta Fuzzy Modeling for Control by Robert Babuska Traffic Control and Transport Planning: A Fuzzy Sets and Neural Networks Approach by Dusan Teodorovic and Katarina VukadinoviC Fuzzy Algorithms for Control by H.B. Verbruggen, H.-J.Zimmermann. and R. BabUska Intelligent Systems and Interfaces by Horia-Nicolai Teodorescu, Daniel Mlynek, Abraham Kandel and H.J. Zimmermann PRACTICAL APPLICATIONS OF COMPUTATIONAL INTELLIGENCE TECHNIQUES Edited by LakhmiJain University of South Australia, Adelaide and Philippe De Wilde University of London ~. " SPRINGER-SCIENCE+BUSINESS MEDIA, LLC Library of Congress Cataloging-in-Publication Data Practical applications of computational intelligence techniques I edited by Lakhmi Jain and Philippe De Wilde. p. cm. -- (International series in intelligent technologies ; 16) IncJudes bibliographical references and index. ISBN 978-94-010-3868-3 ISBN 978-94-010-0678-1 (eBook) DOI 10.1007/978-94-010-0678-1 1. Computational intelligence--Industrial applications. I. Jain, L. C. 11. De Wilde, Philippe, 1958- III. Series. Q342 .P73 2001 006.3--dc21 2001029127 Copyright ~ 2001 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 2001 Softcover reprint ofthe hardcover 1st edition 2001 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo copying, recording, or otherwise, without the prior written permission of the publisher, Springer-Science+Business Media, LLC Printed on acid-free paper. Contents Chapter 1. An introduction to computational intelligence paradigms A. Konar and L. C. Jain 1 Computational intelligence - a formal definition .......................... 1 2 The logic of fuzzy sets ................................................................... 2 3 Computational models of neural nets .......................................... 13 3.1 The back-propagation learning algorithm .............................. 15 3.2 Hopfield nets ........................................................................... 20 3.2.1 Binary Hopfield net.. .......................................................... 20 3.2.2 Continuous Hopfield net .................................................... 22 3.3 Self-organizing feature map ................................................... 22 3.4 Reinforcement learning .......................................................... 24 3.4.1 Temporal difference leaming ............................................. 26 3.4.2 Active leaming ................................................................... 27 3.4.3 Q-Ieaming .......................................................................... 27 4 Genetic algorithms ....................................................................... 27 4.1 Deterministic explanation of Holland's observation .............. 31 4.2 Stochastic explanation of GA ................................................. 32 4.3 The fundamental theorem of genetic algorithms (schema theorem) .................................................................................. 32 4.4 The Markov model for convergence analysis ......................... 34 5 Beliefnetworks ............................................................................ 38 6 Computational learning theory ................................................... .45 7 Synergism of the computational intelligence paradigms ............ .47 7.1 Neuro-fuzzy synergism ........................................................... 47 7.1.1 Weakly coupled neuro-fuzzy systems ................................ 48 7.1.2 Tightly coupled neuro-fuzzy systems ................................ 49 7.2 Fuzzy-GA synergism .............................................................. 51 7.3 Neuro-GA synergism .............................................................. 52 7.3.1 Adaptation ofa neural learning algorithm using GA ......... 52 7.4 GA-belief network synergism ................................................. 54 8 Conclusions and future directions ............................................... 55 References ................................................................................... 57 vi Chapter 2. Networked virtual park N. Magnenat-Thalmann, C. Joslin, and U. Berner 1 Introduction ................................................................................. 65 2 The attraction builder .................................................................. 66 2.1 Introduction ............................................................................. 66 2.2 Virtual avatars ......................................................................... 67 2.2.1 Avatar realism .................................................................... 68 2.2.2 Face animation ................................................................... 69 2.2.3 Body animation .................................................................. 70 2.2.4 Speech animation ............................................................... 70 2.3 The scene ................................................................................ 71 2.4 Adding interactivity ................................................................ 71 2.5 Possible attractions ................................................................. 75 3 Networked virtual environment system ....................................... 76 3.1 Introduction ............................................................................. 76 3.2 Overview of system architecture ........................................... 77 3.3 The client ................................................................................ 77 3.3.1 Introduction ........................................................................ 77 3.3.2 System communication ...................................................... 78 3.3.3 Scene management ............................................................. 79 3.3.4 Avatar representation and animation ................................. 80 3.3.5 Navigation .......................................................................... 81 3.3.6 Audio communication ........................................................ 82 3.3.7 Speech ................................................................................ 82 3.3.8 Devices ............................................................................... 82 3.3.9 Network manager ............................................................... 83 4 The server .................................................................................... 84 4.1 Server overview ...................................................................... 84 4.2 Server database ....................................................................... 85 4.3 Client-server communication protocol ................................... 86 5 Conclusion ................................................................................... 86 Acknowledgements ..................................................................... 87 References ................................................................................... 87 vii Chapter 3. Commercial coin recognisers using neural and fuzzy techniques JM. Moreno, J. Madrenas, and J Cabestany 1 Introduction ................................................................................. 89 1.1 Problem statement .................................................................. 90 2 Problem analysis and database compilation ................................ 92 2.1 Problem analysis ..................................................................... 93 2.2 Database compilation .............................................................. 95 2.3 Optical measurements preprocessing ..................................... 96 3 Approach using artificial neural networks models ...................... 98 3.1 Neural model selection ........................................................... 99 3.2 Validation stage for the rejection of outliers ........................ 104 3.3 Implementation ..................................................................... 10 7 4 Approach using fuzzy logic models .......................................... 113 4.1 Fuzzy model selection and experimental results .................. 114 4.2 Implementation ..................................................................... 117 5 Conclusions ............................................................................... 117 References ................................................................................. 119 Chapter 4. Fuzzy techniques in intelligent household appliances M Mraz, N Zimic, I. Lapanja, J Virant, and B. Skrt 1 Introduction ............................................................................... 121 2 Fuzzy approaches for intelligent devices .................................. 122 3 Introducing fuzziness to kitchen oven ....................................... 125 3.1 Thermostatically controlled oven ......................................... 126 3.2 Design of a fuzzy controller .................................................. 126 3.3 Results of fuzzy control ........................................................ 130 4 Refrigerator-freezer control using fuzzy logic .......................... 133 4.1 Refrigerating operating regime ............................................. 134 4.2 Fuzzy controller for the refrigerating device ........................ 135 4.3 Results of fuzzy control of refrigerating device ................... 136 4.4 Results of fuzzy control of freezing device .......................... 136 4.5 Measuring entire appliance within standard test environment .......................................................................... 137 5 Model and simulation of refrigerating-freezing appliance using one compressor .......................................................................... 138 5.1 Simulation results ................................................................. 139 viii 6 Hardware implementation ......................................................... 141 7 Decrease of energy consumption from national point-of-view.142 8 Conclusion ................................................................................. 143 References ................................................................................. 144 Chapter 5. Neural prediction in industry: increasing reliability through use of confidence measures and model combination P.J. Edwards, G. Papadopoulos, and A.F. Murray 1 Introduction ............................................................................... 147 2 Paper curl prediction .................................................................. 149 2.1 Data collection ...................................................................... 150 3 Neural network model development ......................................... 151 3.1 Preprocessing ........................................................................ 152 3.2 Training ................................................................................. 154 4 Model combination .................................................................... 155 4.1 Cranking ............................................................................... 156 5 Confidence measures ................................................................. 158 6 Results ....................................................................................... 162 6.1 In-specificationlout-of-specification classifier ..................... 162 6.2 Curl prediction ...................................................................... 163 6.3 Model combination ............................................................... 164 6.4 Confidence measures ............................................................ 167 7 Discussion .................................................................................. 169 Acknowledgments ..................................................................... 170 References ................................................................................. 170 Chapter 6. Handling the back calculation problem in aerial spray models using a genetic algorithm W.D. Potter, W. Bi, D. Twardus, H. Thistle, MJ. Twery, J. Ghent, and M Teske 1 Introduction ............................................................................... 178 2 Early spray models .................................................................... 179 2.1 FSCBG .................................................................................. 179 2.2 AGDISP ................................................................................ 180 2.3 AgDRIFT .............................................................................. 182 2.4 Computer simulation models in common ............................. 183 ix 3 Genetic algorithms ..................................................................... 185 3.1 Main GA components and how the GA works ..................... 185 3.2 Sample GA applications ....................................................... 188 4 Development of Fortran-SAGA ................................................ 188 4.1 AGDISP DOS version 7.0 .................................................... 189 4.2 The Fortran GA ..................................................................... 190 4.3 Preliminary Fortran-based SAGA ........................................ 190 4.4 Results and discussion of Fortran-based SAGA ................... 191 5 Development of VB-SAGA 1.0 ................................................ 196 5.1 VB-SAGA 1.0 ....................................................................... 196 5.2 Exhaustive search test ........................................................... 202 5.2.1 VB-SAGAl.0 test ............................................................ 204 5.3 VB-SAGAl.O experiments and results ................................. 205 6 Development of VB-SAGA 2.0 ................................................ 209 6.1 VB-SAGA2.0 menu items .................................................... 209 6.2 The self-adaptive GA ............................................................ 211 6.2.1 Fuzzy logic controL ......................................................... 212 6.2.2 Development of self-adaptive GA in VB-SAGA2.0 ....... 212 6.3 Results ofVB-SAGA2.0 ...................................................... 215 7 Summary and conclusions ......................................................... 217 References ................................................................................. 219 Chapter 7. Genetic algorithm optimization of a filament winding process modeled in WITNESS E. Wilson, c.L. Karr, and S. Messimer 1 Introduction ............................................................................... 223 2 Filament winding model ............................................................ 225 3 Genetic algorithm interface ....................................................... 229 4 Results ....................................................................................... 233 5 Conclusions ............................................................................... 236 6 Summary .................................................................................... 238 Acknowledgments ..................................................................... 238 References ................................................................................. 238 x Chapter 8. Genetic algorithm for optimizing the gust loads for predicting aircraft loads and dynamic response R. Mehrotra, C.L. Karr, and T.A. Zeiler 1 Introduction ............................................................................... 241 2 Problem statement and related mathematical underpinnings .... 244 2.1 Statistical discrete gust (SDG) model.. ................................. 245 2.2 Methodology of the search for a worst-case gust ................. 245 2.2.1 Waveform construction .................................................... 246 2.2.2 Modified von Karman gust pre-filter ............................... 248 2.2.3 Aircraft model simulation ................................................ 249 2.3 Linear aircraft model ............................................................ 250 3 An approach using genetic algorithm ........................................ 253 4 Results of approach on linear aircraft model.. ........................... 256 4.1 Wing bending moment ......................................................... 256 4.2 Engine lateral acceleration .................................................... 257 4.3 Wing torque .......................................................................... 260 4.4 Aircraft normal acceleration ................................................. 263 5 Summary and conclusion .......................................................... 265 Acknowledgments ..................................................................... 266 References ................................................................................. 266 Chapter 9. A stochastic dynamic programming technique for property market timing T. C. Chin and G. T Mills 1 Introduction ............................................................................... 269 2 Review of theoretical considerations ......................................... 271 3 Specification of market timing model ....................................... 274 4 Stochastic dynamic programming ............................................. 282 5 Data used in the simulation study .............................................. 286 6 Performance and evaluation tests .............................................. 286 6.1 Performance of market timing strategy ................................ 289 6.2 Comparison for various investment horizons ....................... 290 6.3 Comparison of efficiency ratios ............................................ 292 6.4 Comparison for various transaction expenses ...................... 292 6.5 Comparison for various cash downpayments ....................... 293 7 Conclusions ............................................................................... 295 References ................................................................................. 296

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.