ebook img

(p,q)-Beta Functions and Applications in Approximation PDF

0.25 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview (p,q)-Beta Functions and Applications in Approximation

6 1 0 2 r a M 7 (p,q)-Beta Functions and Applications 1 in Approximation ] A C Gradimir V. Milovanovi´c, Vijay Gupta and Neha Malik . h t a m Abstract. In the present paper, we consider (p,q)-analogue of theBeta operatorsand usingit,weproposetheintegralmodification ofthegen- [ eralizedBernsteinpolynomials.Weestimatesomedirectresultsonlocal 2 and global approximation. Also, we illustrate some graphs for the con- v vergence of (p,q)-Bernstein-Durrmeyeroperators for different values of 7 theparameters p and q using Mathematicapackage. 0 Mathematics Subject Classification (2010). Primary 33B15; Secondary 3 41A25. 6 0 Keywords.(p,q)-Betafunction,(p,q)-Gammafunction,Bernstein poly- . nomial, Durrmeyervariant,direct results. 2 0 6 1 : v 1. Introduction i X In the last decade, the generalizations of several operators to quantum vari- r a ant have been introduced and their approximation behavior have been dis- cussed [see for instance [1], [5], [8], [12], [10] etc]. The further generalization ofquantumcalculusisthepost-quantumcalculus,denotedby(p,q)-calculus. Recently, some researchers started working in this direction (cf. [2], [6], [13], [16]). Some basic definitions and theorems, which are mentioned below may be found in these papers and references therein. pn qn [n]p,q :=pn−1+pn−2q+pn−3q2+···+pqn−2+qn−1 = p−q · − n The (p,q)-factorial is given by [n] ! = [k] , n 1, [0] ! = 1. The p,q p,q ≥ p,q k=1 (p,q)-binomial coefficient satisfies Q n [n] ! p,q = , 0 k n. hkip,q [n−k]p,q![k]p,q! ≤ ≤ ThispaperwassupportedbytheSerbianMinistryofEducation,ScienceandTechnological Development(No.#OI174015). 2 G.V. Milovanovi´c,Vijay Gupta and Neha Malik The (p,q)-power basis is defined as (x a)n = (x a)(px qa)(p2x q2a) (pn 1x qn 1a). ⊖ p,q − − − ··· − − − The (p,q)-derivative of the function f is defined as f(px) f(qx) D f(x)= − , x=0. p,q (p q)x 6 − Asaspecialcasewhenp=1,the(p,q)-derivativereducestotheq-derivative. The (p,q)-derivative fulfils the following product rules D (f(x)g(x)) = f(px)D g(x)+g(qx)D f(x), p,q p,q p,q D (f(x)g(x)) = g(px)D f(x)+f(qx)D g(x). p,q p,q p,q Obviously D (x a)0 =0 and for n 1, we have p,q ⊖ p,q ≥ Dp,q(x⊖a)np,q = [n]p,q(px⊖a)pn,−q1, D (a x)n = [n] (a qx)n 1. p,q ⊖ p,q − p,q ⊖ p,−q Letf be anarbitraryfunctionanda R. The (p,q)-integraloff(x) on ∈ [0,a] (see [15]) is defined as a ∞ pk pk p f(x)d x=(q p)a f a if <1 p,q − qk+1 qk+1 q Z0 Xk=0 (cid:18) (cid:19) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12) (cid:12) and (cid:12) (cid:12) a ∞ qk qk q f(x)d x=(p q)a f a if <1. p,q − pk+1 pk+1 p Z0 Xk=0 (cid:18) (cid:19) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12) (cid:12) The formula of (p,q)-integration by part is given by (cid:12) (cid:12) b f(px)D g(x)d x = f(b)g(b) f(a)g(a) p,q p,q − Z a b g(qx)D f(x)d x (1.1) p,q p,q − Z a Very recently Gupta and Aral [7] proposed the (p,q) analogue of usual Durrmeyer operators by considering some other form of (p,q) Beta func- tions, which is not commutative. In the present article, we define different (p,q)-variantof Beta function of first kind and find an identity relationwith (p,q)-Gamma functions. It is observed that (p,q)-Beta functions may sat- isfy the commutative property, by multiplying the appropriate factor while choosing (p,q) Beta function. As far as the approximation is concerned, or- der is important in post-quantum calculus. We propose a generalization of Durrmeyer type operators and establish some direct results. (p,q)-Beta Functions and Applications 3 2. (p,q)-Gamma and (p,q)-Beta Functions Definition 2.1 ([14]). Let n is a nonnegative integer, we define the (p,q)- Gamma function as (p q)n Γ (n+1)= ⊖ p,q =[n] !, 0<q <p. p,q (p q)n p,q − Definition 2.2. Let m,n N, we define (p,q)-Beta integral as ∈ 1 Bp,q(m,n)= xm−1(1⊖qx)pn,−q1dp,qx. (2.1) Z 0 Theorem2.3. The (p,q)-Gamma and (p,q)-Beta functions fulfil thefollowing fundamental relation Γ (m)Γ (n) B (m,n)=p(n 1)(2m+n 2)/2 p,q p,q , (2.2) p,q − − Γ (m+n) p,q where m,n N. ∈ Proof. For any m,n N since ∈ 1 Bp,q(m,n)= xm−1(1⊖qx)pn,−q1dp,qx, Z 0 using (1.1) for f(x) = (x/p)m−1 and g(x) = (1 x)n /[n] with the − ⊖ p,q p,q equality Dp,q(1⊖x)n =−[n]p,q(1⊖qx)n−1 we have 1 [m 1] B (m,n) = − p,q xm 2(1 qx)n d x p,q pm 1[n] − ⊖ p,q p,q − p,q Z 0 [m 1] = − p,q B (m 1,n+1). (2.3) pm 1[n] p,q − − p,q Also we can write for positive integer n 1 B (m,n+1) = xm 1(1 qx)n d x p,q − ⊖ p,q p,q Z 0 1 = xm−1(1⊖qx)pn,−q1 pn−1−qnx dp,qx Z 0 (cid:0) (cid:1) 1 1 = pn−1 xm−1(1⊖qx)pn,−q1dp,qx−qn xm(1⊖qx)pn,−q1dp,qx Z Z 0 0 = pn 1B (m,n) qnB (m+1,n). − p,q p,q − 4 G.V. Milovanovi´c,Vijay Gupta and Neha Malik Using (2.3), we have [m] B (m,n+1)=pn 1B (m,n) qn p,q B (m,n+1), p,q − p,q − pm[n] p,q p,q which implies that pn qn Bp,q(m,n+1)=pn+m−1pn+m−qn+mBp,q(m,n). − Further, by definition of (p,q) integration 1 1 B (m,1) = xm 1d x= p,q − p,q [m] · Z p,q 0 We immediately have B (m,n) = pn+m−2 pn−1−qn−1 B (m,n−1) p,q pn+m−1−qn+m−1 p,q = pn+m−2 pn−1−qn−1 pn+m−3 pn−2−qn−2 B (m,n−2) pn+m−1−qn+m−1 pn+m−2−qn+m−2 p,q = pn+m−2 pn−1−qn−1 pn+m−3 pn−2−qn−2 ··· pn+m−1−qn+m−1 pn+m−2−qn+m−2 p−q ×pm B (m,1) pm+1−qm+1 p,q = pn+m−2 pn−1−qn−1 pn+m−3 pn−2−qn−2 ··· pn+m−1−qn+m−1 pn+m−2−qn+m−2 p−q 1 ×pm pm+1−qm+1[m] p,q (p⊖q)n−1 = pm+(m+1)+···+(m+n−2) p,q (p−q) (pm⊖qm)n p,q (p⊖q)n−1 = p(n−1)(2m+n−2)/2 p,q (p−q). (2.4) (pm⊖qm)n p,q Following [14], we have (a b)n+m =(a b)n (apn bqn)m thus (2.4) ⊖ p,q ⊖ p,q ⊖ p,q leads to Bp,q(m,n) = p(n−1)(22m+n−2)(p(mp⊖⊖qq)mnp,−)qn1 (p−q) p,q = p(n−1)(22m+n−2)((pp−⊖qq))nnp,−−q11 · ((pp⊖−qq))mpm,q−−11 · (p(p⊖−q)qm)m−−11(p(mp−⊖qq)mn−)n1 (p−q) p,q p,q = p(n−1)(22m+n−2)((pp−⊖qq))nnp,−−q11 · ((pp⊖−qq))mpm,q−−11 · ((pp−⊖qq))mm++nn−−11 p,q = p(n−1)(22m+n−2)Γp,q(m)Γp,q(n)· Γ (m+n) p,q This completes the proof of the theorem. (cid:3) (p,q)-Beta Functions and Applications 5 Remark 2.4. Thefollowingobservationshavebeenmadefor(p,q)Betafunc- tions: For m,n N, we have • ∈ B (m,n+1)=pn 1B (m,n) qnB (m+1,n). p,q − p,q p,q − The (p,q)-Beta integral defined by (2.1) is not commutative. In order • to make commutative, we may consider the following form 1 Bp,q(m,n)= pm(m−1)/2xm−1(1⊖qx)pn,−q1dp,qx. Z 0 e For this form, (p,q)-Gamma and (p,q)-Beta functions fulfill the follow- ing fundamental relation Γ (m)Γ (n) B (m,n)=p(2mn+m2+n2 3m 3n+2)/2 p,q p,q , (2.5) p,q − − Γ (m+n) p,q whereem,n N.Obviouslyforform(2.5),wegetB (m,n)=B (n,m). p,q p,q ∈ e e 3. (p,q) Bernstein-Type Operators and Moments For n N and k 0, we have the following identity, which can be easily ∈ ≥ verified using the principle of mathematical induction: n n pk(k 1)/2xk(1 x)n k =pn(n 1)/2. (3.1) k p,q − ⊖ p,−q − Xk=0h i Using the above identity, we consider the (p,q)-analogueof Bernstein opera- tors for x [0,1] and 0<q <p 1 as ∈ ≤ n pn k[k] B (f,x)= bp,q(1,x)f − p,q , (3.2) n,p,q n,k [n] k=0 (cid:18) p,q (cid:19) X where the (p,q)-Bernstein basis is defined as n bp,q(1,x)= p[k(k 1) n(n 1)]/2xk(1 x)n k. n,k k p,q − − − ⊖ p,−q h i Remark 3.1. Other form of the (p,q)-analogue of Bernstein polynomials has been recently considered by Mursaleen et al. [13]. Remark 3.2. Using the identity (3.1) and the following recurrence relation (for m 1, Up,q (x)=B (e ,x)=B (tm,x)): ≥ n,m n,p,q m n,p,q [n] Up,q (px)=pnx(1 px)D [Up,q (x)]+[n] pxUp,q (px), p,q n,m+1 − p,q n,m p,q n,m the (p,q)-Bernstein polynomial satisfy pn 1x(1 x) B (e ,x)=1, B (e ,x)=x, B (e ,x)=x2+ − − , n,p,q 0 n,p,q 1 n,p,q 2 [n] p,q where e =ti, i=0,1,2. i 6 G.V. Milovanovi´c,Vijay Gupta and Neha Malik Recently, Gupta and Wang (see [9]) discussed the q-variant of certain Bernstein-Durrmeyer type operators. We now extend these studies and pro- pose the following(p,q)-Bernstein-Durrmeyeroperatorsbasedon(p,q)-Beta function. For x [0,1] and 0 < q < p 1, the (p,q)-analogue of Bernstein- ∈ ≤ Durrmeyer operators is defined as n Dp,q(f,x) = [n+1] p (n k+1)(n+k)/2bp,q(1,x) n p,q − − n,k k=1 X 1 bp,q (t)f(t)d t+bp,q(1,x)f(0), (3.3) × n,k 1 p,q n,0 − Z 0 where bp,q(1,x) is defined by (3.2) and n,k n bpn,,qk(t)= k p,qtk(1⊖qt)pn,−qk. h i It maybe remarkedhere that for p=1, these operatorswill notreduce to the q-Durrmeyer operators; but for p = q = 1, these will reduce to the Durrmeyer operators. Lemma3.3. Let e =tm, m N 0 , then for x [0,1] and 0<q <p 1, m ∈ ∪{ } ∈ ≤ we have p[n] x Dp,q(e ,x)=1, Dp,q(e ,x)= p,q , n 0 n 1 [n+2] p,q (p+q)pn+1[n] x ([n] pn 1)p2q[n] x2 Dp,q(e ,x)= p,q + p,q− − p,q n 2 [n+2] [n+3] [n+2] [n+3] · p,q p,q p,q p,q Proof. Using (2.2) and (2.1) and Remark 3.2, we have n Dp,q(e ,x) = [n+1] p [(n+1 k)(n+k)/2]bp,q(1,x) n 0 p,q − − n,k k=1 X 1 n × k 1 tk−1(1⊖qt)np,+q1−kdp,qt+bpn,,q0(1,x) Z0 (cid:20) − (cid:21)p,q n n = [n+1] p [(n+1 k)(n+k)/2]bp,q(1,x) p,q − − n,k k 1 k=1 (cid:20) − (cid:21) X B (k,n k+2)+bp,q(1,x) × p,q − n,0 n [n] ![k 1] ! = [n+1]p,q p−[(n+1−k)(n+k)/2]bpn,,qk(1,x) [np+,q1 −k] p,q! p,q k=1 − X [k 1] ![n k+1] ! × p[(n+1−k)(n+k)/2] − p[,nq+1−] ! p,q +bpn,,q0(1,x) p,q = B (1,x)=1. n,p,q (p,q)-Beta Functions and Applications 7 Next, applying Remark 3.2, we have n Dnp,q(e1,x) = [n+1]p,q p−[(n+1−k)(n+k)/2]bpn,,qk(1,x) k=1 X 1 n tk(1 qt)n+1 kd t × k 1 ⊖ p,q − p,q Z (cid:20) − (cid:21)p,q 0 n = [n+1] p [(n+1 k)(n+k)/2]bp,q(1,x) p,q − − n,k k=1 X n B (k+1,n k+2) p,q × k 1 − (cid:20) − (cid:21)p,q n n = [n+1] p [(n+1 k)(n+k)/2] bp,q(1,x) p,q − − n,k k 1 k=1 (cid:20) − (cid:21)p,q X [k] ![n k+1] ! p(n+1−k)(n+k+2)/2 p,q − p,q × [n+2] ! p,q n [k] = pn k+1bp,q(1,x) p,q − n,k [n+2] p,q k=1 X p[n] n pn k[k] p[n] x = p,q bp,q(1,x) − p,q = p,q [n+2] n,k [n] [n+2] · p,q p,q p,q k=1 X Further, using the identity [k+1] =pk+q[k] and by Remark 3.2, p,q p,q we get n Dp,q(e ,x) = [n+1] p [(n+1 k)(n+k)/2] bp,q(1,x) n 2 p,q − − n,k k=1 X 1 n × k 1 tk+1(1⊖qt)np,+q1−kdp,qt Z0 (cid:20) − (cid:21)p,q n = [n+1] p [(n+1 k)(n+k)/2] bp,q(1,x) p,q − − n,k k=1 X n B (k+2,n k+2) p,q × k 1 − (cid:20) − (cid:21)p,q n n = [n+1] p [(n+1 k)(n+k)/2] bp,q(1,x) p,q − − n,k k 1 k=1 (cid:20) − (cid:21)p,q X [k+1] ![n k+1] ! p(n+1−k)(n+k+4)/2 p,q − p,q × [n+3] ! p,q n [k] [k+1] = p2(n k+1) bp,q(1,x) p,q p,q − n,k [n+2] [n+3] p,q p,q k=1 X 8 G.V. Milovanovi´c,Vijay Gupta and Neha Malik i.e., Dp,q(e ,x) = n p2(n−k+1) bp,q(1,x) [k]p,q(pk+q[k]p,q) n 2 n,k [n+2] [n+3] Xk=1 p,q p,q pn+2[n] n pn−k[k] = p,q bp,q(1,x) p,q [n+2] [n+3] n,k [n] p,q p,q Xk=1 p,q p2q[n]2 n pn−k[k] 2 + p,q bp,q(1,x) p,q [n+2] [n+3] n,k (cid:18) [n] (cid:19) p,q p,q Xk=1 p,q pn+2[n] x p2q[n]2 pn−1x(1−x) = p,q + p,q x2+ [n+2] [n+3] [n+2] [n+3] (cid:18) [n] (cid:19) p,q p,q p,q p,q p,q pn+2[n] x p2q[n]2 x2 pn+1q[n] x(1−x) = p,q + p,q + p,q [n+2] [n+3] [n+2] [n+3] [n+2] [n+3] p,q p,q p,q p,q p,q p,q (p+q)pn+1[n] x ([n] −pn−1)p2q[n] x2 = p,q + p,q p,q · [n+2] [n+3] [n+2] [n+3] p,q p,q p,q p,q (cid:3) Remark 3.4. Using above lemma, we can obtain the following central mo- ments: (p[n] [n+2] )x 1◦ Dnp,q((t−x),x)= p,[qn−+2] p,q p,q (p+q)pn+1[n] x 2◦ Dnp,q (t−x)2,x = [n+2] [n+3p],q p,q p,q (cid:0) (cid:1) [([n] pn 1)p2q[n] 2p[n] [n+3] +[n+2] [n+3] ]x2 p,q − p,q p,q p,q p,q p,q + − − . [n+2] [n+3] p,q p,q Lemma 3.5. Let n be a given natural number, then 6 1 Dp,q((t x)2,x) ϕ2(x)+ , n − ≤ [n+2] [n+2] p,q (cid:18) p,q(cid:19) where ϕ2(x)=x(1 x), x [0,1]. − ∈ Proof. In view of Lemma 3.3, we obtain (p+q)pn+1[n] x Dp,q((t x)2,x)= p,q n − [n+2] [n+3] p,q p,q [([n] pn 1)p2q[n] 2p[n] [n+3] +[n+2] [n+3] ]x2 p,q − p,q p,q p,q p,q p,q + − − . [n+2] [n+3] p,q p,q By direct computations, using the definition of the (p,q)-numbers, we get (p+q)pn+1[n]p,q =pn+1(p+q)(pn−1+pn−2q+pn−3q2+ +pqn−2+qn−1)>0 ··· for every q (q ,1). 0 ∈ Furthermore, the expression (p+q)pn+1[n] +([n] pn 1)p2q[n] 2p[n] [n+3] +[n+2] [n+3] p,q p,q − p,q p,q p,q p,q p,q − − (p,q)-Beta Functions and Applications 9 is equal to (p+q)pn+1[n] +p2q[n]2 pn+1q[n] p,q p,q − p,q 2p[n] (pn+2+qpn+1+q2pn+q3[n] ) p,q p,q − +(pn+1+qpn+q2[n] )(pn+2+qpn+1+q2pn+q3[n] ) 6. p,q p,q ≤ In conclusion, for x [0,1], we have ∈ 6 Dp,q((t x)2,x) δ2(x), (3.4) n − ≤ [n+2] n p,q which was to be proved. (cid:3) 4. Local and Global Estimates Inthissection,weestimatesomedirectresults,viz.,localandglobalapprox- imation in terms of modulus of continuity. Our first main result is a local theorem. Forthis,wedenoteW2 = g C[0,1]:g C[0,1] ,forδ >0,K functional ′′ ∈ ∈ − is defined as (cid:8) (cid:9) K2(f,δ)=inf f g +η g′′ :g W2 , k − k k k ∈ where norm- . denotes the u(cid:8)niform norm on C[0,1]. F(cid:9)ollowing the well kk known inequality due to DeVore and Lorentz [3], there exists an absolute constant C >0 such that K (f,δ) Cω (f,√δ), (4.1) 2 2 ≤ where the second order modulus of smoothness for f C[0,1] is defined as ∈ ω (f,√δ)= sup sup f(x+h) f(x). 2 | − | 0<h √δx,x+h [0,1] ≤ ∈ The usual modulus of continuity for f C[0,1] is defined as ∈ ω(f,δ)= sup sup f(x+h) f(x). | − | 0<h δx,x+h [0,1] ≤ ∈ Theorem 4.1. Let n > 3 be a natural number and let 0 < q < p 1, q = 0 ≤ q (n) (0,p) be defined as in Lemma 3.5. Then, there exists an absolute 0 ∈ constant C >0 such that 2x |Dnp,q(f,x)−f(x)|≤Cω2 f,[n+2]p−,1q/2δn(x) +ω f,[n+2] , (cid:16) (cid:17) (cid:18) p,q(cid:19) where f C[0,1], δ2(x) =ϕ2(x)+ 1 , ϕ2(x)=x(1 x), x [0,1] and ∈ n [n+2]p,q − ∈ q (q ,1). 0 ∈ Proof. For f C[0,1] we define ∈ p[n] x Dp,q(f,x) = Dp,q(f,x)+f(x) f p,q . n n − [n+2] (cid:18) p,q(cid:19) e 10 G.V. Milovanovi´c,Vijay Gupta and Neha Malik Then, by Lemma 3.3, we immediately observe that D˜p,q(1,x)=Dp,q(1,x)=1 n n and p[n] x D˜p,q(t,x)=Dp,q(t,x)+x p,q =x. n n − [n+2] p,q By applying Taylor’s formula t g(t)=g(x)+(t x)g (x)+ (t u)g (u)du, ′ ′′ − − Z x we get t Dp,q(g,x) = g(x)+Dp,q (t u)g (u)du,x n n  − ′′  Z x e e  t  = g(x)+Dnp,q (t−u)g′′(u)du,x Z x   p[n]p,qx [n+2]p,q p[n] x p,q u g′′(u)du. − [n+2] − Z (cid:18) p,q (cid:19) x Thus, Dp,q(g,x) g(x) | n − | p[n]p,qx e t [n+2]p,q p[n] x Dp,q t u g (u) du ,x + p,q u g (u)du ≤ n (cid:12)(cid:12)Zx | − |·| ′′ | (cid:12)(cid:12)  (cid:12)(cid:12) Zx (cid:12)(cid:12) [n+2]p,q − (cid:12)(cid:12)| ′′ | (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)  (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) p[n](cid:12) x (cid:12) 2 (cid:12) (cid:12) (cid:12) ≤ Dnp,q((t−x)2,x)kg′′k+ [n+p2,]q −x kg′′k. (4.2) (cid:18) p,q (cid:19) Also, we have p[n] x 2 Dp,q((t x)2,x)+ p,q x n − [n+2] − (cid:18) p,q (cid:19) 2 6 1 (p[n] [n+2] )x ϕ2(x)+ + p,q− p,q ≤ [n+2] [n+2] [n+2] p,q (cid:18) p,q(cid:19) (cid:18) p,q (cid:19) 10 1 ϕ2(x)+ . (4.3) ≤ [n+2] [n+2] p,q (cid:18) p,q(cid:19) Hence, by (4.2) and with the condition n>3 and x [0,1], we have ∈ 10 |Dnp,q(g,x)−g(x)|≤ [n+2] δn2(x) kg′′k. (4.4) p,q e

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.