ebook img

Power Scaling in High Speed Analog-to-Digital Converters using Photonic Time Stretch Technique PDF

0.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Power Scaling in High Speed Analog-to-Digital Converters using Photonic Time Stretch Technique

Power Scaling in High Speed Analog-to-Digital Converters using Photonic Time Stretch Technique ShalabhGupta1, ,GeorgeC.Valley2,RobertH.Walden2, 9 ∗ andBahramJalali1 0 0 1DepartmentofElectricalEngineering,UniversityofCalifornia,LosAngeles,CA90095 2 2TheAerospaceCorporation,ElSegundo,CA90245 n a ∗[email protected] J 9 1 Abstract: Factorsthatcontributetotherapidincreaseinpowerdissipation asafunctionofinputbandwidthinhighspeedelectronicAnalog-to-Digital ] Converters(ADCs) are discussed. We find that the figure of merit (FOM), t e defined as the energyrequired per conversionstep, increases linearly with d bandwidthforhigh-speedADCswithmoderatetohighresolution,orequiv- - s alently,thepowerdissipationincreasesquadratically.Itisshownthatbyuse n ofphotonictime-stretchtechnique,itispossibletohaveADCsinwhichthis i . FOM remains constant for up to 10 GHz input RF frequency. Using this s c technique,itisalsopossibletoovercomethebarriertoachievinghighres- si olution caused by clock jitter and speed limitations of electronics in such y ADCs. h Use ofopticsis activelybeingpursuedforreducingpowerdissipationand p achieving higher data-rates for board-level and chip-level serial commu- [ nication links. In the same manner,we expect that optics will also help in 1 reducing power dissipation in high-speed ADCs in addition to providing v broaderbandwidths. 7 6 © 2009 OpticalSocietyofAmerica 7 2 OCIScodes:(060.0060)Fiberopticsandopticalcommunications;(070.1170)Analogoptical . signalprocessing;(260.2030)Dispersion. 1 0 9 Referencesandlinks 0 : 1. P. J. Winzer and G. Raybon, “100G Ethernet A Review of Serial Transport Options,” 2007 Digest of the v IEEE/LEOSSummerTopicalMeetingspp.7–8(2007). i X 2. D. A. Muller, “A sound barrier for silicon?” Nat Mater 4(9), 645–647 (2005). URL http://dx.doi.org/10.1038/nmat1466. r 3. A.-J.Annema,“Analogcircuitperformanceandprocessscaling,”IEEETransactionsonCircuitsandSystemsII: a AnalogandDigitalSignalProcessing46(6),711–725(1999). 4. R.H.Walden,“Analog-to-digitalconvertersurveyandanalysis,”IEEEJournalonSelectedAreasinCommuni- cations17(4),539–550(1999). 5. B.Murmann,“ADCPerformanceSurvey1997-2008,”URLhttp://www.stanford.edu/ murmann/adcsurvey.html. ∼ 6. B.Murmann,“A/DConverterTrends:PowerDissipation,ScalingandDigitallyAssistedArchitectures,”inProc. IEEECustomIntegratedCircuitsConference(CICC),pp.105–112(2008). 7. A.S.Bhushan,F.Coppinger,andB.Jalali,“Time-stretchedanalogue-to-digitalconversion,”ElectronicsLetters 34(9),839–841(1998). 8. B. Jalali and F. Coppinger, “Data conversion using time manipulation,” US Patent (6288659) (2001). URL http://www.freepatentsonline.com/6288659.html. 9. Y. Han and B. Jalali, “Photonic Time-Stretched Analog-to-Digital Converter: Fundamen- tal Concepts and Practical Considerations,” J. Lightwave Technol. 21(12), 3085 (2003). URL http://jlt.osa.org/abstract.cfm?URI=JLT-21-12-3085. 10. R.H.Walden,“Analog-to-Digital ConversionintheEarly21stCentury,”inIEEEMTTWorkshop(WMK)on UltrafastAnalog-to-Digital(A/D)ConversionTechniquesanditsApplications,5(2007). 11. P.KeningtonandL.Astier,“PowerconsumptionofA/Dconvertersforsoftwareradioapplications,”IEEETrans- actionsonVehicularTechnology49(2),643–650(2000). 12. T.Cho,D.Cline,C.Conroy,andP.Gray,“Designconsiderationsforlow-power,high-speedCMOSanalog/digital converters,”inIEEESymposiumonLowPowerElectronicsDigest,pp.70–73(1994). 13. K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, and T.Kopley, “Architectures and Issues for Gigasam- ple/secondADCs,”SpringerNetherlandspp.17–32(2006). 14. M.Horowitz,T.Indermaur,andR.Gonzalez,“Low-powerdigitaldesign,”inIEEESymposiumonLowPower ElectronicsDigest,pp.8–11(1994). 15. “InternationalTechnologyRoadmapforSemiconductors,”(2005).URLhttp://www.itrs.net. 16. K.C.Dyer,D.Fu,S.H.Lewis,andP.J.Hurst,“Ananalogbackgroundcalibrationtechniquefortime-interleaved analog-to-digitalconverters,”IEEEJournalofSolid-StateCircuits33(12),1912–1919(1998). 17. K.Poulton,R.Neff,B.Setterberg,B.Wuppermann,T.Kopley,R.Jewett,J.Pernillo,C.Tan,andA.Montijo,“A 20GS/s8bADCwitha1MBmemoryin0.18/splmu/mCMOS,”inIEEEInternationalSolid-StateCircuits ConferenceDigest,pp.318–496vol.1(2003). 18. S.Gupta,M.Choi,M.Inerfield,andJ.Wang,“A1GS/s11bTime-InterleavedADCin0.13umCMOS,”Proc. IEEEISSCCDig.Tech.Paperspp.576–577(2006). 19. “Tektronixproductinformation,”URLhttp://www.tek.com/products/oscilloscopes/selectionchart.html. 20. “LeCroyProductInformation,”URLhttp://www.lecroy.com/tm/products/default.asp. 21. E.Bartolome,V.Mishra,G.Dutta,andD.Smith,“Clockinghigh-speeddataconverters,”TIAnalogApplications Journal(2005). 22. J.Chen,J.Sickler,E.Ippen,andF.Ka¨rtner,“Highrepetitionrate,lowjitter,lowintensitynoise,fundamentally mode-locked167fssolitonEr-fiberlaser,”OpticsLetters32(11),1566–1568(2007). 23. A.ZanchiandF.Tsay,“A16-bit65-MS/s3.3-Vpipeline ADCcoreinSiGeBiCMOSwith78-dBSNRand 180-fsjitter,”IEEEJournalofSolid-StateCircuits40(6),1225–1237(2005). 24. S. Gupta and B. Jalali, “Time-warp correction and calibration in photonic time- stretch analog-to-digital converter,” Opt. Lett. 33(22), 2674–2676 (2008). URL http://ol.osa.org/abstract.cfm?URI=ol-33-22-2674. 25. “OFS dispersion compensation fiber product datasheet,” URL http://www.specialityphotonics.com/pdf/products/speciality/dispersion/HFDK-C.pdf. 26. S. Gupta, G. C. Valley, and B. Jalali, “Distortion Cancellation in Time-Stretch Analog-to-Digital Converter,” J. Lightwave Technol. 25(12), 3716–3721 (2007). URL http://jlt.osa.org/abstract.cfm?URI=JLT-25-12-3716. 27. P.W.Juodawlkis,J.C.Twichell,G.E.Betts,J.J.Hargreaves,R.D.Younger,J.L.Wasserman,F.J.O’Donnell, K.G.Ray,andR.C.Williamson,“Opticallysampledanalog-to-digital converters,”IEEETransactionsonMi- crowaveTheoryandTechniques49(10),1840–1853(2001). 28. F.Ouellette, J.-F.Cliche, andS.Gagnon, “All-fiber devices forchromatic dispersion compensation basedon chirpeddistributedresonantcoupling,”JournalofLightwaveTechnology12(10),1728–1738(1994). 29. J.A.Conway,G.A.Sefler,J.T.Chou,andG.C.Valley,“Phaseripplecorrection:theoryandapplication,”Optics Letters33(10),1108–1110(2008). 30. J.StigwallandS.Galt,“SignalReconstructionbyPhaseRetrievalandOpticalBackpropagationinPhase-Diverse PhotonicTime-StretchSystems,”JournalofLightwaveTechnology25(10),3017–3027(2007). 31. H.Cho,P.Kapur,andK.Saraswat,“PowerComparisonBetweenHigh-SpeedElectricalandOpticalIntercon- nectsforInterchipCommunication,”JournalofLightwaveTechnology22(9),2021–2033(2004). 32. M.J.McFadden,M.Iqbal,T.Dillon,R.Nair,T.Gu,D.W.Prather,andM.W.Haney,“Multiscalefree-space optical interconnects for intrachip global communication: motivation, analysis, and experimental validation,” AppliedOptics45(25),6358–6366(2006). 1. Introduction Increasedbandwidthdemandsfrominternetbackboneshaveledresearcherstotarget100Gbit/s and higher data rates per wavelength division multiplexing (WDM) channel using spectrally efficient,multilevelmodulationformats[1].Demodulationofsuchsignalsrequiresanalog-to- digital converters (ADCs) with very high performance and resolution. Such ADCs are also crucialfordefenseapplicationssuchasradarsandforwide-bandwidthlaboratoryinstruments suchasoscilloscopesandvectorspectrumanalyzers. Fig. 1. Energy per conversion step versus performance for state-of-the-art high-speed analog-to-digitalconverterswithmoderatetohighresolution(from2002topresent).FOM roughly increases linearly, i.e., power dissipation increases quadratically with frequency (i.e.P(cid:181) f2,asshownintheinset). WhilecontinuedscalingofCMOStechnology[2]hasimproveddigitalcircuitstremendously intermsofperformance,powerefficiencyandcost,analogcircuits(andADCs)havenotreally keptpace.Eventhoughthebandwidthofananalogcircuitimproveswithtechnologyscaling, sincesmallerdevicesrunfaster,thankstoreducedcapacitances,powerdissipationforthesame functionalitydoesnotalwaysscalebecauseoflowerintrinsicgainsinshorterchannelCMOS transistors [3]. In fact, most improvements in power efficiency of analog circuits can be at- tributedtoarchitecturalimprovementsandscaledvoltages,ratherthanreducedcapacitancesin CMOSdevices. In ADCs, analog full-scale voltage cannot be reduced arbitrarily because of the thermal (kT/C) noise limitations. As a result, while technology scaling has not directly resulted in decreasedanalogpowerdissipation,powerreductionandincreasedspeedofdigitalcircuitshas allowed extensive use of digital correction and calibration techniques,which have led to im- provementinperformance.Themostcommonlyusedfigureofmerit(FOM)forADCefficiency istheenergyrequiredperconversionstep, P diss FOM= , (1) 2ENOB 2 ERBW × × where, P is the power dissipation of the ADC, ENOB is the effective number of bits diss and ERBW is the effective resolution bandwidth of the ADC [4]. ERBW is defined as the frequency at which the signal-to-noise-and-distortionratio (SNDR) of the ADC degrades by 3-dBascomparedtoitslowfrequencyvalue.Fig.1showstheenergyperconversionstepasa functionofERBWforADCsfrom2002tothepresent.WhileFig.1lumpstogetherADCsfor 5or6differentelectronictechnologies,itisevidentfromtheplotthatabove100-MHz,energy perconversionstepforthebestADCsincreasesrapidlywithbandwidth.Similartrendisfound fromthedataobtainedin[5]forCMOStechnologiesforhighspeed(>100MHzERBW)and moderate to high (>6 ENOB) resolution ADCs. In reference [6], Murmannfinds that power theefficiencyoftheADCshasimprovedbyafactorof2everytwoyears,thankstotechnology andpowersupplyscaling.However,thedatain[5]confirmsthatthistrendisnotobservedfor highspeedADCswithmoderatetohighresolution. In this paper we estimate that the power dissipation in such high speed ADCs increases approximatelyas f2foraconstantresolution,where f isthesamplingfrequencywithNyquist s s Fig.2.ConceptualdiagramofaphotonicTime-StretchAnalog-to-DigitalConverterwith astretchfactorof4.Thehigh-speedRFsignaltobedigitizedissegmentedintomultiple wavelengthchannelsandtime.Allsegmentsarethentimestretchedanddigitizedbymuch slowerbackenddigitizers.Digitizedsignalsarerearrangedandcombineddigitallytoobtain thedigitalrepresentationoftheoriginalRFsignal. ratesampling.Ontheotherhand,ifthephotonictime-stretchtechnologyisused[7,8,9],we show that one can obtain linear power scaling of future ADCs to much higher frequencies. The conceptual diagram of a Time-Stretch Analog-to-DigitalConverter (TS-ADC) is shown in Fig. 2. The time-stretch technique also allows breaking through the so-called walls in the ENOB-bandwidthplanecausedbycomparatorambiguityandtimingjitter[4,10]. Inthispaper,firstwediscussthefundamentallimitsonnoiseandpowerdissipationinADCs. Second, we discuss frequencyscaling in digital circuits and show why similar trendsare ob- servedin ADCs. Third,we show thatthe photonictime-stretchtechniquecanpush thelinear scalingofpowerdissipationversussamplingfrequencyintheADCswellintotheGHzband. Finally,wecomparethepowerdissipationinhighspeedADCswithandwithouttheuseofthe photonictime-stretchtechnique. 1.1. FundamentallimitstopowerdissipationinADCs An analog-to-digitalconverter consists of two main operationalstages. First, the sample and holdstage(S&H)samplestheanalogsignalonacapacitorthroughaswitchatperiodicinter- vals of time. Second, the quantization stage which converts the sampled analog signal using comparatorstodigital(binary)outputs.Dependingonthearchitecture,therecanbeaseriesof these two stages in a specific ADC design.In addition,clock generationcircuitryis required toprovideclockswithdifferentphasesanddutycyclestodifferentsetsofswitchessothatall operationsin the ADC are synchronized.Finally,thereare referencebuffersthatactas accu- ratevoltagesourceswithverylowoutputimpedances.Additionally,modernADCsusedigital circuitryextensivelyforcorrectionandcalibrationinpost-processing,whichcanalsoconsume asignificantfractionofthetotalpower. Inthesampleandholdstage,theanalogsignalandthethermalnoisegeneratedintheswitch aresampledontoacapacitorwithcapacitanceC.Thesamplednoisevoltagehasameansquared valueofkT/C,where,kistheBoltzmannconstantandT istheambienttemperature.Notethat the total magnitude of thermal noise is sampling frequencyindependent.This is because the thermalnoiseatallfrequenciesisfoldedbackintotheNyquistbandwidthinasampledsystem. IfthethermalnoiseisthedominantnoisesourceandV isthefullscalevoltage,weobtainthe FS signal-to-noiseratioanddissipatedpoweras: V2 SNR(cid:181) FS , P (cid:181) CV2 f (2) kT/C diss FS s P (cid:181) kT.f .SNR (3) diss s ⇒ Therefore,foragivensignalpower(orV ),thermal(kT/C)noiseplacesalowerlimitonthe FS capacitancethatcanbeusedinthesampleandholdstage.Onanaverage,biascurrentsrequired inthebufferamplifierstochargethesamplingcapacitorswiththesignalorthereferencevoltage are directly proportionalto the value ofC and the charging time, fundamentallylimiting the power dissipation of an ADC, as observed in (3). This limitation can be written in terms of the effective number of bits of the ADC by substituting the standard relation for ENOB as a functionofSNR[4,11]: Pdiss(cid:181) kT.fs.10(6.02×ENOB+1.76)/10. (4) Inpracticalcircuits,thepowerdissipationisatleast3to4ordersofmagnitudeshigherthan thisvalue[12]sincetheindividualcomponentssuchasvoltagebuffers,opamps,comparators, andclocksourceshavetosatisfyrequirementsoflownoise,highlinearity,highspeedandhigh precisionsettling.CurrentsinallthesecircuitsscaleproportionallywiththecapacitanceCfor afixedsamplingfrequency. Equation (4) suggests that ADC power dissipation should scale linearly with f . However, s fromthetrendseeninFig.1andin[13],andfromthediscussioninthefollowingsubsection, itbecomesclearthatinreality,theenergyperconversionstepscalesroughlyas f ,i.e.,power s dissipationisproportionalto f2 inhigh-speedADCs. s 1.2. PowerScalinginDigitalCircuits Powerdissipationindigitalcircuits,whichuntilrecentlyhasbeendominatedbythedynamic powerrequiredforswitchingtransistors,isproportionaltoCV2f,whereCistheaveragenode capacitance,V is the supply voltage and f is the clock frequency[14]. To run the circuits at fastspeeds,highswitchingcurrentsarerequiredtochargeordischargethenodecapacitances quickly,whichdemandsahighersupplyvoltage.TheminimumoperatingvoltageV atwhicha digitalcircuitcanoperatecorrectlyisroughlyproportionalto√f forawiderangeoffrequen- ciesorvoltages[14].Thisimpliesthatifthefrequencyofoperationisreducedbyafactora , therequiredpowerdecreasesbyfactora 2.Asaresult,theenergy-delayproductforperforming anoperationisroughlyconstantoverawiderangeofoperatingfrequenciesindigitalcircuits [14].Thissimpleobservationimpliesthatwhenmoredelayisallowedforasetofoperations, lessenergyisrequiredtoperformthem.Thisimplicationisthereasonthatthedigitalworldis movingtowardsarchitecturesexploitingparallelism[15],andthesametrendisfoundinhigh samplerateADCsandreal-timedigitaloscilloscopes[16,17,18,19,20].Inthispaper,wefind that the time-stretch technique, which uses the same approachof parallelism to digitize very highbandwidthsignals,canalsohelpinreducingpowerdissipationinhighspeedADCs. 1.3. PowerScalinginAnalog-to-DigitalConverters Speed considerations: In deriving the expression P (cid:181) kT.f .SNR, it was assumed that to diss s increase the sampling frequency,the bias currents need to be increased linearly to charge up the capacitors fast with no limitation being posed by the transistor response time. In reality, theunitygainfrequency f ofthetransistorsshouldalsobeincreasedlinearlywith f because T s theoperationalamplifier(opamp)outputsdrivingthecapacitorshaveshortertimetostabilize beforequantizationbegins. Fig.3.SchematicofatimeinterleavedADC. IncreasingthebiascurrentinaCMOStransistorcanbedoneintwoways.Inthefirstmethod, the device size is keptconstantand the bias current(I ) is increasedby increasingoverdrive D voltage(V ).Thisincreasesthe unitygainfrequency f (cid:181) √I ,asforadevicewitha fixed OD T D size, transconductance g (cid:181) √I and f (cid:181) g . However it also results in a lower output re- m D T m sistance r which is proportionalto 1/I and hence a lower intrinsic gain of g r (cid:181) 1/I . o D m o D p LowergainresultsinhighergainerrorsintheopampsreducingaccuracyoftheADC. In the second method, overdrive voltages are kept constant and only the transistor widths are increased linearly for a proportionalincrease in current. In this case, the intrinsic gain is maintained,but f doesnotincrease,resultinginanincompletesettlingoftheopampoutputs T forhighersamplingfrequencies. In bothcases, we find thatjustbyscaling currentsproportionally,onecannotfulfillthere- quirementsoffaster responsetime while maintainingthe same linearity(andresolution).For quantization process, the voltage comparatorsalso need to switch faster to avoid comparator ambiguity [4]. The same arguments, as discussed above, indicate that increasing drive cur- rentslinearlywithfrequencyincomparatorsisagainnotasolutionforachievingtherequired comparatorspeeds.ThesefactssuggestthatpowerdissipationinADCsshouldincreasemore rapidlywithfrequency,followingasomewhatsimilartrendasindigitalcircuits.Thisfrequency scalingtrend,asshowninFig.1,isfoundnotonlyinCMOStechnologies,butisalsocentral toothertechnologieslikeSiGe,GaAsandInPwhichhavetraditionallybeenusedforveryhigh speedADCs. To overcome these issues in frequency scaling, new ADC architectures employing paral- lelism must be used as in case of digital circuits [14]. In the time-interleaved architecture, which is a parallelADC architecturesuch as the oneshown in Fig. 3, multiplesub-sampling ADCsareusedinparallel,tosamplethesignalatdifferentinstantsoftimewithinafullsam- pling clock cycle [16, 17, 18]. The outputs of these “sub-ADCs” are combined in the digital domainandpostprocessingisperformedtosuppressdistortionscausedbytimingerrors,gain mismatchesandDCoffsets.Thefront-endofthetimeinterleavedarchitecturecanhaveasingle S&H block [16] feeding all sub-ADCs, or a separate S&H block correspondingto each sub- ADC [17], or a combinationof the these two approaches[18]. In the first and the third case, scalabilitytohighsamplingfrequenciesandtolargesub-ADCnumbersisstillachallenge,and samepowerconsiderations,asdiscussedabovefortheADCs,applytothefront-endcircuitry. Thesecondarchitecture(discussedin[17])canpotentiallybescaledtohavehighersampling rates,buttimingjitterandresidualtimingoffsets,whicharediscussedinthenextsection,limit theADCresolution.Also,thisarchitecturerequiresapredrivertodrivealargecapacitiveload ofS&Hblockswhichcanlimitthebandwidthandaddsignificantpowerdissipation. Fig. 4. Sampling a signal withand without time-stretch. When time-stretch technique is used,thenoiseduetoclockjitterbecomesinsignificant,andnoiseaddedbythelaserjitter dominates,whichistypicallymuchlessthantheelectronicclockjitter(Vn representsthe noisevoltage). 1.4. NoiseduetoApertureJitter In high speed ADCs, aperture jitter (or uncertainty) is a significant source of noise [4] (as showninFig.4),whichiscausedbyjitterinthesamplingclock.Aperturejitternoiseissignal frequencydependentwhichseverelydegradestheSNRofmoderatetohighfrequencysignals. ThejitterlimitedSNRforanrmstimingjittert isgivenby[4,21]: j SNR = 20log(2pt f ). (5) jitter j signal − Most of the aperturejitter noise is added by the jitter in the sampling clocks generated by the clock sources. In the time interleaved architectureused in [17], timing errorsin clocking differentsub-ADCsalsoaddthesameeffectasjitterandlimittheachievableSNR.Forexample, the 20GS/sADCreportedin[17] showsa resolutionof6.5effectivebitsatlowfrequencies, buttheresolutiondropsto4.6effectivebitsfor6-GHzRFsignalbecauseof aneffectiverms sampling jitter of 0.7-ps. In anotherexample [21], an rms jitter of 250-fsis shown to reduce theeffectiveresolutionofa14-bitADCtoabout11.2effectivebitsfora230-MHzRFsignal. As discussed in the next section, the time-stretch ADC technique uses optical processing to overcometheselimitations,inadditiontoachievingsignificantpowersavings. 2. TimeStretchAnalog-to-DigitalConverter Inatime-stretchADC(TS-ADC),theeffectivebandwidthandfrequencyoftheRFsignaltobe digitizediscompressedbystretchingthesignalintime[7,8,9],therebyreducingthebandwidth of the backend electronic digitizer required to capture the original signal. Fig. 5 shows the fundamentalprocess of time-stretch. To do so, the RF signal is modulated over a long pulse of a linearly chirped optical carrier obtained from a super-continuum source (which can be a femto-secondmode locked fiber laser). Propagationthrougha dispersive medium stretches the modulated pulse in time, resulting in a “time-stretched” replica of the originalRF signal Fig. 5. Schematicdiagram showing physics of photonic time-stretchpreprocessing tech- nique. TheRFsignal ismodulated over alinearlychirpedoptical pulseobtained bydis- persingasuper-continuum(SC)pulse.Signalobtainedatthephoto-detectoroutput,after propagationthroughtheseconddispersionfiber,isatime-stretchedreplicaoftheoriginal RFsignal. afterphotodetection.ThemagnificationorthestretchratioM isgivenby(D /D +1),where 2 1 D and D are the dispersion values of dispersion fibers DCF-1 and DCF-2, respectively.To 1 2 achievecontinuousoperation,theopticalspectrumissegmentedintomultiplechannelsusinga wavelengthdivisionmultiplexing(WDM)filter.Time-stretchedsignalsfromdifferentchannels aredigitizedbyseparateelectronicdigitizersandcombinedtogetherindigitaldomain.Fig.2 illustratesonerealizationoftheTS-ADCsystemthatcanbeusedtostretchthesignalbyupto afactoroffour,andrequiresfourchannelstocapturethewholesignalcontinually. As illustrated in Fig. 4, stretching the signal in time using optical preprocessing reduces theeffectivesignalfrequencyseenbytheS&HblockbythestretchfactorM.Asaresult,the noise added to the system due to clock jitter is scaled downby M2. For example,if a stretch factor of 10 is used in a TS-ADC, the clock jitter limited noise can be lowered by up to 20- dB comparedto a conventionalADC. We note thatthe timingjitter of the mode-lockedfiber laser, which is used for generatingchirped pulses in the TS-ADC, still adds noise, but it can bereducedtoverysmallvalueswithcarefuldesign.Forexample,alaserwith18-fsrmsjitter has been reported in [22]. On the other hand, the best jitter performanceachieved by clocks inelectronicdigitizersisoftheorderof200-fs[21].Inreference[23],thebestclockjitterof 180-fsisobservedforclockswithveryhighvoltageswings.However,suchvoltageswingsat high speeds add very substantially to power dissipation, and make clock distribution almost impossibleintime-interleavedADCs. Intime-interleavedADCs,theclockjitterisgenerallymuchhigherasextensiveclockgen- erationcircuitryisrequiredtogeneratemultipleclockswithveryprecisephasedelays.Addi- tionally,evenafteradaptivealignmentandcalibration,thereisaresidualtimingmisalignment between clocks going to different sub-ADCs. Stringent requirements on clock accuracy can thusresultinasignificantpowerpenaltyinthetimeinterleavedADCs. AsevidentfromFig.4,whenthetime-stretchtechniqueisused,theeffectivesamplingjitter inthesystemcanbereduced,andcanbewrittenas t = t 2 +(t 2 /M)2. (6) j,effective q j,laser j,clock This makes the time stretch architecture very well suited for high signal frequency appli- cations where aperture jitter is the dominantsource of noise. Another key advantage of time stretchingis thatnoneofthe electronicdigitizerssee the original,veryhighfrequencysignal since thesignalfrequencyscalesdownuponstretching.Asa result,thepowerscaleslinearly Fig.6.SchematicdiagramoftheTime-StretchADCforcontinuousoperation(MLL:Mode LockedLaser;SC:Super-Continuum;PC:PolarizationController;DCF:DispersionCom- pensatingFiber;MZM:Mach-ZehnderModulator;PD:Photodetector). withsamplingfrequencyfortheADC.Inthenextsub-section,weconsideranexampletoshow howtimestretchingcanbeveryusefulinthecontextofpowersavings. 2.1. PowercalculationsforaTime-StretchADC The blockdiagramof a TS-ADC system forcontinuousoperationis shownin Fig. 6. We as- sumethattherepetitionrateofopticalpulsesfromthemode-lockedlaser(MLL)is100-MHz. Therefore,the timesegmentsthatneedto becapturedbyelectronicdigitizersare 10-nslong. Usable optical bandwidth of 40-nm (i.e. 5-THz bandwidth in frequency at 1550-nm center wavelength) can easily be obtained from a femto-second MLL, for example, the FFL1560- MP laser from Precision Photonics, followed by a highly non-linear fiber [24]. For continu- ous modulation of RF signal, these 40-nm pulses have to be stretched to 10-ns before they aremodulatedusingMach-Zehndermodulator(MZM),whichrequires-250ps/nmdispersion in DCF-1, corresponding to dispersion of about 15-km SSMF (standard single-mode fiber). For the TS-ADC, dispersion compensation fibers (DCFs) are used because they have higher dispersion-to-loss ratios compared to SSMF. Using a DCF, dispersion value of -250ps/nm is achieved with a distributed loss of about 0.65-dB (as found in [25] and from measurements in ourlab),to whichconnectorlossesareaddedseparately.Ifthestretch factoris M, thedis- persionrequiredinDCF-2becomes(M 1) ( 250ps/nm),sinceM=(D /D +1),where 2 1 − × − D and D are the dispersion values of DCF-1 and DCF-2, respectively. Also, we estimate 1 2 the losses in the Mach-Zehndermodulatorto be 4-dBand losses in WDM filter, polarization controllerand connectorsto be an additional3-dB. Therefore,total loss in the optical link is aboutM 0.65+4+3=(M 0.65+7)dB.Also we estimate thatthe powerat the inputof × × each photodetector as 1 mW – which gives 58-dB shot noise limited SNR for 500-MHz RF bandwidth,0.5modulationdepthand0.8A/Wphotodetectorresponsivity.ThenoiseandSNR calculationsforanopticalsystemisshowninAppendixA.Sameorbetterthermalnoisefrom electronicsandphotodetectorcaneasilybeachieved,resultinginbetterthan58-dBSNRwith differentialoperation[26].BackendADCswith8-ENOB(i.e.50-dBSNDR)cannowbeused toobtainsame8-bitresolution,astheadditionalnoiseiscompensatedbydifferentialoperation [26].NoisecontributionduetolaserRIN(relativeintensitynoise)isunimportantasamodest RINof-150-dByieldsanSNRof63-dBinsuchconditions. The backenddigitizersare assumedto capturewaveformsata sample rate of1-GS/s, with 0.5-pJ/stepFOMand500-MHzNyquistbandwidthwith8-ENOB–resultingin125-mWpower dissipation. These values are projected using the blue line in Fig. 7 obtained from observing the linear dependence of ADC FOM on f for published ADCs, and using FOM of the best s Fig. 7. Projected FOM for a Time-Stretch ADC (red trace) and a time-interleaved ADC (blueline)fordifferentsignalfrequencies.GreentraceshowsFOMifCFBGsareusedfor dispersion,whichalsorepresentsatrendifopticalamplificationwereused. reportedGS/s ADC [18]. For each opticalWDM channel,differentialandarcsine operations areperformed[26,27],whichnotonlyimprovetheSNRby3-dBbutalsosuppressnon-linear distortion due to electro-optic modulation and chromatic dispersion. However, this requires that the number of backend digitizers and photo-detectorsare twice the stretch factor M (or the number of optical channels). The electrical-to-opticalpower conversion efficiency of the laserisassumedtobe20%andthepowerconsumedbyeachphotodetectorisestimatedtobe 50-mW.Thisincludesthepowerrequiredtobiasthephotodetectorandthepowerinthesubse- quentamplifyingstagetobringthesignaltofullscalevoltageoftheelectronicdigitizer.Asa proofofprinciple,atwochannel7-ENOBTS-ADCwith10-GHzRFbandwidthwasrecently demonstrated[24],inwhichtheresolutionwasprimarilylimitedbythebackenddigitizer.This is, to the bestknowledgeof the authors,a world record resolutionachievedin digitizationof 10-GHzbandwidthsignals. Finally,thecombinationofchanneloutputsindigitaldomainrequiressignalprocessingand memory. Even though CMOS scaling has made digital circuits highly power efficient, large amount of digital data is generated, which requires significant power consumption in digital post-processing. Digital power is estimated to be the same as the total power consumed in backend electronic ADCs (as a similar trend is observed in [13]). Using these numbers with 1-mW input optical power at each photo-detector,the total optical and electrical powers can becalculated.PowerscalingobtainedintheTS-ADCisplottedastheredcurveinFig.7.Itis observedthattheFOMroughlystaysconstantupto5-GHzaspowerconsumptionofelectronics dominatesatlowerfrequencies. Forhigherfrequencysignals,longerdispersivefibersarerequiredtohavelargerstretchra- tios,whichaddsignificantpowerpenaltyduetoopticallosses.OpticalamplificationusingEr- bium doped fiber amplifiers, or distributed Raman amplification can be used to curtail these losses and improve the overall power efficiency significantly while maintaining high SNR. However,their discussion has beenavoided herefor simplicity.Furthermore,with lowerloss dispersivemedia,suchaschirpedfiberBragggratings(CFBGs),linearpowerscalingtrendcan continueto muchlargerbandwidths,as shown bythe greencurvein Fig. 7. Inthese calcula- tions, the losses in CFBGs are assumed to be half of the DCFs, though in actual, the CFBG losses are even lower [28]. However, the CFBGs can have a significant group delay ripple, which mustbe reducedor correctedin highresolutionapplications.Since thereis practically

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.