ebook img

Power and area efficient reconfigurable delta sigma ADCs PDF

172 Pages·2013·4.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Power and area efficient reconfigurable delta sigma ADCs

Power and area efficient reconfigurable delta sigma ADCs Citation for published version (APA): Porrazzo, S. (2013). Power and area efficient reconfigurable delta sigma ADCs. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR761378 DOI: 10.6100/IR761378 Document status and date: Published: 01/01/2013 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 20. Feb. 2023 Porrazzo_PROEF (all).ps Front - 1 T1 - BlackCyanMagentaYellow POWER AND AREA EFFICIENT RECONFIGURABLE ∆Σ ADCS Serena Porrazzo Porrazzo_PROEF (all).ps Back - 1 T1 - BlackCyanMagentaYellow ii Porrazzo_PROEF (all).ps Front - 2 T1 - BlackCyanMagentaYellow POWER AND AREA EFFICIENT RECONFIGURABLE ∆Σ ADCS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties, in het openbaar te verdedigen op dinsdag 26 november 2013 om 16:00 uur door Serena Porrazzo geboren te Como, Italië iii Porrazzo_PROEF (all).ps Back - 2 T1 - BlackCyanMagentaYellow Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotiecommissie is als volgt: voorzitter: prof.dr.ir. J.H. Blom 1e promotor: prof.dr.ir. A.H.M. van Roermund copromotor: dr.ir. E. Cantatore leden: dr.ir. M. Mischi prof.dr.ir. G. Gielen (Katholieke Universiteit Leuven) prof.dr. K.A.A. Makinwa (TU Delft) prof.dr.ir. C. Van Hoof (Katholieke Universiteit Leuven) adviseur: dr. R.F. Yazicioglu (imec) iv Porrazzo_PROEF (all).ps Front - 3 T1 - BlackCyanMagentaYellow TABLE OF CONTENTS List of figures ............................................................................................. ix List of tables ............................................................................................. xiii List of abbreviations.................................................................................. xv List of symbols ........................................................................................ xvii 1 Introduction............................................................................................... 1 1.1 Background ........................................................................................................... 2 1.1.1 Reconfigurability ......................................................................................... 4 1.1.2 Power-efficiency and area-efficiency ........................................................ 9 1.1.3 State-of-the-art reconfigurable ADCs .................................................... 12 1.2 Problem statement ............................................................................................. 16 1.3 Aim of the thesis ................................................................................................. 17 1.4 Scope of the thesis .............................................................................................. 17 1.5 Approach ............................................................................................................. 19 1.6 Original contributions ........................................................................................ 20 1.7 Outline of the thesis ........................................................................................... 21 2 Power-efficient reconfigurable ∆Σ modulators for autonomous biomedical applications ..........................................................................23 2.1 ∆Σ modulation for reconfigurable and power-efficient high-resolution ADCs ................................................................................................................... 24 2.2 ∆Σ ADCs: basics and topologies ...................................................................... 26 2.3 State-of-the-art reconfigurable ∆Σ modulators............................................... 30 2.4 Reconfigurable ∆ΣMs for biomedical applications ........................................ 32 2.5 Conclusion........................................................................................................... 33 3 Power optimal design of SC ∆Σ modulators for given resolution and bandwidth ...............................................................................................35 3.1 Introduction ........................................................................................................ 36 v Porrazzo_PROEF (all).ps Back - 3 T1 - BlackCyanMagentaYellow 3.2 Power optimization method .............................................................................. 37 3.2.1 Global design methodology .................................................................... 38 3.2.2 Step 1 - Choosing OL, STF/NTF for each (N, B, OSR) .................... 42 3.2.3 Step 2 - Sizing of the sampling capacitors ............................................. 44 3.2.4 Step 3 - Power consumption estimation ................................................ 46 3.2.5 Static power ............................................................................................... 47 3.2.6 Dynamic power ........................................................................................ 58 3.2.7 Quantizer power ....................................................................................... 59 3.2.8 DWA Power ............................................................................................. 63 3.2.9 Total Power consumption ....................................................................... 65 3.2.10 Power optimization of a ∆ΣM for hearing aids application and impact of design parameters on power consumption ......................... 66 3.2.11 Results of the power optimization procedure .................................... 76 3.3 Design techniques for power-efficient SC feed-forward ∆ΣMs ................... 77 3.3.1 Active addition .......................................................................................... 78 3.3.2 Passive addition ........................................................................................ 79 3.3.3 The summing SAR quantizer .................................................................. 80 3.4 Design examples ................................................................................................. 82 3.4.1 A 95dB DR 10-kHz SC ∆ΣM for digital hearing-aids application ..... 83 3.4.2 A 1.8-V 88dB DR ∆ΣM for digital hearing aids using a novel summing SAR quantizer ......................................................................... 87 3.5 Conclusion........................................................................................................... 95 4 Power-efficient design of reconfigurable SC ∆ΣMs ................................97 4.1 Introduction ........................................................................................................ 98 4.2 Power efficient approach to reconfigurability ................................................. 99 4.2.1 Overview of the methodology .............................................................. 100 vi Porrazzo_PROEF (all).ps Front - 4 T1 - BlackCyanMagentaYellow 4.2.2 Case study: design of a reconfigurable ∆ΣM for a biomedical application set......................................................................................... 102 4.3 Circuit design techniques for power-efficient reconfigurable ∆ΣMs ......... 111 4.3.1 Modular C implementation ................................................................. 111 s,1 4.3.2 Programmable OTAs for power- and speed-scalability..................... 114 4.4 Design example: a 1-V 99-to-75 dB SNDR 256-to-16kHz reconfigurable ∆ΣM................................................................................................................... 116 4.5 Conclusion......................................................................................................... 128 5 Conclusions ........................................................................................... 131 References ................................................................................................ 135 Publications list ........................................................................................ 145 Summary .................................................................................................. 147 Curriculum Vitae...................................................................................... 151 vii Porrazzo_PROEF (all).ps Back - 4 T1 - BlackCyanMagentaYellow viii Porrazzo_PROEF (all).ps Front - 5 T1 - BlackCyanMagentaYellow List of figures Fig. 1. Conversion bandwidth versus SNDR performance of state-of-the-art ADCs. ............................................................................................................... 6 Fig. 2. Power-efficiency versus SNDR performance of state-of-the-art ADCs. . 10 Fig. 3. Power-efficiency versus SNDR performance of state-of-the-art tailored (ISSCC- VLSI 1997-2012) and reconfigurable ADCs............................... 13 Fig. 4. Area-efficiency versus SNDR performance of state-of-the-art tailored (ISSCC- VLSI 1997-2012) and reconfigurable ADCs............................... 15 Fig. 5. Power-efficiency versus SNDR performance of state-of-the-art ADCs. . 24 Fig. 6. Generic scheme of a ∆Σ ADC ...................................................................... 27 Fig. 7. ∆ΣM architecture (a) Basic scheme, (b) Linear model. ............................... 27 Fig. 8. State-of-the-art reconfigurable ADCs for multi-standard applications. Continuous-time ∆Σ architectures are depicted in red, discrete-time ∆ΣMs in black; single-loop topologies are represented as empty shapes, cascade as filled shapes. ................................................................................ 31 Fig. 9. Conventional FB (a) and FF (b) single loop ∆Σ modulators. The implementation of the SC integrators H(z) is shown the inset. ............... 37 Fig. 10. Flow diagram of the proposed method for power-optimal point-solution ∆Σ designs. The index i (i=1,…,N) indicates the position of each integrator in the ∆ΣM starting from the input. .......................................... 39 Fig. 11. Different feedback configurations of an SC integrator. A single-ended implementation is shown for simplicity. L and L are feedback signals p,j n,j driving the DAC (j=1, …, 2B-1). .................................................................. 45 Fig. 12. Flow diagram of the procedure to calculate the power contributions of the ∆ΣM. ........................................................................................................ 47 ix

Description:
Power and area efficient reconfigurable delta sigma ADCs .. 4.3 Circuit design techniques for power-efficient reconfigurable ∆ΣMs In biomedical applications, a high recurrent design cost of wireless sensor .. Design of an alternative summing SAR ADC quantizer based on passive addition.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.