ebook img

Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal PDF

19 Pages·2017·5.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal

RESEARCHARTICLE Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal environment for disease occurrence RenanMacedo1,LilianPatr´ıciaSales2,FernandaYoshida1,LidianneLemesSilva-Abud1, MurilloLobo,Junior3* 1 UniversidadeFederaldeGoia´s,EscoladeAgronomiaeEngenhariadeAlimentos,Goiaˆnia,GO,Brazil, 2 UniversidadeFederaldeGoia´s,DepartamentodeEcologiaeEvoluc¸ão,Goiaˆnia,GO,Brazil,3 Empresa BrasileiradePesquisaAgropecua´ria–EmbrapaArrozeFeijão,SantoAntoˆniodeGoia´s,GO,Brazil a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 a1111111111 Abstract Rootrotsareaconstraintforstaplefoodcropsandalong-lastingfoodsecurityproblem worldwide.Incommonbeans,yieldlossesoriginatingfromrootdamagearefrequently OPENACCESS attributedtodryrootrot,adiseasecausedbytheFusariumsolanispeciescomplex.The aimofthisstudywastomodelthecurrentpotentialdistributionofcommonbeandryrootrot Citation:MacedoR,SalesLP,YoshidaF,Silva- AbudLL,LoboM,Junior(2017)Potential onaglobalscaleandtoprojectchangesbasedonfutureexpectationsofclimatechange. worldwidedistributionofFusariumdryrootrotin Ourapproachusedaspatialproxyofthefielddiseaseoccurrence,insteadofsolelythe commonbeansbasedontheoptimalenvironment pathogendistribution.Wemodeledthepathogenenvironmentalrequirementsinlocations fordiseaseoccurrence.PLoSONE12(11): e0187770.https://doi.org/10.1371/journal. wherein-situinoculumdensityseemsidealfordiseasemanifestation.Adatasetof2,311 pone.0187770 soilsamplesfromcommercialfarmsassessedfrom2002to2015allowedustoevaluatethe Editor:SabrinaSarrocco,UniversitadegliStudidi environmentalconditionsassociatedwiththepathogen’soptimuminoculumdensityfordis- Pisa,ITALY easeoccurrence,usingalowerthresholdasaspatialproxy.Weencompassednotonlythe Received:June23,2017 optimalconditionsfordiseaseoccurrencebutalsotheoptimalpathogen’sdensityrequired forhostinfection.Anintermediateinoculumdensityofthepathogenwasthebestdisease Accepted:October25,2017 proxy,suggestingdensity-dependentmechanismsonhostinfection.Wefoundastrong Published:November6,2017 convergenceontheenvironmentalrequirementsofboththehostandthediseasedevelop- Copyright:©2017Macedoetal.Thisisanopen mentintropicalareas,mostlyinBrazil,CentralAmerica,andAfricancountries.Precipitation accessarticledistributedunderthetermsofthe andtemperaturevariableswereimportantforexplainingthediseaseoccurrence(from CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and 17.63%to43.84%).Climatechangewillprobablymovethediseasetowardcoolerregions, reproductioninanymedium,providedtheoriginal whichinBrazilaremorerepresentativeofsmall-scalefarming,althoughanoverallshrinkin authorandsourcearecredited. totalarea(from48%to49%in2050and26%to41%in2070)wasalsopredicted.Under- DataAvailabilityStatement:Allrelevantdataare standingpathogendistributionanddiseaserisksinanevolutionarycontextwilltherefore withinthepaperanditsSupportingInformation supportbreedingforresistanceprogramsandstrategiesfordryrootrotmanagementin files. commonbeans. Funding:R.M.wassupportedbyCoordenac¸ãode Aperfeic¸oamentodePessoaldeN´ıvelSuperior, http://www.capes.gov.br/.L.L.S-Awassupported byConselhoNacionaldeDesenvolvimento Cient´ıficoeTecnolo´gico,http://cnpq.br/.L.P.S.was supportedbyCoordenac¸ãodeAperfeic¸oamentode PessoaldeN´ıvelSuperior,http://www.capes.gov. PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 1/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment br/.F.Y.wassupportedbyFundac¸ãodeAmparoà Introduction PesquisadoEstadodeGoia´s,http://www.fapeg.go. Thespatiotemporaldistributionofplantdiseasesfollowthechangesundergonebyagriculture, gov.br/.M.LJ.wassupportedbyConselho NacionaldeDesenvolvimentoCient´ıficoe attributedtoclimaticvariationandtechnologicalshifts.Largemonoculturesarepredomi- Tecnolo´gico,http://cnpq.br/;CNPqgrant407844/ nantlysubjectedtodiseaseoutbreaksorfrequentdiseaseoccurrences,thususuallyrelyingon 2013-9.Thefundershadnoroleinstudydesign, high-inputtechnologiestosustainproductionandavoidyieldlosses.Inthesecircumstances, datacollectionandanalysis,decisiontopublish,or mapsofdiseaserisksarethereforesafeguardedtopreventlarge-scaleoutbreaksorrelevant preparationofthemanuscript. problemswithcropsandfoodsecuritythreats,supportingcropmanagementinregular,well- Competinginterests:Theauthorshavedeclared definedclimaticconditions[1,2].However,thedynamicnatureofplantdiseasesbringsnew thatnocompetinginterestsexist. uncertaintiestocropmanagementandtobreedingprogramsrequiredtoensureyieldsinthe future[3]. Theclimaterequirementsofsoilbornepathogens,suchastemperatureandprecipitation [4],definediseasefavorabilityinspecificregionswherethehostcropispresent,anddetermine thearrayofpracticesrequiredfordiseasemanagement.Theunbalanceinwell-definedre- quirementsfordiseaseoccurrence[3,4]bythepredictedchangesinclimatearoundtheworld willthereforepotentiallychangediseasedistributionanddiseasemanagementinseveralcrops [5,6].Therefore,overalldiseasemodellingshouldbeconcernedaboutthesecomplexinterac- tionsthataffectpathosystems,inordertoestimatepathogenspreadanddiseaserisksindiffer- entscenarios[7].Ifweaimtopreventyieldlossesandimprovefoodsecurity,diseasescouting iscrucialtoadjustresearchanddevelopmenteffortsthatwillenhancediseasemanagement, supportingdecisionsatthefarmlevelandpublicpolicies[2]. Potentialdistributionmodelsarecommonlyusedinconservationbiologyandother researchtopicstopredictspeciesdistributionthroughclimate(environmental)requirements [8].Theyarecorrelationalapproachesbasedonhowenvironmentalconstraintsmaylimitthe occurrenceofspecific“objects”—usuallyspeciesorpopulations—atbroadspatialscales[9].By modellingtheenvironmentalconditionsassociatedwithanobject’soccurrenceorabundance, spatialprojectionsoffavorabilitycanthereforebeassessed.Suchmodelshighlightpotentially suitableregionsfortheeventofinterest,inthecurrentscenarioorinclimatechangeforecasts [8].Althoughthisframeworkhastraditionallybeenusedinconservation-relatedresearch,it conceivablymaybeusefulinplantdiseaseepidemiologystudies,withmacro-ecologicaltools [7]. Itispossibletoestimatebothpathogenanddiseasegeographicaldistributionbecauseboth objectsmaycoexistinregionswheretheclimateismoreorlessfavorableforthem.Regarding cropprotection,potentialdistributionmapshavebeenusedtoanticipaterisksforvector- borneplantdiseases[10]andinsectpestsusingspeciesdistributionmodels[11].Thus,models ofpotentialdistributionmayshedlightonunansweredepidemiologicalquestionsconcerning thespatialdistributionofdiseases,andtheshiftsintheintensityofdiseaseepisodesexpected withclimatechanges[8]. Diseasescoutingandriskmappingareespeciallyimportantforstaplefoods,suchascom- monbeans(PhaseolusvulgarisL.),anessentialproteinsourcefordevelopingcountriesin LatinAmericaandAfrica[12].Soilbornepathogens,suchastheFusariumsolanispeciescom- plex(FSSC),regularlychallengecommonbeancrops[13,14].Broadlydistributedintheworld, theFSSCisageneralistpathogenthatiswelladaptedtoawidearrayofenvironmentalcondi- tionsandhosts[15].TheFSSCcausesrootrotandyieldlossesupto100%[16],leadingto chronicallyloweryieldsinmostregions[13]. Inthisstudy,weusedtheinoculumthresholdapproachrepresentedbyinoculumdensity,a highlyusedmeasureforepidemiologicalstudies[17],easilyestimatedinfield-soilsamples. AlthoughwidelydistributedintropicalregionsofSouthAmericaandAfrica[18],noconsen- sushasbeenreachedonthelowerinoculumthresholdassociatedwithdryrootrotoccurrence PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 2/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment incommonbeans.Moreover,thelinkbetweenFSSCspatialdistributionanddryrootrotrec- ordshasnotyetbeenspatialityinvestigated.Here,wehaveprovidedthefirstattempttomodel theworldwidegeographicaldistributionofcommonbeandryrootrot.Usinganinnovative approach,wespeculatedifthepropaguleoptimalthresholdoftheFSSCcouldbeusedasa proxyofdryrootrotoccurrenceincommonbeansinBrazil.Thatspatialproxyofthedisease occurrencewasthenexaminedtomodelitsworldwidedistribution.Wethereforetestedthe followinghypotheses:1)Anoptimalinoculumdensitythresholdisspatiallylinkedtodisease occurrence;2)rootrotriskareascoincidewiththemainregionsforcommonbeancropping; and3)climatechangewillaffectthecurrentdiseasedistribution. Materialsandmethods Inthisstudy,wemodeledthepotentialdistributionofcommonbeandryrootrot,viaspecies distributionmodel/ecologicalnichemodelprocedures,whichrequiredfieldrecordsofthedis- ease,referredtoastheobjectofinterest.Precise,geo-referencedrecordsfordryrootrotin commonbeansareusuallylacking.Governmentaldiseasereportsusuallyprovideinformation solelyonthestateormunicipalitywhereadiseasewasdetected,fromwhichGIS-basedinfor- mation,i.e.,coordinatereferences,cannotbeaccuratelyderived.Toovercomesuchalimita- tion,wederivedamethodforrefiningourdiseaseoccurrencedataset,byusingareliable spatialdatasetontheinoculumdensityofcommonbeandryrootrot.WeusedtheFSSCinoc- ulumdensitythatwasmostspatiallycorrelatedtodiseaseoccurrence(explainedbelow), assumingthatthecommonbeanismostlyahighlysusceptiblecropandthatallisolatesfrom themainBraziliancommonbeangrowingregionsarepathogenic[19]. Spatialproxycalculation Theinoculumdensityofsoilbornepathogensisdependentontheclimateandcroppingsystem [14].Eventhoughsomeauthorsreportfavorabletemperaturesforthedisease(e.g.above 18˚C)[14](e.g.between22–32˚C)[18],andgrowth,survivalandchlamydosporegermination, theadaptationtoclimaticvariationsinbothtemperateandtropicalregions,turnstheFSSC intoacosmopolitanpathogen[15].Growingdrivers,suchasthetemperatureandsoilmois- ture,coupledwiththenutrientsandorganicmattercontentinsoil,directlyaffecttheviability ofchlamydospores(theresistancestructuresofseveralFusariumspecies)andtheseasonality oftheFSSC[20].Thesamevariablesaffectdirectlyhostrootdevelopmentindifferentcrop- pingsystems[14]. FSSCchlamydosporesarebroadlydistributedinsoilthroughouttheyear,andgrowing hyphaeexhibitgreatsaprophyticability[21].Inthisstudy,adatabaseofFSSCinoculumden- sityrecordsmanagedbyEmbrapaArrozeFeijão(SantoAntoˆniodeGoia´s,Brazil)supported thepathogenspatialproxyestimate.Thatdatabasewascomposedof2,311soilsamplesfrom commercialfarmsthatbelongedto103municipalitiesin10Brazilianstatesassessedfrom 2002to2015.Commonbeanswerealwayspresentinthecroppinghistoryofsamplingsites.In general,samplesweretakenat0–10cmtopsoilfromcommercialfarmswherecommonbean- maize-soybeanisthemaincroppingsequence,chosenbyfarmersduetocommercialdemands. Eventually,croppingsequencesincludedsorghum,millet,vegetables,orforagecrops.Each soilsamplewassubmittedtoserialdilutionanddeepplatinginNash-Snydersemi-selective medium.TheFSSCcolonieswereidentifiedandtheircolonyformingunits(CFUs)persoil gramconsideredtoestimateFSSCinoculumdensity.Formerstrainpathogenicitytestswith theinoculumlayermethod[22]showedthatallisolatescausedaverageorhighdryrootrot severitytothecommonbean[19],supportingthemodelingstudieswithfeasiblefieldrecords ofinoculumdensity(S1Table). PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 3/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment Diseasedatawereretrievedfrompublicationswithfieldrecordsofdryrootrotoncommon beancrops.Scientificpapers,shortcommunications,andtechnicaldocumentswereselected accordingtotheinfestationhistoriesofthesamplingsites.Onlythosepublicationsforwhich experimentshadbeenconductedinsitesnaturallyinfestedwiththeFSSCorinsiteswithhis- toricalrecordsofdryrootrotwerekept.Tenpublicationssufficientlymettheselectionrequi- sitesandthegeographiccoordinatesoftheirexperimentalsites,andtherefore,wereregistered tosupport46diseaseoccurrences(S1Table). Tofindthebestspatialproxyforthedisease,withareliablespatialreference,weestimated theSpearman’scorrelationcoefficientbetweenthediseaseoccurrenceandFSSCinoculum densityrecords.Threeinoculumdensitieswereselectedaccordingtopublisheddataregarding thediseaseseverity/inoculumdensityrelationship.Theinoculumdensitiesadoptedwerethe following:1200CFU/gofsoilbasedonfieldexperimentsandcontrolledenvironmenttests withthecommonbeanandFSSC[23];3700CFU/gofsoilingreenhouseexperimentswiththe samepathosystemasabove[24];and4500CFU/gofsoilbasedongreenhouseteststoestimate thedryrootrotseverityaccordingtoincreasingconcentrationsofFSSCchlamydospores[17]. Theinoculumdensitythatmostcorrelatedwithdryrootrotrecordswasthenconsidereda spatialproxyforthedisease. Climateandclimatechangeinformation Climatedata,usedheretocalibratemodelsofpotentialdistribution,weredownloadedfromthe WorldClimwebsite(www.worldclim.org/current).Thisdatabasewasproducedviatheinterpola- tionofdatafromgroundweatherstationsreferringtotheyearsof1950–2000[25].OnWorld- Clim,climatedataareavailableasrasterfilescontaininggrid-basedinformationatdifferentspatial resolutions.Weupscaledthedownloadedrasterstotheresolutionof0.5degreesoflat/long. Althoughourinoculumdatasetallowedafinerresolutionanalysistobeconducted,weoptedfora relativelycoarserspatialresolution.Becausetheexactlocationofthesamplingsiteswasnot known,theresolutionofspatialdataondiseaseoccurrence(extractedfrompublications)wasusu- allyrough.Severalpapersindicatedonlythemunicipalityandnottheexactlocations(andthe associatedenvironmentalconditions)oftheexperimentalsites.However,mostmunicipalitiesto whichstudiesusuallyreferredweresmallerthan50km2.Therefore,weassumedthata0.5lat/long degreecouldadequatelyencompasstheaverageenviromentalconditionsassociatedwithallofthe possiblelocationswhereexperimentscouldhavebeenconducted.Inthisway,thelossofsome importantlocalenvironmentalinformationwascompensatedforbymoreaccuratepatternsona worldwidescale,duetomoregeneralizedrelationshipsbetweenclimateanddiseaseoccurrence. Inadditiontoestimatingthepotentialdistributionofdryrootrotinthepresent-day,we alsoevaluatedthepotentialimpactsofclimatechangeondiseasespread.Todoso,wepro- jectedthediseasedistributionmodelsintofutureclimatescenarios.Scenariosofclimate changeweretakenfromtwo“RepresentativeConcentrationPathways”—RCPs—fromthe IntergovernmentalPanelonClimateChange(IPCC).EachRCPisbasedonagreenhousegas concentrationtrajectorythattheIPCCadoptedforitsFifthAssessmentReport(AR5)[26]. TheRCP2.6estimatesanincreaseofglobalwarmingof1˚Cby2050(averagefor2041–2060), whereastheRCP8.5projectsanincreaseof2˚C.Thesamescenariosareusedfor2070(average for2061–2080)withtheRCP2.6(1˚C)andtheRCP8.5(3.7˚C)[26].EachRCPscenarioiscal- culatedfrommonthlytemperatureandprecipitationaverages,whichtheclimateforecasts knownasAtmosphericandOceanicGeneralCirculationModels(AOGCMs)generated[27]. Bioclimaticvariablesthereforearecalculatedfrommonthlytemperatureandprecipitationval- ues,representingannualclimatictrends,seasonality,andextremes.Thoseclimateparameters areusuallyconsideredenvironmentalconstraintsforbiologicalspeciesandsystems[28]. PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 4/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment AlthoughAOGCMshavebeenwidelyusedtoprojecttheimpactsofclimatechangeonspe- ciesdistribution,differentforecastsmayprovidedifferentoutcomes[27].Variationinthe AOGCMschosentoprojectdistributionmodelsforthefuturecanthusaffectmapsofpoten- tialdistribution,creatingawell-knownsourceofuncertainty[29].Wethereforeaccountedfor thatknownsourceofuncertaintybyselectingdifferentAOGCMsandprojectingthedisease distributionmodelsontoallofthem.Thefollowingclimateforecastswerechosen:theCom- munityClimateSystemModel(CCSM4)version4[30],theHadleyCentreGlobalEnviron- mentalModelversion2(HADGEM2)[31],andtheModelforInterdisciplinaryResearchon Climate(MIROC5)[32]. Theseclimateforecastsarebasedonrobustmodellingalgorithms,althougheachonehasa differentbiasintermsoftemperatureandprecipitationestimates[27].TheCCSM4,forexam- ple,hasbiasesinaverageprecipitationdistributioninthetropicalPacificOcean[30],andthe HADGEM2showssomebiastowardwarmertemperaturesinthecontinentalNorthernHemi- sphereandacolderbiasinSouthAmerica[31].Lastly,MIROC5alsoshowsacoolingbiasin theNorthAtlantic[32].Therefore,noAOGCMisefficientineverything[27].Suchbiases may,however,beamelioratedbyconsideringdifferentAOGCMsasasourceofvariationin modeloutcomestoimprovethepredictionsofdistributionmodels[33]. Climateforecastsprovidepredictionsforseveralenvironmentalvariablesbasedontemper- atureandprecipitation—thebioclimaticvariables.However,notallofthesepredictorsare usedinmodellingprocedures,toavoidcorrelationandcollinearity-relatedproblems.We thereforeselectedthepredictorstobeusedinmodellingprocedures,byusinglogisticregres- sions.Logisticregressionsaremeantheretoevaluatewhichbioclimaticvariableswouldbethe bestdiseasepredictorsbycalculatingslopeswithoutorwithlowcollinearityand,atthesame time,showingsatisfactorybiologicalexplanations.Allbioclimaticvariableswereconsidered aspredictors.Theresponsevariableinsuchlogisticregressionswasdiseaseoccurrence(pres- enceorabsence),definedbythebestspatialproxy,whichwasdescribedearlierinthetext. LogisticregressionwasperformedwiththeRfunctionglm,thebinomialfamily,andthelogit link.Thebinomialfamilyisadequateforpresence-absencedata,andthelogitlinkisthenatural logoftheoddsinwhichtheresponsevariableequalsoneofthecategories(zeroandonecate- gories).Non-significantpredictorvariableswereremoved.Further,collinearitybetweenpre- dictorvariableswasavoidedwithacutoffonPearson’scorrelationcoefficient(r<0.25), whichisconsideredstatisticallysignificant(p<0.05)[34].Thoseproceduresledtothefollow- ingbioclimaticvariables,tobeusedaspredictorsinsubsequentdistributionmodels:Isotherm- ality(meandiurnalrange/temperatureannualrange),maximumtemperatureofthewarmest month,precipitationseasonality(coefficientofvariation),andprecipitationofthewarmest quarter. Thebioclimaticvariableswerethereforeselectedtoallowappropriatestatisticalanalyses. However,biologicalandecologicalreasonsalsoexistforjustifyingtheirchoiceasthebestcli- matepredictors[35].Twochosenbioclimaticvariablesarebasedonthemaximumandsea- sonaltemperature,whichadmittedlyalterstheoccurrenceofdiaseases.Theprecipitation seasonalityisalsoaknowndriverofsoilbornepathogengrowth[4].Therationaleofmodelling diseasedistributionbasedonoptimaltemperaturerangesmaynotbeefficientforpredicting wherediseasedoesnotoccur[35].Climaticconstraints(maximumandminimum)may,how- ever,leadtoinsightsonthegrowth,development,andfitnessofspeciesoveraperiodoftime [35].Periodsofdroughtandraininregionsthatexhibithighclimaticseasonalitymaythere- foreinfluencetheFSSC.Theseclimateconstraints[36,37]areindeedknowntoaffectchla- mydosporeandconidiagermination,sporeviability,andagressivenessindifferentcropping systems[14]. PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 5/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment DistributionmodelsfortheFusariumsolanispeciescomplex Inthiswork,thestudymodelcomprisedasoilbornepathogen(FSSC)andahost(common bean),usedheretoassessdryrootrotdistribution.Asexplainedbefore,weusedaspatialproxy definedbytheinoculumthresholdthatbestrepresenteddiseaseoccurrence.Therefore,we modeledthepathogenenvironmentalrequirementsfoundatlocationswherein-situinoculum densityseemsidealfordiseasemanifestation.Theenvironmentalrequirementsofapathogen areusuallylinkedtodiseaseoccurrenceviaconditions(abioticfactors)andresources(biotic factors,whichmaybeconsumedandaresubjectedtocompetition)requiredforthepathogen’s survivalandbreed[38].However,modelsbasedsolelyonecologicalnichesofpathogensmay notleadtoaccuratemapsofdiseaseriskbecausethepresenceofapathogendoesnotnecessarily implicateindiseasemanifestation[39].Thus,byusingnotonlythepathogenpresencebutalso thedensitymostcorrelatedtodiseasemanifestation,wemodeledtheenvironmentalconditions moststronglyrelatedtothedryrootrotoccurrence.Theresultinghost×pathogen×environ- mentinteractionisthereforethepathogennicheprojectedfordiseaseoccurrenceandrepre- sentedinmapsofclimaticsuitabilityofdryrotrootincommonbeans. Commonbeancropsaccountforabout3.1millionhectarescroppedinallBrazilianregions, especiallyintheSouth,Southeast,andCenter-Westregions,whichthemselvesareresponsible for3,327.8thousandtonsofthecrop[40].InBrazil,diseasedfieldsarefrequentlyreported, especiallyduetoconduciveweatherandtheomnipresenceofsusceptiblecultivars[41].Inthis study,modelsofFSSCdistributionwerecalibratedwithdataretrievedfortheBrazilianterri- toryextent,althoughprojectionsweremadeworldwide.Wedidsobecausetheaccesstothe exclusivedatabaseoninoculumdensitiesallowedustocharacterizeregionsinthepathogen’s climaticniche,e.g.,theenvironmentalpreferencesandconstraints[42–44],inawaynot repeatablewithothercountries’datasets. BycalibratingourdistributionmodelsexclusivelywithBraziliandata,wethereforeassume thattherelationshipamongthediseaseoccurrence,inoculumdensity,andenvironmental requirementscanbeextrapolatedtootherregionswithsimilarclimaticconditions.This approach,althoughpossiblynewinplantdiseaseepidemiology,iswidelyusedinotherniche- relatedareas,suchasbiologicalinvasionriskassessments[45].Byusingsuchanapproach,our attempthereistoprovideafirstvisualmapofthedryrootrotpotentialdistributionworld- wide,butnotaguideforsupportinglocalfarmersandcropmanagers.Ourmodelsprobably donotcapturelocalclimatepeculiaritiesduetoterritorialdatarestrictions,eventhoughdis- easeprojectionsmaymatchdiseaserecordselsewhere.Therefore,wecautionthattheworld mapsprovidedhereshouldnotbeusedbeyondtheirintendedpurpose. Anotherknownsourceofuncertaintyindistributionmodels,beyondAOGCMclimate forecasts,isthemodellingmethodusedtoestablishtherelationshipbetweentheoccurrenceof theobjectofinterestandtheenvironmentitoccupies.Differentmodellingmethodsmaypro- videdramaticallydistinctprojections[8].Tominimizesuchdiscrepancies,weconsideredonly afewdifferentmethodsandweightedtheirprojectionsaccordingtotheirperformances.That model-weightingprocedure,alsocalled“modelensembling”,assumesthatbyencompassing differentpossibleprojectionsandtheirrespectiveperformances,uncertaintyinthemodelling methodisthereforeminimized[46].Suchensemblesshouldnot,however,encompassallclas- sesofmodellingmethods,astheymayhavedifferentrequirementsformodelbuildingand thusnon-comparableresults[47].Wethereforeaccountedformodeluncertaintybyensem- blingamongprojectionsfromdifferentmethodsbutalsorespectingtheoreticalrestrictions regardingoutcomecomparisons. Ourensemblesofdistributionmodelswereperformedwithintwomainclassesofmodels: 1)thestatisticalmethodsand2)themachine-learningmethods.Noensemblewasperformed PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 6/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment betweenbothclassesofmethods.Statisticalorregression-basedmethods(e.g.,ageneralized linearmodel[GLM],ageneralizedadditivemodels[GAM],andmultivariateadaptiveregres- sionsplines[MARS]allowforencompassingalargenumberofrelationshipsbetweenoccur- rencesandenvironmentalfactorsandusuallyhavegoodexplanatorypowerregardingthe distribution-relatedecologicalprocesses[47].Inthisclassofmethods,precisionandgenerality arebalanced,whichleadstomoderatelyflexiblealthoughaccuratepredictions[48].Machine- learningmethods,incontrast,employdata-miningalgorithms—suchasGARP(GeneticAlgo- rithmforRuleSetProduction),randomforest,andartificialneuralnetworks—inanattempt tomaximizetherelationshipbetweenenvironmentalpredictorsandbiologicalresponses[47]. Machine-learningmethodsusuallyleadtohighlyaccuratebutmoreclingerdistributionpre- dictions(rigidpredictions)[48].Inmachine-learningmethods,generalityispenalizedforthe sakeofaccuracy,andmodelcomplexityusuallypreventsaclearinterpretationofparameter relationships[47]. Theregression-basedmethodsusedinthisworkwereaGAMandaGLMbecausetheyare compatibleinbuildingrequirements[48].TheGAMwasimplementedwiththefunctionof gamusingthebinomialfamilyandselecting10,000pseudo-absencesrandomlysampledfrom alloccurrencepointswithinourdefinedextent.Meanwhile,theGLMwasadjustedwithalin- earfunctionusingabinomialfamily,beingperformedforstepwiseproceeding,andusing 10,000pseudo-absenceswithrandomsampling,toavoidcollinearityissues[48].Allanalyses wereperformedin“sp”[49],“raster”[50],and“Biomod2”[51]packageswithintheRenviron- ment(RDevelopmentCoreTeam). Themachine-learningmethodsusedinthisstudyweretherandomforestandclassification treeanalysis.Randomforestisageneraltechniqueofrandomdecisionforests.Here,weused 1,000pseudo-absencescollectedwitharandomselectionofpointsoutsideofthesuitablearea estimatedwitharectilinearsurfaceenvelopefromthelargepresencenumber(surfacerange envelopemodel“SRE”)[48].Finally,weperformedaclassificationtreeanalysis(CTA)with thesamerandomforestframeworkdescribedabove,toassuremodeloutcomecompatibility. Allmodelswerefittedwith100runs. Inadata-splittingprocess,75%ofouroccurrencedatawereusedfortrainingand25%for testingthemodelperformance[48].ModelweightingwasbasedontheTrueSkillStatistics (TSS),ameasureofmodelperformancethattheprevalenceofoccurrencesdoesnotaffect [52].Sensitivityistheprobabilitythatthemodelcorrectlyratesthepresenceofdata,andspeci- ficityistheprobabilitythatitcorrectlyratesanabsentdata.ValuesofTSS(TSS=sensitivity +specificity-1)rangefrom-1to+1,wherevaluescloseto+1indicatehighaccuracy,whereas valuesequaltoorsmallerthanzeroareusuallyconsiderednotbetterthanrandom.Lessbiased thanothercriteria,theTSSisthemeasureofchoicefordistributionpredictions[53].Weused acutoff(TSS<0.5)toselectexclusivelythemodelswiththebestaccuracy,i.e.,modelswith TSSsmallerthanthisfigurewereremovedandnotconsideredinposteriorweightingproce- dures.Therefore,aweight(theTSSvalue)wasattributedtoeachcell-basedpredictionofenvi- ronmentalsuitability,whichresultedinanaveragedensembleforeachmodellingmethod. Ensemblemodelswereprojectedontocurrentclimatemapstoprovideestimatesofpoten- tialdistributionfortheFSSC.Thesameensemblemodelswerethenprojectedontopredictions offutureclimateforecasts,whichwerepreviouslycollected.Therefore,suitableregionswere identifiedfordiseasedistributioninthepresent-daytimeandindifferentscenariosforclimate change.Projectionsweremadeonbothacountry(Brazil)andaworldwidescaletopredictthe diseaserisksofdryrootrotongrowingregionsofcommonbeanselsewhere[54].Allofthe modellingprocedureswereperformedwiththeR“Biomod2”packageinR(RDevelopment CoreTeam). PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 7/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment Uncertaintyanalysis Despiteconsideringdifferentprojections,i.e.,theensemblingprocedure,wewerealsointer- estedindeterminingwhichwerethemaindriversoftotaluncertaintyinthemodeloutcomes. Todisentanglethevariationpresentinourresults,weadjustedlinearmixedmodelswith residualmaximum-likelihoodestimation(REML).Priortothat,weperformedanestimability testoftheeffectsinthemixedmodelinR[55]tocheckifitcouldbeusedtocorrectlydescribe factorrankings.Wethereforebuiltthemixedmodelconsideringthe“year”(year2050and year2070)asarandomfactorandconsidering“AOGCMS,”“RCPs,”and“modellingmeth- ods”asfixedfactors.TheGauss-Markovfunctionoftheparameterswasconsideredtobeesti- mableifbuiltbyalinearcombinationofmathematicexpectations.Thebestempiricallinear unbiasedestimates(eBLUEs)forfixedfactorsandtheempiricalbestlinearunbiasedpredictors (eBLUPs)werealsoperformedforrandomfactors.Thus,weseparatedthepercentageofvaria- tionattributedtoeachfactor.Becauseourmodeloutcomesaremaps,uncertaintywascalcu- latedforeachgridcell.Therefore,uncertaintymapscouldbeobtainedfortotalvariationand forthevariationattributedtoeachfactor.Allmapspresentedinthispaperareoriginaland werecreatedinRandArcGIS10.1(ESRI,Redlands,CA,USA). Results AllthreeinoculumthresholdsoftheFSSCpersoilgramshowedcorrelationwithdisease occurrence:1200propagule/soilgram(ρ=0.79;p=0.001),3700propagule/soilgram(ρ= 0.85;p=0.001)and4500propagule/soilgram(ρ=0.81;p=0.001).Therefore,thebestcor- relationbetweenpropagulesdensityandrootrotoccurrenceinthecommonbeanwas3700,as alowerthreshold,consideringthecurrentdiseasespatialdistribution.The3700lowerthresh- oldwasthereforechosenasaproxyoftheoccurrenceofcommonbeandryrotrootindistri- butionmodels(78occurrences).Indeed,theareaofthediseasedistributionvariedaccording totheproxychosen:between3700propagules/soilgramand1200propagules/soilgramthe areareduced3%andbetween4500propagules/soilgramand3700propagules/soilgramthe areareduced21%.Weprojectedalsothedistributionofthediseaseusingthethreeproxiesto 2050and2070,bythestatisticalmethod.Weobservedthatto2050,betweenthetwoRCPs, therewasnoapatternofthediseasedistribution–anincreasingordecreasingofitsrangewith theincreaseofaveragetemperaturebetweenRCPs.However,to2070wefoundthefollowing pattern:theincreasingoftheinoculumthreshold(from1200to4500)isassociatedtoan enhancedshrinkofthediseasedistribution(S2Table,S1Fig). AlthoughthepredictionsofthecurrentdiseasedistributioninBrazilwerenotidentical betweenstatisticalandmachine-learningmodels,bothmethodspredictedhighdiseaseriskin thecentral,southeastern,andsouthernportionsofthecountry(Fig1).Statisticalmethodspre- dictedlargerdistributionalareasfordiseaseoccurrencecomparedwithmachine-learning methods.Similarpatternwasfoundinworldwidemapsofthecurrentdiseasedistribution. Areaspredictedasclimaticallyhighlysuitablefordiseaseoccurrencewerequiteconvergent betweenstatisticalandmachine-learningmethods(Fig2).Again,onaworldwidescale,statis- ticalmethodsproducedlessstringentdistributionpredictionscomparedwithmachine-learn- ingmethods. Weconsideredtwofuturescenariosaccordingtotwoextremeemissionratesofgreenhouse gas(the“optimistic”RCP2.6andthe“pessimistic”RCP8.5),fromtheIPCC-AR5,estimated fortheyearsof2050and2070.InBrazil,anoverallreductioninthesuitableareaforrotroot occurrenceinthecommonbeanisexpectedinthefuture(Fig3).Inyear2050,a49%reduc- tionofthepotentialdistributionisexpectedundertheoptimisticgreenhousegasemission rates,andupto48%underthepessimisticclimatechangescenario.Thehigh-climate- PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 8/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment Fig1.CurrentdistributionoftheFSSC,consideringaninoculumdensity(3700propagulespersoilgram)incommonbeancropsasa proxyofdiseaseoccurrenceinBrazil.Thelegendshowstheclimaticsuitability:1isthemostadequate,and0istheleastsuitable. https://doi.org/10.1371/journal.pone.0187770.g001 suitabilityareamovedtowardSouthernBrazil,keepingdiseaseoccurrenceoutsideoftheCen- ter-WestRegionofBrazil.Thatsamereductionisobservedinyear2070projections(Fig4).In 2070,fortheRCP2.6,reductionsaverage26%ofthetotalarea,andfortheRCP8.5,thereduc- tioninthediseasedistributionareareached41%.Moredetailsabouttheprojectionsarein Table1.ThemethodsofestimationshowedhighvaluesofTSS,being75.5tostatisticaland 92.3tomachine-learning.Themachine-learningshowedmoreprecisemodelsthanstatistical models.Mostmodelshadhighoverallaccuracy(TSS>0.5),andbioclimaticvariablespresented differentweightsinestimation,accordingtothemodellingmethod,withisothermality(upto 43.5%),maximumtemperatureofwarmestmonth(upto43.84%)andprecipitationseasonal- ity(upto42.92%)themostimportantvariables.Onlyisothermalityshowedcongruence betweenMachine-Learningandstatisticalmethods.(Table2). Theuncertaintyanalysisshoweddifferencesinclimatesuitabilityestimationbythemethod, AOGCMs,andclimaticscenario.However,thegreatestsourceofuncertaintywasthemodel- lingmethod(statisticalandmachinelearning).Inaddition,uncertaintyvariedgeographically inasplash-likepattern,anditconcentratedinregionspredictedasinadequatefordisease occurrence.Thatsplashedpatternwasevidentinboththeyearsof2070and2050.Moreover, therelativecontributionattributedtoeachfactor(i.e.,variationranking)didnotchangewith thevariationoffixedfactorsobservedviaeBLUEs(Table3).Theclimatesuitabilityofdisease waslowerinthescenarioRCP8.5comparedtoRCP2.6,whichisexpectedavoidtoRCP8.5to bepessimist,thatis,showsahigherelevationoftheaveragetemperature.TheloweBLUPval- uesalsoshowlowinterferencewithclimatesuitabilityasaresponsevariablein2050and2070. Foreachyear,in2050,theclimaticfavorabilityincreasedby4.17unitsaboveaverage,andin 2070,itdecreasedby4.17unitsaboveaverage(eBLUPs).Thisrepresentsalowinfluencethat onlydifferentyearswouldexplainabouttheclimatesuitabilityofthedisease. PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 9/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment Fig2.Currentprojectionfordryrootrotdistributionincommonbeansintheworldaccordingtostatisticalandmachining-learningmethods. ThemodelperformedinBrazilwasusedtopredictthedryrootrotdistributionindifferentplacesinwhichthehostcropisgrown,suchasCentralAmerica, NorthofUSA,Europe,Africa,andAsia.Thelegendshowstheclimaticsuitability:1isthemostadequate,and0istheleastsuitable. https://doi.org/10.1371/journal.pone.0187770.g002 Discussion Plantpathogensandtheirdiseaseswilllikelyfollowtheclimate-mediateddistributionalshifts oncrops[4],thuscreatingadynamicscenariointhemanagementofplantdiseaseepidemics inthefaceofclimatechange.Highlightingwhichregionsareexpectedtobemostatriskof PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 10/19

Description:
support breeding for resistance programs and strategies for dry root rot management in common beans. ent scenarios [7]. If we aim to mon beans (Phaseolus vulgaris L.), an essential protein source for developing countries in.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.