RESEARCHARTICLE Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal environment for disease occurrence RenanMacedo1,LilianPatr´ıciaSales2,FernandaYoshida1,LidianneLemesSilva-Abud1, MurilloLobo,Junior3* 1 UniversidadeFederaldeGoia´s,EscoladeAgronomiaeEngenhariadeAlimentos,Goiaˆnia,GO,Brazil, 2 UniversidadeFederaldeGoia´s,DepartamentodeEcologiaeEvoluc¸ão,Goiaˆnia,GO,Brazil,3 Empresa BrasileiradePesquisaAgropecua´ria–EmbrapaArrozeFeijão,SantoAntoˆniodeGoia´s,GO,Brazil a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 a1111111111 Abstract Rootrotsareaconstraintforstaplefoodcropsandalong-lastingfoodsecurityproblem worldwide.Incommonbeans,yieldlossesoriginatingfromrootdamagearefrequently OPENACCESS attributedtodryrootrot,adiseasecausedbytheFusariumsolanispeciescomplex.The aimofthisstudywastomodelthecurrentpotentialdistributionofcommonbeandryrootrot Citation:MacedoR,SalesLP,YoshidaF,Silva- AbudLL,LoboM,Junior(2017)Potential onaglobalscaleandtoprojectchangesbasedonfutureexpectationsofclimatechange. worldwidedistributionofFusariumdryrootrotin Ourapproachusedaspatialproxyofthefielddiseaseoccurrence,insteadofsolelythe commonbeansbasedontheoptimalenvironment pathogendistribution.Wemodeledthepathogenenvironmentalrequirementsinlocations fordiseaseoccurrence.PLoSONE12(11): e0187770.https://doi.org/10.1371/journal. wherein-situinoculumdensityseemsidealfordiseasemanifestation.Adatasetof2,311 pone.0187770 soilsamplesfromcommercialfarmsassessedfrom2002to2015allowedustoevaluatethe Editor:SabrinaSarrocco,UniversitadegliStudidi environmentalconditionsassociatedwiththepathogen’soptimuminoculumdensityfordis- Pisa,ITALY easeoccurrence,usingalowerthresholdasaspatialproxy.Weencompassednotonlythe Received:June23,2017 optimalconditionsfordiseaseoccurrencebutalsotheoptimalpathogen’sdensityrequired forhostinfection.Anintermediateinoculumdensityofthepathogenwasthebestdisease Accepted:October25,2017 proxy,suggestingdensity-dependentmechanismsonhostinfection.Wefoundastrong Published:November6,2017 convergenceontheenvironmentalrequirementsofboththehostandthediseasedevelop- Copyright:©2017Macedoetal.Thisisanopen mentintropicalareas,mostlyinBrazil,CentralAmerica,andAfricancountries.Precipitation accessarticledistributedunderthetermsofthe andtemperaturevariableswereimportantforexplainingthediseaseoccurrence(from CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and 17.63%to43.84%).Climatechangewillprobablymovethediseasetowardcoolerregions, reproductioninanymedium,providedtheoriginal whichinBrazilaremorerepresentativeofsmall-scalefarming,althoughanoverallshrinkin authorandsourcearecredited. totalarea(from48%to49%in2050and26%to41%in2070)wasalsopredicted.Under- DataAvailabilityStatement:Allrelevantdataare standingpathogendistributionanddiseaserisksinanevolutionarycontextwilltherefore withinthepaperanditsSupportingInformation supportbreedingforresistanceprogramsandstrategiesfordryrootrotmanagementin files. commonbeans. Funding:R.M.wassupportedbyCoordenac¸ãode Aperfeic¸oamentodePessoaldeN´ıvelSuperior, http://www.capes.gov.br/.L.L.S-Awassupported byConselhoNacionaldeDesenvolvimento Cient´ıficoeTecnolo´gico,http://cnpq.br/.L.P.S.was supportedbyCoordenac¸ãodeAperfeic¸oamentode PessoaldeN´ıvelSuperior,http://www.capes.gov. PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 1/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment br/.F.Y.wassupportedbyFundac¸ãodeAmparoà Introduction PesquisadoEstadodeGoia´s,http://www.fapeg.go. Thespatiotemporaldistributionofplantdiseasesfollowthechangesundergonebyagriculture, gov.br/.M.LJ.wassupportedbyConselho NacionaldeDesenvolvimentoCient´ıficoe attributedtoclimaticvariationandtechnologicalshifts.Largemonoculturesarepredomi- Tecnolo´gico,http://cnpq.br/;CNPqgrant407844/ nantlysubjectedtodiseaseoutbreaksorfrequentdiseaseoccurrences,thususuallyrelyingon 2013-9.Thefundershadnoroleinstudydesign, high-inputtechnologiestosustainproductionandavoidyieldlosses.Inthesecircumstances, datacollectionandanalysis,decisiontopublish,or mapsofdiseaserisksarethereforesafeguardedtopreventlarge-scaleoutbreaksorrelevant preparationofthemanuscript. problemswithcropsandfoodsecuritythreats,supportingcropmanagementinregular,well- Competinginterests:Theauthorshavedeclared definedclimaticconditions[1,2].However,thedynamicnatureofplantdiseasesbringsnew thatnocompetinginterestsexist. uncertaintiestocropmanagementandtobreedingprogramsrequiredtoensureyieldsinthe future[3]. Theclimaterequirementsofsoilbornepathogens,suchastemperatureandprecipitation [4],definediseasefavorabilityinspecificregionswherethehostcropispresent,anddetermine thearrayofpracticesrequiredfordiseasemanagement.Theunbalanceinwell-definedre- quirementsfordiseaseoccurrence[3,4]bythepredictedchangesinclimatearoundtheworld willthereforepotentiallychangediseasedistributionanddiseasemanagementinseveralcrops [5,6].Therefore,overalldiseasemodellingshouldbeconcernedaboutthesecomplexinterac- tionsthataffectpathosystems,inordertoestimatepathogenspreadanddiseaserisksindiffer- entscenarios[7].Ifweaimtopreventyieldlossesandimprovefoodsecurity,diseasescouting iscrucialtoadjustresearchanddevelopmenteffortsthatwillenhancediseasemanagement, supportingdecisionsatthefarmlevelandpublicpolicies[2]. Potentialdistributionmodelsarecommonlyusedinconservationbiologyandother researchtopicstopredictspeciesdistributionthroughclimate(environmental)requirements [8].Theyarecorrelationalapproachesbasedonhowenvironmentalconstraintsmaylimitthe occurrenceofspecific“objects”—usuallyspeciesorpopulations—atbroadspatialscales[9].By modellingtheenvironmentalconditionsassociatedwithanobject’soccurrenceorabundance, spatialprojectionsoffavorabilitycanthereforebeassessed.Suchmodelshighlightpotentially suitableregionsfortheeventofinterest,inthecurrentscenarioorinclimatechangeforecasts [8].Althoughthisframeworkhastraditionallybeenusedinconservation-relatedresearch,it conceivablymaybeusefulinplantdiseaseepidemiologystudies,withmacro-ecologicaltools [7]. Itispossibletoestimatebothpathogenanddiseasegeographicaldistributionbecauseboth objectsmaycoexistinregionswheretheclimateismoreorlessfavorableforthem.Regarding cropprotection,potentialdistributionmapshavebeenusedtoanticipaterisksforvector- borneplantdiseases[10]andinsectpestsusingspeciesdistributionmodels[11].Thus,models ofpotentialdistributionmayshedlightonunansweredepidemiologicalquestionsconcerning thespatialdistributionofdiseases,andtheshiftsintheintensityofdiseaseepisodesexpected withclimatechanges[8]. Diseasescoutingandriskmappingareespeciallyimportantforstaplefoods,suchascom- monbeans(PhaseolusvulgarisL.),anessentialproteinsourcefordevelopingcountriesin LatinAmericaandAfrica[12].Soilbornepathogens,suchastheFusariumsolanispeciescom- plex(FSSC),regularlychallengecommonbeancrops[13,14].Broadlydistributedintheworld, theFSSCisageneralistpathogenthatiswelladaptedtoawidearrayofenvironmentalcondi- tionsandhosts[15].TheFSSCcausesrootrotandyieldlossesupto100%[16],leadingto chronicallyloweryieldsinmostregions[13]. Inthisstudy,weusedtheinoculumthresholdapproachrepresentedbyinoculumdensity,a highlyusedmeasureforepidemiologicalstudies[17],easilyestimatedinfield-soilsamples. AlthoughwidelydistributedintropicalregionsofSouthAmericaandAfrica[18],noconsen- sushasbeenreachedonthelowerinoculumthresholdassociatedwithdryrootrotoccurrence PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 2/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment incommonbeans.Moreover,thelinkbetweenFSSCspatialdistributionanddryrootrotrec- ordshasnotyetbeenspatialityinvestigated.Here,wehaveprovidedthefirstattempttomodel theworldwidegeographicaldistributionofcommonbeandryrootrot.Usinganinnovative approach,wespeculatedifthepropaguleoptimalthresholdoftheFSSCcouldbeusedasa proxyofdryrootrotoccurrenceincommonbeansinBrazil.Thatspatialproxyofthedisease occurrencewasthenexaminedtomodelitsworldwidedistribution.Wethereforetestedthe followinghypotheses:1)Anoptimalinoculumdensitythresholdisspatiallylinkedtodisease occurrence;2)rootrotriskareascoincidewiththemainregionsforcommonbeancropping; and3)climatechangewillaffectthecurrentdiseasedistribution. Materialsandmethods Inthisstudy,wemodeledthepotentialdistributionofcommonbeandryrootrot,viaspecies distributionmodel/ecologicalnichemodelprocedures,whichrequiredfieldrecordsofthedis- ease,referredtoastheobjectofinterest.Precise,geo-referencedrecordsfordryrootrotin commonbeansareusuallylacking.Governmentaldiseasereportsusuallyprovideinformation solelyonthestateormunicipalitywhereadiseasewasdetected,fromwhichGIS-basedinfor- mation,i.e.,coordinatereferences,cannotbeaccuratelyderived.Toovercomesuchalimita- tion,wederivedamethodforrefiningourdiseaseoccurrencedataset,byusingareliable spatialdatasetontheinoculumdensityofcommonbeandryrootrot.WeusedtheFSSCinoc- ulumdensitythatwasmostspatiallycorrelatedtodiseaseoccurrence(explainedbelow), assumingthatthecommonbeanismostlyahighlysusceptiblecropandthatallisolatesfrom themainBraziliancommonbeangrowingregionsarepathogenic[19]. Spatialproxycalculation Theinoculumdensityofsoilbornepathogensisdependentontheclimateandcroppingsystem [14].Eventhoughsomeauthorsreportfavorabletemperaturesforthedisease(e.g.above 18˚C)[14](e.g.between22–32˚C)[18],andgrowth,survivalandchlamydosporegermination, theadaptationtoclimaticvariationsinbothtemperateandtropicalregions,turnstheFSSC intoacosmopolitanpathogen[15].Growingdrivers,suchasthetemperatureandsoilmois- ture,coupledwiththenutrientsandorganicmattercontentinsoil,directlyaffecttheviability ofchlamydospores(theresistancestructuresofseveralFusariumspecies)andtheseasonality oftheFSSC[20].Thesamevariablesaffectdirectlyhostrootdevelopmentindifferentcrop- pingsystems[14]. FSSCchlamydosporesarebroadlydistributedinsoilthroughouttheyear,andgrowing hyphaeexhibitgreatsaprophyticability[21].Inthisstudy,adatabaseofFSSCinoculumden- sityrecordsmanagedbyEmbrapaArrozeFeijão(SantoAntoˆniodeGoia´s,Brazil)supported thepathogenspatialproxyestimate.Thatdatabasewascomposedof2,311soilsamplesfrom commercialfarmsthatbelongedto103municipalitiesin10Brazilianstatesassessedfrom 2002to2015.Commonbeanswerealwayspresentinthecroppinghistoryofsamplingsites.In general,samplesweretakenat0–10cmtopsoilfromcommercialfarmswherecommonbean- maize-soybeanisthemaincroppingsequence,chosenbyfarmersduetocommercialdemands. Eventually,croppingsequencesincludedsorghum,millet,vegetables,orforagecrops.Each soilsamplewassubmittedtoserialdilutionanddeepplatinginNash-Snydersemi-selective medium.TheFSSCcolonieswereidentifiedandtheircolonyformingunits(CFUs)persoil gramconsideredtoestimateFSSCinoculumdensity.Formerstrainpathogenicitytestswith theinoculumlayermethod[22]showedthatallisolatescausedaverageorhighdryrootrot severitytothecommonbean[19],supportingthemodelingstudieswithfeasiblefieldrecords ofinoculumdensity(S1Table). PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 3/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment Diseasedatawereretrievedfrompublicationswithfieldrecordsofdryrootrotoncommon beancrops.Scientificpapers,shortcommunications,andtechnicaldocumentswereselected accordingtotheinfestationhistoriesofthesamplingsites.Onlythosepublicationsforwhich experimentshadbeenconductedinsitesnaturallyinfestedwiththeFSSCorinsiteswithhis- toricalrecordsofdryrootrotwerekept.Tenpublicationssufficientlymettheselectionrequi- sitesandthegeographiccoordinatesoftheirexperimentalsites,andtherefore,wereregistered tosupport46diseaseoccurrences(S1Table). Tofindthebestspatialproxyforthedisease,withareliablespatialreference,weestimated theSpearman’scorrelationcoefficientbetweenthediseaseoccurrenceandFSSCinoculum densityrecords.Threeinoculumdensitieswereselectedaccordingtopublisheddataregarding thediseaseseverity/inoculumdensityrelationship.Theinoculumdensitiesadoptedwerethe following:1200CFU/gofsoilbasedonfieldexperimentsandcontrolledenvironmenttests withthecommonbeanandFSSC[23];3700CFU/gofsoilingreenhouseexperimentswiththe samepathosystemasabove[24];and4500CFU/gofsoilbasedongreenhouseteststoestimate thedryrootrotseverityaccordingtoincreasingconcentrationsofFSSCchlamydospores[17]. Theinoculumdensitythatmostcorrelatedwithdryrootrotrecordswasthenconsidereda spatialproxyforthedisease. Climateandclimatechangeinformation Climatedata,usedheretocalibratemodelsofpotentialdistribution,weredownloadedfromthe WorldClimwebsite(www.worldclim.org/current).Thisdatabasewasproducedviatheinterpola- tionofdatafromgroundweatherstationsreferringtotheyearsof1950–2000[25].OnWorld- Clim,climatedataareavailableasrasterfilescontaininggrid-basedinformationatdifferentspatial resolutions.Weupscaledthedownloadedrasterstotheresolutionof0.5degreesoflat/long. Althoughourinoculumdatasetallowedafinerresolutionanalysistobeconducted,weoptedfora relativelycoarserspatialresolution.Becausetheexactlocationofthesamplingsiteswasnot known,theresolutionofspatialdataondiseaseoccurrence(extractedfrompublications)wasusu- allyrough.Severalpapersindicatedonlythemunicipalityandnottheexactlocations(andthe associatedenvironmentalconditions)oftheexperimentalsites.However,mostmunicipalitiesto whichstudiesusuallyreferredweresmallerthan50km2.Therefore,weassumedthata0.5lat/long degreecouldadequatelyencompasstheaverageenviromentalconditionsassociatedwithallofthe possiblelocationswhereexperimentscouldhavebeenconducted.Inthisway,thelossofsome importantlocalenvironmentalinformationwascompensatedforbymoreaccuratepatternsona worldwidescale,duetomoregeneralizedrelationshipsbetweenclimateanddiseaseoccurrence. Inadditiontoestimatingthepotentialdistributionofdryrootrotinthepresent-day,we alsoevaluatedthepotentialimpactsofclimatechangeondiseasespread.Todoso,wepro- jectedthediseasedistributionmodelsintofutureclimatescenarios.Scenariosofclimate changeweretakenfromtwo“RepresentativeConcentrationPathways”—RCPs—fromthe IntergovernmentalPanelonClimateChange(IPCC).EachRCPisbasedonagreenhousegas concentrationtrajectorythattheIPCCadoptedforitsFifthAssessmentReport(AR5)[26]. TheRCP2.6estimatesanincreaseofglobalwarmingof1˚Cby2050(averagefor2041–2060), whereastheRCP8.5projectsanincreaseof2˚C.Thesamescenariosareusedfor2070(average for2061–2080)withtheRCP2.6(1˚C)andtheRCP8.5(3.7˚C)[26].EachRCPscenarioiscal- culatedfrommonthlytemperatureandprecipitationaverages,whichtheclimateforecasts knownasAtmosphericandOceanicGeneralCirculationModels(AOGCMs)generated[27]. Bioclimaticvariablesthereforearecalculatedfrommonthlytemperatureandprecipitationval- ues,representingannualclimatictrends,seasonality,andextremes.Thoseclimateparameters areusuallyconsideredenvironmentalconstraintsforbiologicalspeciesandsystems[28]. PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 4/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment AlthoughAOGCMshavebeenwidelyusedtoprojecttheimpactsofclimatechangeonspe- ciesdistribution,differentforecastsmayprovidedifferentoutcomes[27].Variationinthe AOGCMschosentoprojectdistributionmodelsforthefuturecanthusaffectmapsofpoten- tialdistribution,creatingawell-knownsourceofuncertainty[29].Wethereforeaccountedfor thatknownsourceofuncertaintybyselectingdifferentAOGCMsandprojectingthedisease distributionmodelsontoallofthem.Thefollowingclimateforecastswerechosen:theCom- munityClimateSystemModel(CCSM4)version4[30],theHadleyCentreGlobalEnviron- mentalModelversion2(HADGEM2)[31],andtheModelforInterdisciplinaryResearchon Climate(MIROC5)[32]. Theseclimateforecastsarebasedonrobustmodellingalgorithms,althougheachonehasa differentbiasintermsoftemperatureandprecipitationestimates[27].TheCCSM4,forexam- ple,hasbiasesinaverageprecipitationdistributioninthetropicalPacificOcean[30],andthe HADGEM2showssomebiastowardwarmertemperaturesinthecontinentalNorthernHemi- sphereandacolderbiasinSouthAmerica[31].Lastly,MIROC5alsoshowsacoolingbiasin theNorthAtlantic[32].Therefore,noAOGCMisefficientineverything[27].Suchbiases may,however,beamelioratedbyconsideringdifferentAOGCMsasasourceofvariationin modeloutcomestoimprovethepredictionsofdistributionmodels[33]. Climateforecastsprovidepredictionsforseveralenvironmentalvariablesbasedontemper- atureandprecipitation—thebioclimaticvariables.However,notallofthesepredictorsare usedinmodellingprocedures,toavoidcorrelationandcollinearity-relatedproblems.We thereforeselectedthepredictorstobeusedinmodellingprocedures,byusinglogisticregres- sions.Logisticregressionsaremeantheretoevaluatewhichbioclimaticvariableswouldbethe bestdiseasepredictorsbycalculatingslopeswithoutorwithlowcollinearityand,atthesame time,showingsatisfactorybiologicalexplanations.Allbioclimaticvariableswereconsidered aspredictors.Theresponsevariableinsuchlogisticregressionswasdiseaseoccurrence(pres- enceorabsence),definedbythebestspatialproxy,whichwasdescribedearlierinthetext. LogisticregressionwasperformedwiththeRfunctionglm,thebinomialfamily,andthelogit link.Thebinomialfamilyisadequateforpresence-absencedata,andthelogitlinkisthenatural logoftheoddsinwhichtheresponsevariableequalsoneofthecategories(zeroandonecate- gories).Non-significantpredictorvariableswereremoved.Further,collinearitybetweenpre- dictorvariableswasavoidedwithacutoffonPearson’scorrelationcoefficient(r<0.25), whichisconsideredstatisticallysignificant(p<0.05)[34].Thoseproceduresledtothefollow- ingbioclimaticvariables,tobeusedaspredictorsinsubsequentdistributionmodels:Isotherm- ality(meandiurnalrange/temperatureannualrange),maximumtemperatureofthewarmest month,precipitationseasonality(coefficientofvariation),andprecipitationofthewarmest quarter. Thebioclimaticvariableswerethereforeselectedtoallowappropriatestatisticalanalyses. However,biologicalandecologicalreasonsalsoexistforjustifyingtheirchoiceasthebestcli- matepredictors[35].Twochosenbioclimaticvariablesarebasedonthemaximumandsea- sonaltemperature,whichadmittedlyalterstheoccurrenceofdiaseases.Theprecipitation seasonalityisalsoaknowndriverofsoilbornepathogengrowth[4].Therationaleofmodelling diseasedistributionbasedonoptimaltemperaturerangesmaynotbeefficientforpredicting wherediseasedoesnotoccur[35].Climaticconstraints(maximumandminimum)may,how- ever,leadtoinsightsonthegrowth,development,andfitnessofspeciesoveraperiodoftime [35].Periodsofdroughtandraininregionsthatexhibithighclimaticseasonalitymaythere- foreinfluencetheFSSC.Theseclimateconstraints[36,37]areindeedknowntoaffectchla- mydosporeandconidiagermination,sporeviability,andagressivenessindifferentcropping systems[14]. PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 5/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment DistributionmodelsfortheFusariumsolanispeciescomplex Inthiswork,thestudymodelcomprisedasoilbornepathogen(FSSC)andahost(common bean),usedheretoassessdryrootrotdistribution.Asexplainedbefore,weusedaspatialproxy definedbytheinoculumthresholdthatbestrepresenteddiseaseoccurrence.Therefore,we modeledthepathogenenvironmentalrequirementsfoundatlocationswherein-situinoculum densityseemsidealfordiseasemanifestation.Theenvironmentalrequirementsofapathogen areusuallylinkedtodiseaseoccurrenceviaconditions(abioticfactors)andresources(biotic factors,whichmaybeconsumedandaresubjectedtocompetition)requiredforthepathogen’s survivalandbreed[38].However,modelsbasedsolelyonecologicalnichesofpathogensmay notleadtoaccuratemapsofdiseaseriskbecausethepresenceofapathogendoesnotnecessarily implicateindiseasemanifestation[39].Thus,byusingnotonlythepathogenpresencebutalso thedensitymostcorrelatedtodiseasemanifestation,wemodeledtheenvironmentalconditions moststronglyrelatedtothedryrootrotoccurrence.Theresultinghost×pathogen×environ- mentinteractionisthereforethepathogennicheprojectedfordiseaseoccurrenceandrepre- sentedinmapsofclimaticsuitabilityofdryrotrootincommonbeans. Commonbeancropsaccountforabout3.1millionhectarescroppedinallBrazilianregions, especiallyintheSouth,Southeast,andCenter-Westregions,whichthemselvesareresponsible for3,327.8thousandtonsofthecrop[40].InBrazil,diseasedfieldsarefrequentlyreported, especiallyduetoconduciveweatherandtheomnipresenceofsusceptiblecultivars[41].Inthis study,modelsofFSSCdistributionwerecalibratedwithdataretrievedfortheBrazilianterri- toryextent,althoughprojectionsweremadeworldwide.Wedidsobecausetheaccesstothe exclusivedatabaseoninoculumdensitiesallowedustocharacterizeregionsinthepathogen’s climaticniche,e.g.,theenvironmentalpreferencesandconstraints[42–44],inawaynot repeatablewithothercountries’datasets. BycalibratingourdistributionmodelsexclusivelywithBraziliandata,wethereforeassume thattherelationshipamongthediseaseoccurrence,inoculumdensity,andenvironmental requirementscanbeextrapolatedtootherregionswithsimilarclimaticconditions.This approach,althoughpossiblynewinplantdiseaseepidemiology,iswidelyusedinotherniche- relatedareas,suchasbiologicalinvasionriskassessments[45].Byusingsuchanapproach,our attempthereistoprovideafirstvisualmapofthedryrootrotpotentialdistributionworld- wide,butnotaguideforsupportinglocalfarmersandcropmanagers.Ourmodelsprobably donotcapturelocalclimatepeculiaritiesduetoterritorialdatarestrictions,eventhoughdis- easeprojectionsmaymatchdiseaserecordselsewhere.Therefore,wecautionthattheworld mapsprovidedhereshouldnotbeusedbeyondtheirintendedpurpose. Anotherknownsourceofuncertaintyindistributionmodels,beyondAOGCMclimate forecasts,isthemodellingmethodusedtoestablishtherelationshipbetweentheoccurrenceof theobjectofinterestandtheenvironmentitoccupies.Differentmodellingmethodsmaypro- videdramaticallydistinctprojections[8].Tominimizesuchdiscrepancies,weconsideredonly afewdifferentmethodsandweightedtheirprojectionsaccordingtotheirperformances.That model-weightingprocedure,alsocalled“modelensembling”,assumesthatbyencompassing differentpossibleprojectionsandtheirrespectiveperformances,uncertaintyinthemodelling methodisthereforeminimized[46].Suchensemblesshouldnot,however,encompassallclas- sesofmodellingmethods,astheymayhavedifferentrequirementsformodelbuildingand thusnon-comparableresults[47].Wethereforeaccountedformodeluncertaintybyensem- blingamongprojectionsfromdifferentmethodsbutalsorespectingtheoreticalrestrictions regardingoutcomecomparisons. Ourensemblesofdistributionmodelswereperformedwithintwomainclassesofmodels: 1)thestatisticalmethodsand2)themachine-learningmethods.Noensemblewasperformed PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 6/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment betweenbothclassesofmethods.Statisticalorregression-basedmethods(e.g.,ageneralized linearmodel[GLM],ageneralizedadditivemodels[GAM],andmultivariateadaptiveregres- sionsplines[MARS]allowforencompassingalargenumberofrelationshipsbetweenoccur- rencesandenvironmentalfactorsandusuallyhavegoodexplanatorypowerregardingthe distribution-relatedecologicalprocesses[47].Inthisclassofmethods,precisionandgenerality arebalanced,whichleadstomoderatelyflexiblealthoughaccuratepredictions[48].Machine- learningmethods,incontrast,employdata-miningalgorithms—suchasGARP(GeneticAlgo- rithmforRuleSetProduction),randomforest,andartificialneuralnetworks—inanattempt tomaximizetherelationshipbetweenenvironmentalpredictorsandbiologicalresponses[47]. Machine-learningmethodsusuallyleadtohighlyaccuratebutmoreclingerdistributionpre- dictions(rigidpredictions)[48].Inmachine-learningmethods,generalityispenalizedforthe sakeofaccuracy,andmodelcomplexityusuallypreventsaclearinterpretationofparameter relationships[47]. Theregression-basedmethodsusedinthisworkwereaGAMandaGLMbecausetheyare compatibleinbuildingrequirements[48].TheGAMwasimplementedwiththefunctionof gamusingthebinomialfamilyandselecting10,000pseudo-absencesrandomlysampledfrom alloccurrencepointswithinourdefinedextent.Meanwhile,theGLMwasadjustedwithalin- earfunctionusingabinomialfamily,beingperformedforstepwiseproceeding,andusing 10,000pseudo-absenceswithrandomsampling,toavoidcollinearityissues[48].Allanalyses wereperformedin“sp”[49],“raster”[50],and“Biomod2”[51]packageswithintheRenviron- ment(RDevelopmentCoreTeam). Themachine-learningmethodsusedinthisstudyweretherandomforestandclassification treeanalysis.Randomforestisageneraltechniqueofrandomdecisionforests.Here,weused 1,000pseudo-absencescollectedwitharandomselectionofpointsoutsideofthesuitablearea estimatedwitharectilinearsurfaceenvelopefromthelargepresencenumber(surfacerange envelopemodel“SRE”)[48].Finally,weperformedaclassificationtreeanalysis(CTA)with thesamerandomforestframeworkdescribedabove,toassuremodeloutcomecompatibility. Allmodelswerefittedwith100runs. Inadata-splittingprocess,75%ofouroccurrencedatawereusedfortrainingand25%for testingthemodelperformance[48].ModelweightingwasbasedontheTrueSkillStatistics (TSS),ameasureofmodelperformancethattheprevalenceofoccurrencesdoesnotaffect [52].Sensitivityistheprobabilitythatthemodelcorrectlyratesthepresenceofdata,andspeci- ficityistheprobabilitythatitcorrectlyratesanabsentdata.ValuesofTSS(TSS=sensitivity +specificity-1)rangefrom-1to+1,wherevaluescloseto+1indicatehighaccuracy,whereas valuesequaltoorsmallerthanzeroareusuallyconsiderednotbetterthanrandom.Lessbiased thanothercriteria,theTSSisthemeasureofchoicefordistributionpredictions[53].Weused acutoff(TSS<0.5)toselectexclusivelythemodelswiththebestaccuracy,i.e.,modelswith TSSsmallerthanthisfigurewereremovedandnotconsideredinposteriorweightingproce- dures.Therefore,aweight(theTSSvalue)wasattributedtoeachcell-basedpredictionofenvi- ronmentalsuitability,whichresultedinanaveragedensembleforeachmodellingmethod. Ensemblemodelswereprojectedontocurrentclimatemapstoprovideestimatesofpoten- tialdistributionfortheFSSC.Thesameensemblemodelswerethenprojectedontopredictions offutureclimateforecasts,whichwerepreviouslycollected.Therefore,suitableregionswere identifiedfordiseasedistributioninthepresent-daytimeandindifferentscenariosforclimate change.Projectionsweremadeonbothacountry(Brazil)andaworldwidescaletopredictthe diseaserisksofdryrootrotongrowingregionsofcommonbeanselsewhere[54].Allofthe modellingprocedureswereperformedwiththeR“Biomod2”packageinR(RDevelopment CoreTeam). PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 7/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment Uncertaintyanalysis Despiteconsideringdifferentprojections,i.e.,theensemblingprocedure,wewerealsointer- estedindeterminingwhichwerethemaindriversoftotaluncertaintyinthemodeloutcomes. Todisentanglethevariationpresentinourresults,weadjustedlinearmixedmodelswith residualmaximum-likelihoodestimation(REML).Priortothat,weperformedanestimability testoftheeffectsinthemixedmodelinR[55]tocheckifitcouldbeusedtocorrectlydescribe factorrankings.Wethereforebuiltthemixedmodelconsideringthe“year”(year2050and year2070)asarandomfactorandconsidering“AOGCMS,”“RCPs,”and“modellingmeth- ods”asfixedfactors.TheGauss-Markovfunctionoftheparameterswasconsideredtobeesti- mableifbuiltbyalinearcombinationofmathematicexpectations.Thebestempiricallinear unbiasedestimates(eBLUEs)forfixedfactorsandtheempiricalbestlinearunbiasedpredictors (eBLUPs)werealsoperformedforrandomfactors.Thus,weseparatedthepercentageofvaria- tionattributedtoeachfactor.Becauseourmodeloutcomesaremaps,uncertaintywascalcu- latedforeachgridcell.Therefore,uncertaintymapscouldbeobtainedfortotalvariationand forthevariationattributedtoeachfactor.Allmapspresentedinthispaperareoriginaland werecreatedinRandArcGIS10.1(ESRI,Redlands,CA,USA). Results AllthreeinoculumthresholdsoftheFSSCpersoilgramshowedcorrelationwithdisease occurrence:1200propagule/soilgram(ρ=0.79;p=0.001),3700propagule/soilgram(ρ= 0.85;p=0.001)and4500propagule/soilgram(ρ=0.81;p=0.001).Therefore,thebestcor- relationbetweenpropagulesdensityandrootrotoccurrenceinthecommonbeanwas3700,as alowerthreshold,consideringthecurrentdiseasespatialdistribution.The3700lowerthresh- oldwasthereforechosenasaproxyoftheoccurrenceofcommonbeandryrotrootindistri- butionmodels(78occurrences).Indeed,theareaofthediseasedistributionvariedaccording totheproxychosen:between3700propagules/soilgramand1200propagules/soilgramthe areareduced3%andbetween4500propagules/soilgramand3700propagules/soilgramthe areareduced21%.Weprojectedalsothedistributionofthediseaseusingthethreeproxiesto 2050and2070,bythestatisticalmethod.Weobservedthatto2050,betweenthetwoRCPs, therewasnoapatternofthediseasedistribution–anincreasingordecreasingofitsrangewith theincreaseofaveragetemperaturebetweenRCPs.However,to2070wefoundthefollowing pattern:theincreasingoftheinoculumthreshold(from1200to4500)isassociatedtoan enhancedshrinkofthediseasedistribution(S2Table,S1Fig). AlthoughthepredictionsofthecurrentdiseasedistributioninBrazilwerenotidentical betweenstatisticalandmachine-learningmodels,bothmethodspredictedhighdiseaseriskin thecentral,southeastern,andsouthernportionsofthecountry(Fig1).Statisticalmethodspre- dictedlargerdistributionalareasfordiseaseoccurrencecomparedwithmachine-learning methods.Similarpatternwasfoundinworldwidemapsofthecurrentdiseasedistribution. Areaspredictedasclimaticallyhighlysuitablefordiseaseoccurrencewerequiteconvergent betweenstatisticalandmachine-learningmethods(Fig2).Again,onaworldwidescale,statis- ticalmethodsproducedlessstringentdistributionpredictionscomparedwithmachine-learn- ingmethods. Weconsideredtwofuturescenariosaccordingtotwoextremeemissionratesofgreenhouse gas(the“optimistic”RCP2.6andthe“pessimistic”RCP8.5),fromtheIPCC-AR5,estimated fortheyearsof2050and2070.InBrazil,anoverallreductioninthesuitableareaforrotroot occurrenceinthecommonbeanisexpectedinthefuture(Fig3).Inyear2050,a49%reduc- tionofthepotentialdistributionisexpectedundertheoptimisticgreenhousegasemission rates,andupto48%underthepessimisticclimatechangescenario.Thehigh-climate- PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 8/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment Fig1.CurrentdistributionoftheFSSC,consideringaninoculumdensity(3700propagulespersoilgram)incommonbeancropsasa proxyofdiseaseoccurrenceinBrazil.Thelegendshowstheclimaticsuitability:1isthemostadequate,and0istheleastsuitable. https://doi.org/10.1371/journal.pone.0187770.g001 suitabilityareamovedtowardSouthernBrazil,keepingdiseaseoccurrenceoutsideoftheCen- ter-WestRegionofBrazil.Thatsamereductionisobservedinyear2070projections(Fig4).In 2070,fortheRCP2.6,reductionsaverage26%ofthetotalarea,andfortheRCP8.5,thereduc- tioninthediseasedistributionareareached41%.Moredetailsabouttheprojectionsarein Table1.ThemethodsofestimationshowedhighvaluesofTSS,being75.5tostatisticaland 92.3tomachine-learning.Themachine-learningshowedmoreprecisemodelsthanstatistical models.Mostmodelshadhighoverallaccuracy(TSS>0.5),andbioclimaticvariablespresented differentweightsinestimation,accordingtothemodellingmethod,withisothermality(upto 43.5%),maximumtemperatureofwarmestmonth(upto43.84%)andprecipitationseasonal- ity(upto42.92%)themostimportantvariables.Onlyisothermalityshowedcongruence betweenMachine-Learningandstatisticalmethods.(Table2). Theuncertaintyanalysisshoweddifferencesinclimatesuitabilityestimationbythemethod, AOGCMs,andclimaticscenario.However,thegreatestsourceofuncertaintywasthemodel- lingmethod(statisticalandmachinelearning).Inaddition,uncertaintyvariedgeographically inasplash-likepattern,anditconcentratedinregionspredictedasinadequatefordisease occurrence.Thatsplashedpatternwasevidentinboththeyearsof2070and2050.Moreover, therelativecontributionattributedtoeachfactor(i.e.,variationranking)didnotchangewith thevariationoffixedfactorsobservedviaeBLUEs(Table3).Theclimatesuitabilityofdisease waslowerinthescenarioRCP8.5comparedtoRCP2.6,whichisexpectedavoidtoRCP8.5to bepessimist,thatis,showsahigherelevationoftheaveragetemperature.TheloweBLUPval- uesalsoshowlowinterferencewithclimatesuitabilityasaresponsevariablein2050and2070. Foreachyear,in2050,theclimaticfavorabilityincreasedby4.17unitsaboveaverage,andin 2070,itdecreasedby4.17unitsaboveaverage(eBLUPs).Thisrepresentsalowinfluencethat onlydifferentyearswouldexplainabouttheclimatesuitabilityofthedisease. PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 9/19 PotentialdistributionofFusariumdryrootrotincommonbeansbasedontheoptimalenvironment Fig2.Currentprojectionfordryrootrotdistributionincommonbeansintheworldaccordingtostatisticalandmachining-learningmethods. ThemodelperformedinBrazilwasusedtopredictthedryrootrotdistributionindifferentplacesinwhichthehostcropisgrown,suchasCentralAmerica, NorthofUSA,Europe,Africa,andAsia.Thelegendshowstheclimaticsuitability:1isthemostadequate,and0istheleastsuitable. https://doi.org/10.1371/journal.pone.0187770.g002 Discussion Plantpathogensandtheirdiseaseswilllikelyfollowtheclimate-mediateddistributionalshifts oncrops[4],thuscreatingadynamicscenariointhemanagementofplantdiseaseepidemics inthefaceofclimatechange.Highlightingwhichregionsareexpectedtobemostatriskof PLOSONE|https://doi.org/10.1371/journal.pone.0187770 November6,2017 10/19
Description: