ebook img

Potential Theory and Geometry on Lie Groups PDF

625 Pages·2020·4.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Potential Theory and Geometry on Lie Groups

PotentialTheoryandGeometryonLieGroups This book provides a complete and reasonably self-contained account of a new classification of connected Lie groups into two classes. The first part describes the use of tools from potential theory to establish the classification and to show that the analytic and algebraic approaches to the classification are equivalent. Part II covers geometric theory of the same classification and a proof that it is equivalent to the algebraic approach. Part III is a new approach to the geometric classification that requires more advanced geometric technology, namely homotopy, homology and the theory of currents. Using these methods, a more direct, but also more sophisticated, approachtotheequivalenceofthegeometricandalgebraicclassificationismade. Backgroundmaterialisintroducedgraduallytofamiliarisereaderswithideasfrom areas such as Lie groups, algebraic topology and probability, in particular, random walksongroups.Numerousopenproblemsinspirestudentstoexplorefurther. N. Th. Varopoulos wasformanyyearsaprofessoratUniversite´deParisVI.He isanhonorarymemberoftheInstitutUniversitairedeFrance. NEW MATHEMATICAL MONOGRAPHS EditorialBoard Be´laBolloba´s,WilliamFulton,FrancesKirwan, PeterSarnak,BarrySimon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversity Press.Foracompleteserieslistingvisitwww.cambridge.org/mathematics 1. M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductiveGroups 2. J.B.GarnettandD.E.MarshallHarmonicMeasure 3. P.CohnFreeIdealRingsandLocalizationinGeneralRings 4. E.BombieriandW.GublerHeightsinDiophantineGeometry 5. Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6. S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutiveStructures 7. A.ShlapentokhHilbert’sTenthProblem 8. G.MichlerTheoryofFiniteSimpleGroupsI 9. A.BakerandG.Wu¨stholzLogarithmicFormsandDiophantineGeometry 10. P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11. B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12. J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13. M.GrandisDirectedAlgebraicTopology 14. G.MichlerTheoryofFiniteSimpleGroupsII 15. R.SchertzComplexMultiplication 16. S.BlochLecturesonAlgebraicCycles(2ndEdition) 17. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups 18. T.DownarowiczEntropyinDynamicalSystems 19. C.SimpsonHomotopyTheoryofHigherCategories 20. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesI 21. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesII 22. J.Goubault-LarrecqNon-HausdorffTopologyandDomainTheory 23. J.S´niatyckiDifferentialGeometryofSingularSpacesandReductionofSymmetry 24. E.RiehlCategoricalHomotopyTheory 25. B.A.MunsonandI.Volic´CubicalHomotopyTheory 26. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups(2ndEdition) 27. J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson Sobolev Spaces on Metric MeasureSpaces 28. Y.-G.OhSymplecticTopologyandFloerHomologyI 29. Y.-G.OhSymplecticTopologyandFloerHomologyII 30. A.BobrowskiConvergenceofOne-ParameterOperatorSemigroups 31. K.CostelloandO.GwilliamFactorizationAlgebrasinQuantumFieldTheoryI 32. J.-H.EvertseandK.Gyo˝ryDiscriminantEquationsinDiophantineNumberTheory 33. G.FriedmanSingularIntersectionHomology 34. S.SchwedeGlobalHomotopyTheory 35. M.Dickmann,N.SchwartzandM.TresslSpectralSpaces 36. A.BaernsteinIISymmetrizationinAnalysis 37. A. Defant, D. Garcia, M. Maestre and P. Sevilla-Peris Dirichlet Series and Holomorphic FunctionsinHighDimensions 38. N.Th.VaropoulosPotentialTheoryandGeometryonLieGroups 39. D.ArnalandB.CurreyRepresentationsofSolvableLieGroups Potential Theory and Geometry on Lie Groups N. TH. VAROPOULOS Universite´ deParisVI(PierreetMarieCurie) UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107036499 DOI:10.1017/9781139567718 ©N.Th.Varopoulos2021 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2021 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationdata Names:Varopoulos,N.,1940–author. Title:PotentialtheoryandgeometryonLiegroups/N.Th.Varopoulos. Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2020.| Series:Newmathematicalmonographs;38| Includesbibliographicalreferencesandindex. Identifiers:LCCN2019038658|ISBN9781107036499(hardback) Subjects:LCSH:Liegroups.|Potentialtheory(Mathematics)|Geometry. Classification:LCCQA387.V3652020|DDC512/.482–dc23 LCrecordavailableathttps://lccn.loc.gov/2019038658 ISBN978-1-107-03649-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. TosomeofthewomenIhaveloved Contents Preface pagexxv 1 Introduction 1 1.1 DistanceandVolumeGrowth 1 1.2 AClassificationofUnimodularLocallyCompactGroups 2 1.3 LieGroups 3 1.3.1 Convolutionpowersofmeasures 3 1.3.2 Theheatdiffusionsemigroup 5 1.4 Geometric B–NB Classification of Lie Groups. An Example 6 1.4.1 Invariant Riemannian structures on G and quasi-isometries 7 1.4.2 Animportantexample 7 1.4.3 Isoperimetricinequalities 8 1.4.4 Thepolynomialfillingproperty 9 1.5 ASpecialClassofGroupsandtheMetricClassification 9 1.5.1 Thegeometricclassificationformodels 9 1.5.2 Thecoarsequasi-isometries 10 1.5.3 Coarsequasi-isometricmodels 10 1.5.4 AgeneralconnectedLiegroup 11 1.5.5 ThegeneralmetricB–NBclassification 11 1.5.6 Thedrawbackofthismetricclassification 11 1.6 HomotopyRetracts 12 1.6.1 Theclassicalretract 12 1.6.2 Thepolynomialretract 12 1.6.3 The polynomialretractpropertyused in the B–NBclassification 12 1.6.4 Theinvestment/returnratio;orwhatittakesto provethe(B–NB;Ht)theorem 13 1.7 HomologyonLieGroups 14 vii viii Contents 1.7.1 ThedeRhamcomplex 14 1.7.2 ThecaseofaLiegroup 14 1.7.3 Thehomologicalinvestment/returnratio[sic] 16 1.8 CˇechCohomologyonaLieGroup 16 1.8.1 AgoodcoverofaLiegroup 16 1.8.2 TheCˇechcomplex 17 1.8.3 Thepolynomialcomplex 18 1.9 TheRoleoftheAlgebraintheB–NBClassification 18 1.10 ABroaderOverviewandSuggestionsfortheReader 19 PARTI ANALYTICANDALGEBRAIC CLASSIFICATION 21 2 TheClassificationandtheFirstMainTheorem 23 Part2.1:AlgebraicDefinitionsandConvolutionsofMeasures 24 2.1 SolubleAlgebrasandTheirRoots.TheLeviDecom- position 24 2.1.1 Thenilradical 24 2.1.2 TheradicalandtheLevidecomposition 26 2.2 TheClassification 26 2.2.1 Solublealgebras 26 2.2.2 AmenabilityandtheR-condition 27 2.3 Equivalent Formulations of the Classification and Examples 27 2.3.1 Affinegeometry 27 2.3.2 Examples 28 2.3.3 TheuseofLie’stheorem 29 2.3.4 Thecompositeroots 29 2.3.5 Anillustration:themodularfunction 30 2.4 Measures on Locally Compact Groups and the C- Theorem 31 2.4.1 Aclassofmeasures 31 2.5 PreliminaryFacts 32 2.5.1 TheHarnackprincipleforconvolution 32 2.5.2 ApplicationsofHarnack 33 2.5.3 Atechnicalreduction 34 2.5.4 Unimodulargroups 34 2.6 Structure Theorems for Lie Groups and the Exact Sequence 35 Contents ix 2.6.1 Theuseofstructuretheory 35 2.6.2 SpecialcaseoftheC-theorem 36 2.6.3 TheC-conditionontheexactsequence 38 2.7 Notation,HeuristicsandDisintegrationofMeasures 38 2.7.1 Probabilisticlanguage 38 2.7.2 Thedisintegrationofmeasures,andnotation 39 2.8 SpecialPropertiesoftheConvolutionsinH 41 2.9 TheReductiontotheRandomWalkEstimate 43 2.10 The RandomWalk and Proofof the TheoremWhen G/H∼=Rd 45 2.11 TheRandomWalkandProofoftheC-Theoreminthe GeneralCase 46 2.11.1 Theideaoftheproof 46 2.11.2 Theproof 46 2.11.3 AnexerciseinLiegroups 48 Part2.2:TheHeatDiffusionKernelandGaussianMeasures 49 2.12 TheHeatDiffusionSemigroup 49 2.12.1 HeatdiffusionkernelandtheHarnackprinciple 50 2.12.2 Gaussianmeasures 51 2.13 TheC-Theorem 51 2.13.1 TheGaussianC-theorem 51 2.14 DistancesonaGroupandtheGeometryofGaussian Measures 52 2.14.1 Statementsofthefacts 52 2.14.2 Thedistancedistortion 54 2.14.3 Thevolumegrowth 55 2.14.4 The Gaussian estimates for the projected measureμˇ 55 2.15 TheDisintegrationofGaussianMeasures 56 2.16 TheGaussianRandomWalkonG/H andProofofthe C-Theorem 58 2A Appendix:ProbabilisticEstimates 59 2A.1 Thesamplingforboundedvariables 60 2A.2 Avariantinthesampling 61 2A.3 GaussianvariablesandtheC-condition 62 3 NC-Groups 65 Part3.1:TheHeartoftheMatter 66 3.1 Amenability 66 3.1.1 Preliminaries 66

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.