ebook img

Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand PDF

2018·8.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand

ScienceoftheTotalEnvironment633(2018)1518–1535 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand KewareePholkerna,b,PhayomSaraphiroma,c,⁎,KriengsakSrisuka aGroundwaterResourcesResearchInstitute,KhonKaenUniversity,Thailand bDepartmentofEnvironmentalEngineering,FacultyofEngineering,KhonKaenUniversity,Thailand cDepartmentofAgriculturalEngineering,FacultyofEngineering,KhonKaenUniversity,Thailand H I G H L I G H T S G R A P H I C A L A B S T R A C T • ThecentralHuaiLuangbasinisunder- lainbyrocksaltsresultinginspreading ofgroundwaterandsoilsalinity. • Climatechangemayimpactonground- waterrecharge,waterloggingandsoil salinitydistributioninthisbasin. • Groundwaterlevel,waterloggingand salinitydistributionareasareprojected tobeincreased,inthefutureprecipita- tion. • Thesoilsalinityistheconsequenceef- fectthatmayexacerbatefutureliveli- hoodconditionsinthisarea. a r t i c l e i n f o a b s t r a c t Articlehistory: TheCentralHuaiLuangBasinisoneoftheimportantriceproducingareasofUdonThaniProvinceinNortheastern Received31October2017 Thailand.ThebasinisunderlainbytherocksaltlayersoftheMahaSarakhamFormationandisthesourceofsaline Receivedinrevisedform24March2018 groundwaterandsoilsalinity.Theregionalandlocalgroundwaterflowsystemsarethemajormechanismsresponsible Accepted24March2018 forspreadingsalinegroundwaterandsalinesoilsinthisbasin.Climatechangemayhaveanimpactongroundwater Availableonline4April2018 recharge,onwatertabledepthandtheconsequencesofwaterlogging,andonthedistributionofsoilsalinityinthis basin.SixfutureclimateconditionsfromtheSEACAMandCanESM2modelsweredownscaledtoinvestigatethepoten- Keywords: tialimpactoffutureclimateconditionsongroundwaterquantityandqualityinthisbasin.Thepotentialimpactwasin- Climatechange Groundwaterresources vestigatedbyusingasetofnumericalmodels,namelyHELP3andSEAWAT,toestimatethegroundwaterrechargeand Salinity flowandthesalttransportofgroundwatersimulation,respectively.Theresultsrevealedthatwithinnext30years HELP3 (2045),thefutureaverageannualtemperatureisprojectedtoincreaseby3.1°Cand2.2°CunderSEACAMand SEAWAT CanESM2models,respectively,whilethefutureprecipitationisprojectedtodecreaseby20.85%underSEACAMand HuaiLuangBasin increaseby18.35%undertheCanESM2.GroundwaterrechargeisprojectedtoincreaseundertheCanESM2model andtoslightlydecreaseundertheSEACAMmodel.Moreover,forallfutureclimateconditions,thedepthsofthe groundwaterwatertableareprojectedtocontinuouslyincrease.Theresultsshowedtheimpactofclimatechange onsalinitydistributionforboththedeepandshallowgroundwatersystems.Thesalinitydistributionareasare projectedtoincreasebyabout8.08%and56.92%inthedeepandshallowgroundwatersystems,respectively.The waterloggingareasarealsoprojectedtoexpandbyabout63.65%fromthebaselineperiod. ©2018ElsevierB.V.Allrightsreserved. ⁎ Correspondingauthorat:DepartmentofAgriculturalEngineering,FacultyofEngineering,KhonKaenUniversity,Thailand. E-mailaddress:[email protected].(P.Saraphirom). https://doi.org/10.1016/j.scitotenv.2018.03.300 0048-9697/©2018ElsevierB.V.Allrightsreserved. K.Pholkernetal./ScienceoftheTotalEnvironment633(2018)1518–1535 1519 1.Introduction ThesestudieswerebasedontheSpecialReportonEmissionScenarios (SRES)publishedbytheIntergovernmentalPanelonClimateChange GroundwaterplaysanimportantroleinThailandbecauseitisa (IPCC)FourthAssessmentReport(AR4)(IPCC,2007).Byutilizingthe sourceoffreshwaterforhumanconsumption,agriculture,andindus- dynamicdownscaledmodel,PRECIS(ProvidingRegionalClimatesfor tries,especiallyduringperiodsofdrought.Servingasthewatersupply Impacts Studies) of the Hadley Centre Climate Model version 3 forapproximately35millionpeopleinruralandurbanareas,ground- (HadCM3)boundarydata(asubsetofCMIP3),theSoutheastAsiaCli- waterresourcesplayamajorrole.InNortheasternThailand,atleast mateAnalyses&Modeling(SEACAM)regionalclimatemodelingexper- 80%ofthegroundwaterwellshavebeendrilledanddevelopedinthe imenthasbeenusedtoassessthecapacityforsimulatingthemajor consolidatedaquifers(SrisukandNettasana,2017),whichareunderlain featuresoftheSoutheastAsianclimateandforcapturingthebroadest withtherocksaltoftheMahaSarakhamFormationatdepthsofabout rangeoffutureprojectionsfortemperature,monsooncharacteristics, 50–1000mfromthegroundsurface.Thisrocksaltisthesourceofsaline andforprecipitation.Theresultsindicatedthattherewillbeanincreas- groundwaterandsalinesoilsinthisareaatN40%and35%,respectively ingtrendintheaverageannualrainfallandtemperatureintheperiod (DGR,2000;Arunin,1996).TheCentralHuaiLuangBasin(CHLB)isspa- from2016to2056(Chinvanno,2014).AccordingtotheIPCCFifthAs- tiallyaffectedbythesalinegroundwaterandsalinesoilsalongtheHuai sessment(AR5)(IPCC,2013),thetemperatureispredictedtoincrease LuangFloodplain.TheCHLBisanimportantareaintermsofthefollow- by1.8°Coverthenext4decades(2055),andtheprecipitationforthe ing:(1)thesocio-economicstatusofthesecondbiggestprovincein wholecountryispredictedtoincreasebyapproximately5%within Northeastern Thailand, and (2) the Gross Provincial Product, GPP 40yearsundertheRepresentativeConcentrationPathways(RCP)8.5 (NSO,2016)duetothesefacts:(a)theCHLBiscoveredbycommercial scenario(HAII,2016).Theexpectedchangesintheamountsandpat- areas,andb)it is themostimportantriceproducing area of Udon ternsofrainfallandtemperaturewillleadtoanalterationofgroundwa- Thani Province. Groundwater and soil salinity problems have ter resources (Zektser and Loaiciga, 1993) which can change the interruptedactivitiesandhaverequiredasupplyofwaterinthisarea, rechargerates,caninfluencethequalityofthegroundwater,andcan suchaswaterforirrigationandagriculturalpurposes,etc. altergroundwaterflowpatterns.Inaddition,theexpectedchanges Themajorprocessesresponsibleforspreadingsalinegroundwater, mayaffectwaterlogging(thedepthofwatertablecanupwardmove- soil water and saline soils and sub-surface water are groundwater menttosoilsurfaceandcausetheaccumulationofsalt),aswellasthe flowandevaporationofsoilwater(Srisuk,1994).Inaddition,naturally spreading of saline water. This is especially true in Northeastern occurringsaltaffectedareasarecausedbysubsurfaceflowwhichisa Thailandinwhichthereareexistingproblemswithgroundwaterand primarysourceofsalinity(Allan,1994).Asearlyasthe1980s,itwasrec- soilsalinity. ognizedthatvarioushumanactivitiesareresponsibleforthespreading From1990to2010,therewereapproximately198peer-reviewed ofsalinizationorsecondarysourcesofsalinity(Arunin,1984;Beresford publicationsthatfocuseddirectlyonclimatechangeandgroundwater, etal.,2001).Thesehumanactivitiesincludedeforestation,theconstruc- but the potential impact of climate change on groundwater tionofreservoirsinareasinwhichthereisanoccurrenceofshallowsa- (Pratoomchaietal.,2014)andthefutureofgroundwaterinthecontext line groundwater, salt production, and irrigation (Arunin, 1989; ofglobalandregionalclimatechangesremainlargelyunknown(Toews Yuvaniyama,2004).Theseactivitiesarebeginningtodramaticallyaffect andAllen,2009;Greenetal.,2011;KurylykandMacQuarrie,2013).In thenaturalenvironmentandtoreducetheviabilityoftheagricultural NortheasternThailand,changesinclimaticvariablescansignificantly sector(Arunin,1984;Beresfordetal.,2001). alterthehydrologiccycleandgroundwaterrecharge,bothofwhich Globalclimatechangeisdefinedasaclimatesituationinanyareathat controlthedistributionofsalinitywithintheshallowaquifersystems haschangedordifferedoverthepast30years(HAII,2016)andasaconse- andthus,affecttheavailabilityoflandforagriculture(Saraphirom quence,hashadanimpactonvarioussectors,includingwaterresourcesin etal.,2013a).Ghassemietal.(1995)reportedthatthisphenomenon alltheregionsaroundtheworld.Likeotherregionsandcountriesinthe has created an expansion of land salinity as shown by Casas and world,Thailandisalsofacingclimatechangeandisexperiencingtheeffects Pitaluga (1990) who investigated climatic changes expressed in associatedwithit.Thailandisparticularlyvulnerabletodroughtandto PampaArenosa,Argentina,after1971,duetosignificantlyincreasesin floodingasevidencedbyseveralextremeclimaticeventsintherecent theaverageannualrainfallofapproximately200mmperyear. past(CHRR,2005).Astheresultofheavyrainfall,Thailandfacedabig Numericalmodelingisaquickandusefulapproachtoassessthepast floodforseveralmonthsduring2011(WorldBank,2011).Afewyears and future groundwater resources in response to climate change later,Thailandexperiencedoneoftheworstdroughtsindecades(ONEP, (Pratoomchaietal.,2014)specificallythetemperatureandprecipita- 2016).Eventhoughscenariosforfutureeventsofclimatechangearestill tion changes to groundwater recharge (Moeck et al., 2016). beingdebated,itislikelythatThailandwillbeaffectedincomplexways Saraphirometal.(2013b)studiedtheimpactofclimatechangeonthe bytheconsequencesofclimatechange(Naruchaikusol,2016).According salinizationprocessesintheHuaiKhamrianSub-watershedinNorth- tothemeteorologicaldatarecordsfrom1955to2014,thetrendintheav- eastern Thailand by using a variable density groundwater model erageannualtemperatureinThailandwasanadditionalincreaseinthe namedSEAWAT,whichwassupportedwithrechargeestimatesfrom number of warm days and nights (Chatdarong, 2009; TRF, 2011; theHydrologicEvaluationofLandfillPerformance(HELP)model.The Limsakuletal.,2010).Yet,thetotalamountofrainfalldidnotchangesignif- resultsoftherechargeratesattheendofthe21thcenturywerepre- icantly.TherehavebeenregionaldivergingtrendsinrainfallvolumeinCen- dicted,anditwasfoundthatshallowsalinegroundwaterareaswillin- traland Eastern Thailand wheredecreases in totalrainfall havebeen creasebyapproximately14%.However,therearenostudiesthatshow observed.However,therehavebeenincreasingamountsofrainfallinthe theimpactofclimatechangeongroundwaterresourcesintheCHLB Northeastern and Gulf regions, as well as in Metropolitan Bangkok whichisofsocio-economicimportancetoUdonThaniProvince,espe- (LimsakulandSinghruck,2016).Therehavebeensignificantincreasesin ciallyunderSRESandRCPscenarios. rainfallinthedryseasonanddecreasesinthewetseason,whichincludes Theobjectivesofthisstudyareasfollows:1)tocharacterizethehy- adecreaseinthenumberofrainydaysandincreaseinthenumberof drologicandhydrogeologicframeworksoftheCHLB,2)tosimulatethe dayswithintenseprecipitation(LimsakulandSinghruck,2016).Theentire processesofgroundwaterflowandsalinitydistribution,and3)topre- changingtrendofrainfallhasledtochangesinrainfallpatternsduringthe dicttheimpactoffutureclimateongroundwaterflowandsalinitydis- wetseason(May–October),withlongerdryspellsinthemiddleofthe tributionbyapplyingnumericalmodels.Thisstudyinvolvedthefield rainyseasonandmoreintenseprecipitation(Jarupongsakul,2011). characterizationofsoils,thehydrologicandhydrogeologicconditions, Severalearlierstudiesdevelopedandappliedfutureclimatechange andtheapplicationofthehydrologicalmodel.Theseprocesseswere in Thailand for different purposes (Chinvanno et al., 2009; carriedoutinordertoestimatethegroundwaterrecharge.Usingvari- Manomaiphiboon et al., 2009; Santisirisomboon, 2009; TRF,2011). abledensityofgroundwater,thegroundwaterflowmodelwasusedto 1520 K.Pholkernetal./ScienceoftheTotalEnvironment633(2018)1518–1535 calculatethewatertables,flowpatterns,andgroundwatersalinity.The TheareaofstudyhasatropicalgrasslandclimateorSavanna-Awin resultsandfindingswillbeusefultoassistdecision-makersandstake- whichtheaveragedailytemperatureis27.0°C.Januaryisthecoolest holdersinformulatingtheappropriatepoliciesforwaterresourceman- monthwithadailytemperatureofabout22.4°Candapproximately agementintheCHLB. 29.8°CinAprilwhichisthehottestmonth(TMD,2015).Anaverage evaporation from the Class A Pan measurement is 1683 mm/year (TMD, 2015). The average annual rainfall was calculated from the 2.Theareaofstudy UdonThanimeteorologicalstationusing11raingaugestations(TMD, 2015;RID,2015)between1984and2015.Almost90%ofrainfalloccurs TheCHLBislocatedinthecentralpartoftheHuaiLuangBasinin intherainyseasonfromMaythroughOctober.Theaverageannualrain- UdonThaniProvinceinNortheasternThailand.Itcoversanareaof fallvariesfrom1100to1500mm(Average=1268.6mm). 1529 km2andis locatedin threedistrictsofUdonThani Province: Thehydrologicalandhydrogeologicalstudyoftheareaweresys- MuangUdonThani,KutChap,andNongWuaSo,asshowninFig.1. tematicallycharacterizedandpresentedashydrogeologicmapsand Thetopographicelevationsvaryfrom160to564maboveMeanSea cross-sections.Theproceduresofdrillingpumpingtestwells,installing Level(mAMSL).Themountainousandhillyterrainsaboundinthe piezometers(33wells),monitoringthewaterlevels,checkingthequal- Western,Southern,andNorthernregionswhichrepresentthesurface ityofthegroundwaterandsurfacewater,analyzingthesoilmoisture, waterandgroundwaterdividesofthebasin.Apopulationofabout andtestingforsoilsalinitywereallconductedduringtheperiodfrom 448,000personsorabout29%ofUdonThaniProvince'spopulationare September2014toDecember2015.TheHuaiLuangreservoirinlocated livinginthebasin(DPA,2014).TheCentralHuaiLuangBasinisoneof intheSouthwestandtheHuaiLuangRiverisamajorwatersourceof theimportantagriculturalandfoodproductionareasinUdonThani waterandthesupplyforirrigation.TheHuaiLuangRiverflowsfrom Province.ThisareaisunderlainwithrocksaltfromtheMahaSarakham the west to the east with a length, width, and a depth of 50 km, formation,andthiscausesthespreadofsaltsintothegroundwater,the 50–90m,and5–7m,respectively.AlongtheHuaiLuangRiver,two surfacewater,andthesoil. streamgaugingstationsarelocatedatKh.53andKh.103(RID,2015). Fig.1.LocationmapoftheCHLBandsoilsalinitydistribution. (ModifiedfromLDD,2006) K.Pholkernetal./ScienceoftheTotalEnvironment633(2018)1518–1535 1521 ThetotalannualrunofffortheCHLBisaround262.4MCM/year(Mm3/ andpresenttheregionalandlocalgroundwaterflowpatterns.Gener- year).Thesurfacewatersalinitywasmonitoredbymeasuringtheelec- ally,intherechargeareas,groundwaterrechargestoaquifersarelo- tricalconductivity(EC)acrossthebasin.Duringthedryseason,the cated in the West, South, and the local high areas in the North. In waterqualityoftheHuaiLuangRiveranditstributaryaremildlybrack- contrast,thedischargeareasarenormallylocatedalongcentralpartof ishwithelectricalconductivitiesofN1500μS/cmorTotalDissolved studied area and the Huai Luang River floodplain. Throughout the Solids(TDS)ofN1000mg/l,whereasduringtherainyseason,thesurface basin,theTotalDissolvedSolids(TDS)ofthegroundwatervariesfrom waterbecomesslightlybrackishtofresh. b1000mg/l(fresh)tob10,000mg/l(brackish)andtoN10,000mg/l(sa- Basedonthesaturatedhydraulicconductivityvalues,soilareclassi- line).ThehighTDSorsalinityvarieswiththedepthofthewaterandis fiedintothreegroups:slow,moderate,andrapid(FarrandHenderson, foundinthelowlandareasatthecentralpartofstudiedareaalongHuai 1986).Theslowsoilshaveveryslowinfiltrationrates(b5×10−7m/s) LuangRiver.Groundwatertypesvaryfromrechargeareastodischarge andconsistchieflyofclaysoils.InthelowlandsalongtheHuaiLuang areas and include Ca-HCO , Ca-Na-HCO and Na-Cl, Na-Cl types 3 3 River,siltyclaysoiloccursoveranearlyimperviousmaterial.Themod- (Deutsch,1997). eratesoilshaveinfiltrationrates(5×10−7to5×10−6m/s)andconsist Thereareabout650waterwellsbeingusedfordomestic,agricul- ofmoderatelywell-drainedsoilsasfinetomoderatelyfinetextures, tural,andindustrialpurposes.Mostofthedomesticwellswerepro- suchasloamandsandyclayloam.Thesesoilsaremostlylocatedinup- vided by the Department of Groundwater Resources. Water wells landareas.Therapidsoilshavehighinfiltrationrates(N5×10−6m/s) were drilled at depths ranging from about 20 to 122 m below the andconsistofexcessivelywell-drainedmaterials,suchasloamysand groundsurface.Accordingtothefieldsurveyandthecensusofwater andsand.Mostoftheareaiscoveredwithmoderatelyinfiltratedsoils usein2015,itwasfoundthatgroundwaterresourcewasbeingused andcoversabout52%ofthelandarea.Thesoilsalinityintheareatypi- fordomestic,agricultural,andindustrialpurposesatratioof75%,20%, callycommenceswithdeforestationintherechargearea,saltmaking, and5%,respectively.Thetotalannualgroundwaterusagewithinthe andthereplacementofthetreeswithshallowrootcropsinthelow- basinhasbeenestimatedatabout6,758,606m3,whichisarelatively landsorlocaldischargeareas.Thesepracticeshavesignificantlyledto smallvolumewhencomparedtotheactivitiesandthepopulationin ariseinthewatertable,toariseintherechargeratesinthelocalre- thestudiedarea.Thiswasduetothefactthatsomecommunitiesarelo- chargeareas,andtotheescalationofsalinityproblems(Arunin,1984; catedinareaswithsalinegroundwater.Asaresult,itwasnecessaryfor Srisuk,1994).Thesoilsalinitywasclassifiedbasedonsaltcrustoccur- alternativesourcesofwatersupplytobeallocatedbytheProvincialWa- ring on ground surface and giving rise to saline soil. As shown in terworksAuthority(PWA). Fig.1,thesoilswereaffectedbysaltatabout35%.Highlysalt-affected soilcoveredabout0.1%ofthestudiedlowlandarea,andthesaturation extract(ECe)hadanelectricalconductivityofN8dS/m.Moderatelysa- 3.Methodology linesoilcoveredthelowlandofthecentralandeasternpartsofthestud- iedareawithECeabout4–8dS/m.Slightlysalinesoilwasfoundupland Thisworkisunderpinnedbytheneedtothoroughlyunderstandthe inthewesternandsouthernpartsofthestudiedareawithECeabout hydrogeologicsystemsandthesalinizationprocesses.Thestructuraldi- 2–4dS/m.Inhighlysalt-affectedareas,cropscannotbegrown.Most agramofthemethodologyandtherequireddataareillustratedinFig.3. oftheareahadbeenabandonedandinvadedbysalttolerantweeds. Thesalinewatertransport,waterbudgets,andwaterloggingweresim- Incontrast,farmersintheslightlyandmoderatelysalt-affectedareas ulatedbyusingthevariabledensitygroundwatermodel(SEAWATver- cangrowrice,buttheplantgrowthisnotuniform(Wichaidit,1997). sion4groundwaterflow):salinewatertransport,waterbudgets,and Aroughapproximationofdecreaseinthericeyield,causedbysalinity waterlogging(Langevinetal.,2008).Rechargerateswereestimated ofmoderatelysalinesoil,isN50%insusceptiblecultivars,whilethere- basedontheHELP3Model(Schroederetal.,1994)andclimatevariables duction of rice production in the slightly saline soil is only about suchastemperatureandprecipitation.Aftercertaincalibrationshad 10–50%(DobermannandFairhurst,2000).Thelandusagetypesare beencompletedforboththeSEAWATandHELP3models,simulations mainlypaddyfields,fieldcrops(sugarcaneandcassava),urbanareas, ofgroundwaterflowandsalttransportwereconductedunderthefu- bodiesofwater,andforests.Thepaddyfields,whicharelocatedalong tureclimatevariablesfrom2sets.Inthefirstset,theGCMs(GeneralCir- HuaiLuangRiverfloodplainandintheeasternparts,occupiedabout culation Models) were retrieved from the CMIP3 (Coupled Model 40%oftheland.Thereisonlyonecropofricethatgrowseachyear IntercomparisonProject3)dataportalunder4scenariosofSEACAM. fromMaytoNovemberintherain-fedagriculturalarea,whereasinirri- Inthesecondset,theGCMswereretrievedfromtheCMIP5dataportal gatedareas,cropscanbegrowntwiceperyear.Fieldcropsaregrownin undertwoscenariosofCanESM2asdiscussedinSection3.2.Thesesim- thenorthwesterntosouthwesternregionsandcoverabout23%ofthe ulationswereaccomplishedinordertoexaminetheimpactofclimate totallandarea,whileforestedareas,urbanareas,andwaterbodies changeongroundwaterresourceswithrespecttobothquantityand cover19%,13%,and5%,respectively(LDD,2013). quality.Theprojectedclimatescenarioswereusedastheinputdata Thecomprehensivehydrogeologicmapandsomecross-sections forthenetrechargeestimations.Groundwaterlevels,flows,salinitydis- acrossthestudiedareawerereconstructedbyusingthefieldinvestiga- tributionpatterns,andwatertabledepthsintheuppermostlayerofthe tionsandtheexistingdatathathadbeencompiledfromtheprevious modelwereallusedtoassessthedegreesofshallowgroundwatersali- works (DMR, 2009; Suwanich, 1986; Cotanont, 2014) as shown in nization and distribution. The impact of future climate change on Fig.2.ThefloodplainoftheHuaiLuangRiveriscoveredwithsand, waterlogging and salinity distribution was evaluated by using the clay,andgravelofAlluvium(Al).Inaddition,Terrace(Te)Depositsare means of the areal distribution of the water table depths and by foundinthehillyareasinthesouthernregion.Theseunconsolidated expanding the boundaries of the saline groundwater, which were units,havinganaveragethicknessof30m,areunderlainbysiltstone taken from simulation results projected over the coming 30 years andsandstoneaquifersoftheUpperPhuThok(Upt)unit.TheLower (2016to2045)foreachclimatescenario. PhuTok(Lpt)unitconsistsofshaleandmudstonewithathicknessof 50to200mwhichisunderlainbytherocksaltlayersoftheMaha Sarakham(Ms)unit.TheKhokKruat(Kk)unitisfoundatthetoeof 3.1.Numericalmodel themountainandconsistsofsiltstoneandsandstonewithathickness of430to700m.TheLowerKhoratGroup(Lkg)Unitliesunderneath In this study, the physically-based hydrologic models, USGS theKkunitandconsistsofsandstone,siltstone,claystone,andconglom- SEAWAT Version 4 (Langevin et al., 2008) and HELP version 3.07 erate.Accordingtowaterlevelmeasurementsfrom2014to2015,the (HELP)(Schroederetal.,1994),wereusedtoestimatechangesinthe groundwaterflownetshavebeenconceptuallyconstructedinFig.2 rechargerate,waterbalance,andsalinitydistributionintheCHLB. 1522 K.Pholkernetal./ScienceoftheTotalEnvironment633(2018)1518–1535 W1 E1 5710F030 5710D024 E38H1uaRi iLveurang NW1E-S4E713 N1-S1 A117 Huai Makkang RiverKN020-1S2Huai Mung RiverE496 E925 K085 Hydrogeological Units N1 S1 Huai Luang W1-E1 NW1-SE1 5410H010 River E032 C13C06 K006 E693 Fig.2.Hydrogeologicmapsandcross-sectionsoftheCHLB. K.Pholkernetal./ScienceoftheTotalEnvironment633(2018)1518–1535 1523 3.1.1.Groundwaterflowandsalttransport inbold.): TheSEAWATprogramisacoupledversionofMODFLOW(Harbaugh (cid:4) (cid:1) (cid:3)(cid:5) e1t99a9l.),2fo0r0a0d)vefocrtivgero-duinspdewrsaitveertflraonwspaonrtd.TMogTe3tDhMerS,S(EZAhWenAgTaisnddeWsigannegd, ∇(cid:1) ρμμ0K0 ∇h0þρ−ρρ0∇z ¼ρSs;0∂∂ht0þθ∂∂Cρ∂∂Ct−ρsq0s ð1Þ 0 tosimulatethree-dimensionalvariabledensitysaturatedgroundwater flows.Flexibleequationswereaddedtotheprogramtoallowthefluid ρ isthefluiddensity[ML−3]atthereferenceconcentrationandref- 0 densitytobecalculatedasafunctionofoneormoreMT3DMSspecies. erencetemperature;μisthedynamicviscosity[ML−1T−1];K isthehy- 0 Fluiddensitymayalsobecalculatedasafunctionoffluidpressure. draulicconductivitytensorofmaterialsaturatedwiththereference Theeffectsofthefluidviscosityvariationsongroundwaterflowwere fluid[LT−1];andh isthehydraulichead[L]whichismeasuredin 0 includedasanoption.Fluidviscositycanbecalculatedasafunctionof termsofthereferencefluidataspecifiedconcentrationandtempera- oneormoreMT3DMSspecies,andtheprogramincludesadditional ture(asthereferencefluidiscommonlyfreshwater).Furthermore,S s,0 functionsthatrepresentthedependenceupontemperature.Having isthespecificstorage[L−1],whichisdefinedasthevolumeofwater theabilitytocombineflexibleequationsforfluiddensityandviscosity thatisreleasedfromstorageperunitvolumeperunitdeclineofh ;t 0 with multi-species transport, the SEAWAT Version 4 allows for istime[T];θisporosity[−];Cissaltconcentration[ML−3];q' isa s variable-densitygroundwaterflowcoupledwithmulti-speciessolute sourceorsink[T−1]offluidwithdensityρ;andzistheelevation s andheattransport(Langevinetal.,2008).TheVariable-DensityFlow head[L]. (VDF)ProcessinSEAWATsolvesthefollowingformofthevariable- ThelimitationsofSEAWATVersion4donotexplicitlyallowforthe densityground-waterflowequation(tensorsandvectorsareshown dissolutionandprecipitationofmineralsthatmaylikelyresultfrom Future climate scenarios Recharge Estimation Model (HELP3) Downscaling of GCM under 4 scenarios of 2 scenarios of SEACAM model CanESM2 model -HadCM3Q3 -RCP 4.5 -HadCM3Q13 -RCP 8.5 -HadCM3Q10 -HadCM3Q11 Projected duration 2016-2046 for: -Precipitation -Temperature Soil properties -Total porosity (Ø) -Field capacity (FC) -Wilting point (WP) Recharge rate -Saturated hydraulic conductivity (KS) Groundwater Model (SEAWAT) Recharge rate YES Prediction using Groundwater level and TDS calibration NO future climate data and validation YES Waterloggingand saline groundwater Waterloggingand saline groundwater area under future climate change impact area at baseline period Fig.3.Structuraldiagramofthemodelingapproachandrequireddata. (ModifiedfromSaraphirometal.,2013b) 1524 K.Pholkernetal./ScienceoftheTotalEnvironment633(2018)1518–1535 Zone 5 40F-(2-10) Zone 2 Zone 3 Zone 8 40A1-(0-2) Lpt Lpt Upt 40A2-(0-2) Urban Zone 4 Upt Al Zone 9 40A2-(2-10) Water body Zone 7 A A’ 61F-(>10) Zone 6 61A1-(0-2) Kk Te Zone 1 Lpt 17A1-(0-2) Lkg Kk (1) (a) Lkg 280 A A’ 240 200 Al Te 160 Lkg Upt Al Lpt 120 Kk 80 Lpt Rs 40 0222500 232000 240000 248000 256000 264000 272000 282500 (c) (2) (b) Fig.4.Rechargezones(a),RiverboundaryandObservationwells(b),andGriddesignanddistributionoftheHydraulicparameters(c)ofCHLBmodel. largetemperaturechangesandtheheatwhichislostorgainedfrom hydraulicconductivity,weremeasuredduringthefieldinvestigations thosereactions.Theformulationisrepresentedforwaterintheliquid andexperiments. phaseonlyanddoesnotrepresentthetransitionstoiceortovapor. Themodelwasdesignedasafinitedifferencegridwithaspatialres- SEAWATmodelwasselectedtosimulategroundwaterflowandsalt olutionof500m×500m.Themodelwasseparatedinto8layersrang- transport.Thegroundwatermodeldomainhasbeenidentifiedbythe ing from 10 to 40 m in thickness, between the altitudes of the physical boundaries of the CHLB (Fig. 4). Seven hydrostratigraphic topographytothelowestlayerofmeansealevel(AMSL).Theupper units(aquifersandaquitards)havebeenassignedtothemodelasfol- layers(Layer1-Layer3)wereassignedwithathicknessof10m.The lows:(a)thesand,clay,andgraveloftheAlandtheTeunitswitha rangesoftheinputparameterswerevaluesofthefollowing:vertical thicknessof10–30m,(b)thesiltstoneandthesandstoneaquifersof andhorizontalhydraulicconductivity;specificyieldandstorage;total theUptunitwiththicknessesof30–200m,(c)thesiltstoneandsand- andeffectiveporosity;anddispersivity.Themodelwascalibratedand stoneaquifersoftheKkunitandLkgunitwithathicknessof430to validatedusingsomepreviousgroundwaterlevelsandsalinitymonitor- 700m,and(d)theclaystoneoftheLptunitwhichisunderlainbythe ingfromCotanont(2014)andinformationfromthecurrentstudy,such rocksaltlayersoftheMsunit.ThisMsunitwastreatedasanoflow aspumpingtests,dispersivitytests,groundwaterlevels,andsalinity boundary. The lateral boundaries and the bottom boundary of the monitoring.Thepumpingtestanddispersivitytestresultsforeach flowdomainweretreatedasnoflow.ThevolumeofGeneralHead hydrogeologicunitareshowninTable1.Theinitialconditionsofthehy- boundaries(GHB),assignedforHuaiLuangRiverwherethestudied draulicheadsandgroundwatersalinitywereassignedfrommeasure- areawascutofffromthewholebasin,werecollectedfromhydrological ments taken in September of 2014 on the 152 observed wells. A stationKh.103.ThegroundwaterrechargewascalculatedusingHELP3 constantconcentrationof100,000mg/lofsalinewaterwasassigned modelasdiscussedinSection3.1.2.Thedrainagesystemandriver torepresenttherocksaltlayer.Theseasonalgroundwaterabstraction inputparametersincludingtheriverstageandwidth,andthevertical fromeachaquiferlayerwasobtainedfromtheinvestigationduring Table1 FlowandmasstransportparametersusedinSEAWATmodel. Hydrogeologic Horizontalhydraulic Verticalhydraulic Specificstorage,Ss Specificyield, Effective Total Longitudinal units conductivity,Kh(m/s) conductivity,Kv(m/s) (m−1)* Sy(−) porosity(−) porosity(−) DI(m) Alluvium(Al) 1.10×10−7to1.10×10−5 1.10×10−7to1.10×10−5 1.00×10−2 0.30 0.35 0.40 500 TerraceDeposit(Te) 1.00×10−5to5.00×10−2 5.00×10−6to5.00×10−3 8.00×10−3 0.25 0.30 0.40 600 Upperphutok(Upt) 3.70×10−7to1.80×10−6 3.70×10−8to4.80×10−7 3.00×10−3 0.15 0.25 0.30 150 Lowerphutok(Lpt) 1.09×10−7to2.70×10−4 1.09×10−8to2.70×10−5 1.70×10−3 0.17 0.22 0.31 70 Rocksalt(RS) 2.00×10−14 2.00×10−14 1.00×10−5 0.01 0.02 0.10 50 KhokKruat(Kk) 7.49×10−8to5.76×10−5 7.49×10−9to5.76×10−6 5.00×10−3 0.20 0.25 0.30 70 LowerKhoratGroup(Lkg) 5.00×10−9to5.00×10−7 5.00×10−10to5.00×10−8 2.00×10−3 0.20 0.25 0.30 150 K.Pholkernetal./ScienceoftheTotalEnvironment633(2018)1518–1535 1525 theyearsof2014to2015.Accordingtothegroundwaterusageinvesti- processes,suchasinterception,infiltration,evaporation,andsurface gationintheCHLB,thereisabout1880m3ofwaterabstracteddailyand run-off.Inthisstudy,theHydrologicEvaluationofLandfillPerformance itisabstractedfromvariousaquifersatabout30%,25%,15%,15%,10%, (HELP)computerprogram(Schroederetal.,1994)wasselectedtobe and5%fromtheUpt,Lpt,Kk,Te,Al,andLkgunits,respectively. usedtoestimatethegroundwaterrechargerates.Ithasalsobeenused toestimatetheimpactofclimatechangeonthespatialvaryingground- 3.1.2.Groundwaterrechargeestimation waterrechargeratesinNewJersey(Jyrkamaetal.,2002),oftheGrand Groundwaterrechargeratesdependupontherainfallintensity,tem- RiverWatershed(JyrkamaandSykes,2007),intheGrandForksArea peratures,otherweatherconditions,slopes,soils,andgroundsurface (ScibekandAllen,2006;Scibeketal.,2007)andintheHuaiKhamrian covers.Incontrast,therechargerateissubjectedtovarioushydrological subwatershed(Saraphirometal.,2013a).Foradetaileddescriptionof Fig.5.Rechargezonesestimatedbyanintegrationoflanduse,soiltypes,andtopographicslopes. 1526 K.Pholkernetal./ScienceoftheTotalEnvironment633(2018)1518–1535 theHELPmodel,seeSchroederetal.(1994).TheHELP3modelisa theprojectedimpactofclimatechangeonthegroundwaterquantity quasi-two-dimensional,deterministicwaterroutingmodelforcomput- andqualityintheCHLBduetothefactthatitwasdevelopedforSEAre- ingwaterbalances.Itsimulatesthedailymovementofwaterintothe gion,whichisparticularlyvulnerabletoweatherandclimateextremes groundandaccountsforprecipitationinanyform:surfacestorage;run- andisaffectedbyextremeweatherevents,particularlytropicalcy- off;evapotranspiration;vegetativeinterceptionandgrowth;unsatu- clones, drought, and floods (Weiss, 2009). Large areas of SEA are ratedflow;andtemperatureeffects(Saraphirometal.,2013a).The pronetoflooding,andmuchoftheregionisheavilyinfluencedbymon- waterbalancemethodisusedtobecalculatedthenetpotentialre- soonsystemswhichoftenbringextremeweather(YusufandFrancisco, chargeasaresidualofalloftheotherwaterbalancecomponents.Itis 2009).TheSEACAMclimatemodelwasusedtostudytheimpactofcli- expressedinthefollowingformula: matechangeontheSEAmembercountries,duetothefactthatithas beendevelopedbyclimatechangespecialistsandscientistsintheir R¼P−D−ETa–ΔW ð2Þ owncountriesandthatitreliablyrepresentsfutureclimate.Inorder toevaluateanappropriateclimatemodelthatisabletorepresentthe inwhichRisthepotentialnetrecharge(LT−1),Pistheprecipitation futureclimateoftheCHLB,visualcomparisonsandstatisticalmeasure- (LT−1),Disthenetrun-off(LT−1),ETaistheactualamountofevapo- mentsoftheobservedtemperatureandtheprecipitationdataofCHLB transpiration(LT−1),andΔWisthechangeinthesoilwaterstorage and SEACAM climate model were analyzed for the baseline period (LT−1). (2006–2015).TheresultsshowedthatthehistoricaldataofSEACAM Variousdatawererequired,suchastheclimateandthesoiltypes, andtheobserveddataofthebaselineperiodhadcorrelatedwell.As whichwereusedtoestimatethewaterflowthroughasoilcolumn can be seen from the results of the statistical measurements in andwhichrepresentstherechargeratesofeachzone.HELP3wascho- Table3,thefindingshadbeenreasonablyreliableinrepresentingthefu- sentocooperatewithSEAWATbecauseitcansimulatealloftheimpor- tureclimateoftheCHLB. tant processes in the hydrologic cycle in each recharge zone. The TheSEACAMclimatemodelisavailableonlyunderAR4,otherGCMs rechargerateswereusedasboundaryconditionsforgroundwatersim- underAR5wereexploredinordertobeselectedtorepresentthefuture ulationsinthewatershedscale.TherechargezonesintheSEAWAT climateoftheCHLBforthelatestAssessmentReport.TenoftheGCMs, modelwereclassifiedbylanduse,soiltype,andbytopographicslope includingCNRM-CM5,MIROC-ESM,FGOAL-s2,MPI-ESM-LR,CESM1- asshowninFig.5.Thesoilprofileandpropertieswereassignedasa BGC,CCSM4,CanESM2,HadGEM2-CC,andGFDL,havebeenwidely soilcolumnintheHELP3model(Table2).Ninerechargezoneswere usedinThailand(Chaowiwatetal.,2017).TheseareincludedinIPCC assignedtorepresenteachzone.TheresultsfromtheHELP3model AR5andwereselectedtoevaluateasuitableclimatemodel.There- wereusedasinputsforeachzoneinSEAWATmodel. cordedtemperatureandprecipitationdatafromtheCHLBandfrom thetenGCMSduringthebaselineperiod(2006–2015)wasstatistically 3.2.Futureclimatescenarios analyzedbythesamemethodusedforSEACAM.Theresultsfromthevi- sualcomparisonsandthestatisticalmeasurementsindicatedthatthe Toexaminetheprojectedimpactofclimatechangeinthenearfu- CanESM2wasshownthebestcorrelationwhencomparedtotheothers, ture,thefutureclimateoftheGCMsundertheIPCCFourthandFifthAs- withcoefficientsofdetermination(R2)of0.67and0.68foraverage sessment Report (AR4 and AR5) were considered. For AR4, the monthlytemperatureandtheaveragemonthlyamountofprecipitation, SoutheastAsiaClimateAnalyses&Modeling(SEACAM)regionalclimate respectively.Incontrast,otherGCMsexhibitedcoefficientsofdetermi- modelingexperimentprovideshighresolution(25km)informationon nation(R2)at0.23–0.46and0.19–0.49fortheaveragemonthlytemper- futureclimateprojectionsfortheSoutheastAsia(SEA)regionuptothe atureandtheaveragemonthlyamountofprecipitation,respectively. endofthiscentury.Thiswascarriedoutbythedynamicaldownscaling Therefore, it was found that CanESM2 was reasonably reliable in oftheMetOfficeHadCM3Qensemble-basedGCMs,whichwerere- representingthefutureclimateoftheCHLBasshownintheresults trievedfromtheCMIP3,andbyusingtheMetOfficePRECISmodel fromthestatisticalmeasurementsinTable3.ThesecondgenerationCa- (SEACAM,2014).TheSEACAMclimatemodelwasselectedtoexamine nadianEarthSystemModel(CanESM2)consistsofthephysicalcoupled Table2 Rechargezone,soilprofiles,andotherinputparametersforestimatingofgroundwaterrecharge. Zone Layer Depth Soiltexture- Ø FC WP Ks(cm/s) Slope Landuse EZD LAI (cm) (vol/vol) (vol/vol) (vol/vol) (%) (cm) 17A1-(0–2) 1 0–20 Loamyfinesand 0.49 0.28 0.14 5.0×10−5 1.00 Rice 56 3 Lowlandsoil,paddyfield,slope0–2% 2 20–65 Silt 0.48 0.30 0.10 1.9×10−6 – – – – 3 65–130 Siltyloam 0.49 0.28 0.14 1.9×10−6 – – – – 4 130–200 Siltyclay 0.49 0.38 0.22 1.3×10−8 – – – – 40A1-(0–2) 1 0–40 Loamysand 0.50 0.35 0.20 5.0×10−5 1.50 Rice 56 3 Uplandsoil,paddyfield,slope0–2% 2 40–90 Siltloam 0.35 0.32 0.20 1.0×10−7 – – – – 3 90–120 Clay 0.475 0.378 0.256 1.0×10−9 – – – – 4 120–200 Siltyclayloam 0.445 0.393 0.277 3.8×10−8 – – – – 40A2-(0–2) 1 0–200 Sandyloam 0.453 0.19 0.085 7.5×10−5 1.50 SugarCane 102 4 Upland,fieldcrop,slope0–2% 2 150–200 Siltyclay 0.479 0.371 0.251 6.15×10−8 – – – – 40A2-(2−10) 1 0–90 Sandyloam 0.45 0.30 0.09 3.85×10−6 5.00 SugarCane 102 4 Upland,fieldcrop,slope2–10% 2 90–200 Gravel 0.45 0.032 0.013 3.0×10−1 – – – – 40F-(2–10) 1 0–90 Siltysand 0.501 0.284 0.135 1.9×10−5 5.00 Forest 102 7 Upland,forest,slope2–10% 2 90–120 SiltysandandLaterite 0.463 0.232 0.116 3.5×10−6 – – – – 3 120–200 Clay 0.475 0.378 0.265 3.0×10−9 – – – – 61A1-(0–2) 1 0–150 Sandyloam 0.453 0.19 0.085 1.0×10−5 1.75 Rice 102 7 Highlandsoil,paddyfield,slope0–2% 2 150–200 Siltyclay 0.479 0.371 0.251 3.15×10−8 – – – – 61F-(N10) 1 0–100 Loamysand 0.437 0.105 0.047 1.7×10−3 15.00 Forest 102 7 Highlandsoil,forest,slopeN10% 2 100–150 Gravel 0.397 0.032 0.013 1.0×10−1 – – – – 3 150–200 Clay 0.475 0.378 0.25 2.73×10−8 – – – – Waterbody – Urban – Remarks:leafareaindex(LAI),evaporativezonedepth(EZD),totalporosity(Ø),fieldcapacity(FC),wiltingpoint(WP),andsaturatedhydraulicconductivity(KS). K.Pholkernetal./ScienceoftheTotalEnvironment633(2018)1518–1535 1527 Table3 et al., 2016; Pratoomchai et al., 2014; Saraphirom et al., 2013a; AsummaryofthestatisticsoftheobservedandsimulatedhistoricaldatafortheCHLBdur- JyrkamaandSykes,2007).Theimpactonthegroundwaterresources ingtheperiod2006–2015. forthisstudywasinvestigatedbyexaminingthechangesingroundwa- Monthlyaverage Monthlyaverage terrecharges,levels,flowpatterns,andsalinityasindicatorsofground- temperature(°C) precipitation(mm) waterstorage,waterlogging,andsalinitydistribution. SEACAM CanEMS2 SEACAM CanEMS2 During the period from 2010 to 2015, the models, HELP3 and SEAWAT,werecalibratedandvalidatedwiththeobservedgroundwater SD,Obs 2.49 2.49 110.99 110.99 SD,Sim 3.63 2.85 84.83 95.94 levelsandsalinitylevels.Simulationsofgroundwaterflowandsalt Mean,Obs 26.98 26.98 105.72 105.72 transportunderthefutureclimatedataof4SEACAMscenariosand3 Mean,Sim 28.36 27.99 87.15 111.56 CanESM2scenarioswereprojectedforthenext30years.Theclimate Median,Obs 27.80 27.80 66.53 66.53 datawasusedastheinputdataintheHELP3modeltoestimatethe Median,Sim 29.34 28.66 60.08 67.90 R2(coefficientofdetermination) 0.72 0.67 0.63 0.68 netrechargefrom2016to2045.Thentheprojectedgroundwaterre- charge for each scenario was used as the recharge input for the SEAWATmodelinordertosimulatethegroundwaterlevels,flowpat- atmosphere-oceanmodel(CanCM4)coupledwithaterrestrialcarbon terns,andsalinitydistributions. model (CTEM) and an ocean carbon model (CMOC) (Chylek et al., Theimpactofclimatechangeonthegroundwaterresourceswas 2011). GCM precipitation and temperature were downloaded and classifiedintermsofgroundwaterquantityandquality.Thedifferences downscaledusingthePRECISmodel.TheGamma-gamma(GG)trans- ingroundwaterstoragevaluesfromtheaquiferbalancebetweenthe formation with the optimizing parameter method was adopted to baselineandfutureperiodswereutilizedtoassesstheimpactupon downscalethetemperatureandtheprecipitationfromtheglobalscale groundwaterquantity.Differenceswerefoundinareasinwhichthe totheriverbasinscale.Thecharacteristicsofthegammacumulative depthsofwatertablecanmoveupwardtowardsthesoilsurfaceand densityfunction(CDF)wereusedtoremovethebiasesfromtheRCM cancausetheaccumulationofsalt(waterlogging).Moreover,ground- precipitationdata(Chaowiwatetal.,2017)andtoprovideinformation watersalinitychangesbetweenthebaselineandfutureperiodswere withhigherresolution(10km)forfutureclimateprojections. usedtoassesstheimpactongroundwaterquality.Thewaterlogging Four of SEACAM downscaled climate scenarios of HadCM3Q3, andsalinitydistributionswereevaluatedbymeansofthearealdistribu- HadCM3Q10,HadCM3Q11,andHadCM3Q13wereselectedinorderto tionofthewatertabledepthsandtheexpansionofthesalineground- investigatethepotentialimpactoffutureclimatescenariosonground- waterboundaries. wateranditsconsequencesonwaterloggingandsalinitydistribution intheCHLB.IncapturingtheAsianmonsoons,theHadCM3Q3model 4.Resultsanddiscussion showed the lower degree of temperature change, while the HadCM3Q13modelshowedthehigherdegreeoftemperaturechange 4.1.Baselinegroundwaterflowsituation fortheSEAregions.Duringthewetseasons,theHadCM3Q10model showedincreasesinrainfall,whiletheHadCM3Q11modelindicatedde- ThegroundwaterconditionoftheCHLBinthebaselineperiod(2006 creasesinrainfall. to2015)wassimulated.Thehydraulicheadsandsalinityofthe89wells, TheCanESM2downscaledclimatescenarios,whichwereusedtoin- distributedinsixaquifersintheCHLB,weremeasuredfromSeptember vestigatetheimpactofgroundwaterontheCHLB,weretheRepresenta- 2014toDecember2015andwereusedascalibrateddata.Themodel tiveConcentrationPathways(RCPs)4.5and8.5whichwerepresented wasvalidatedwith33observationwellswhichhadbeenmonitored intheAR5ofIPCC.TheRCP8.5isthehighestemissionthatisconsidered duringtheyearsfrom2010to2012.Themodelperformancewaseval- tobeconsistentwiththefutureofnopolicychangestoreduceemis- uatedbymakingvisualcomparisonsofthegroundwaterlevelsandsa- sions.ItwasdevelopedbytheInternationalInstituteforAppliedSystem linityintermsofTotalDissolvedSolid(TDS)betweentheobserved AnalysisinAustriaandischaracterizedbyincreasinggreenhousegas versusthesimulatedbothgroundwaterlevelandTDSandbyusing emissionsthatleadtohighgreenhousegasconcentrationsovertime. the Root Mean Square error (RMSE) and the Normalized RMSE TheRCP4.5representstheintermediateemissionsdevelopedbythePa- (NRMSE) as statistical measurements (Table 5 and Fig. 6). Major cificNorthwestNationalLaboratoryintheUS.Here,radiativeforcingis groundwaterflowdirectionshavebeenreplicatedforthetopographic showntobestabilizedshortlyafter2100,whichisconsistentwiththe terrainaspresentedinthehydrogeologicmap(Fig.6).Thecomparison futureofrelativelyambitiousreductionsinemissions. ofsimulatedandobservedhydraulicheadsandTDSisreasonable.Sen- Selectedfutureclimatescenariosinthisstudywassummarizedin sitivityanalysesofthegroundwaterflowandsalttransportmodel,the Table4. SEAWATmodel,werecarriedoutinordertostudythesensitivityof therechargerates,thehydraulicconductivity,thestoragecoefficients, 3.3.Climatechangeimpactsongroundwaterresourcesassessment thedispersivity,andtheeffectiveporosityofthegroundwaterlevel andsalinity.Theresultsindicatedthattherechargerateshadbeenthe Theimpactofclimatechangeongroundwaterresourcesaffectsre- mostsensitiveparametersforthegroundwaterlevel(Fig.7(a)),while chargerates,patterns,andtiming;decreases/increasesingroundwater thedispersivityhadbeenthemostsensitiveparameterforgroundwater levels;andthedeteriorationofgroundwaterquality(e.g.,Shrestha salinity(Fig.7(b)).Thewaterbalancein2015showedthatwaterinflow Table4 Selectedfutureclimatescenariosinthisstudy(SEACAM,2014;vanVuurenetal.,2011). Model IPCC Downscale Scenarios Description resolution SEACAM AR4, 25km×25 HadCM3Q3 SimulateslowerdegreeoftemperaturechangeinthefutureinSEAregion,HadCM3GCManddownscalingbyPRECIS CMIP3 km HadCM3Q13 SimulateshigherdegreeoftemperaturechangeinthefutureinSEAregion,HadCM3GCManddownscalingbyPRECIS HadCM3Q10 SimulatesrainfalldecreasesinthefutureinSEAregion(dry),HadCM3GCManddownscalingbyPRECIS HadCM3Q11 SimulatesrainfallincreasesinthefutureinSEAregion(wet),HadCM3GCManddownscalingbyPRECIS CanESM2 AR5, 10km×10 RCP4.5 Stabilizationwithoutovershootpathwayto4.5W/m2atstabilizationafter2100,CanESM2GCManddownscalingby CMIP5 km PRECIS RCP8.5 Risingradiativeforcingpathwayleadingto8.5W/m2in2100,CanESM2GCManddownscalingbyPRECIS

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.