ebook img

Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit interaction PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit interaction

Post(cid:21)Newtonian a urate parametri solution to the dynami s of spinning ompa t binaries in e entri orbits: The leading order spin(cid:21)orbit intera tion ∗ † Christian Königsdör(cid:27)er and A hamveedu Gopakumar Theoretis h(cid:21)Physikalis hes Institut, Friedri h(cid:21)S hiller(cid:21)Universität Jena, Max(cid:21)Wien(cid:21)Platz 1, 07743 Jena, Germany (Dated: 5th February 2008) We derive Keplerian(cid:21)type parametrization for the solution of post(cid:21)Newtonian (PN) a urate onservative dynami s of spinning ompa t binaries moving in e entri orbits. The PN a urate dynami s that we onsider onsists of the third post(cid:21)Newtonian a urate onservative orbital dy- nami sin(cid:29)uen edbytheleadingorderspine(cid:27)e ts,namelytheleadingorderspin(cid:21)orbitintera tions. Theorbital elementsof therepresentation are expli itly givenin terms of the onservedorbital en- ergy,angularmomentumandaquantitythat hara terizestheleadingorderspin(cid:21)orbitintera tions in Arnowitt, Deser, and Misner(cid:21)type oordinates. Our parametri solution is appli able in the fol- lowingtwodistin t ases: (i)thebinary onsistsofequalmass ompa tobje ts,havingtwoarbitrary 5 spins, and (ii) the binary onsists of ompa t obje ts of arbitrary mass, where only one of them is 0 spinningwithanarbitraryspin. Asanappli ationofourparametrization, we presentgravitational 0 wave polarizations, whose amplitudes are restri ted to the leading quadrupolar order, suitable to 2 des ribe gravitational radiation from spinning ompa t binaries moving in e entri orbits. The presentparametrization will berequiredto onstru t`readyto use'referen etemplatesforgravita- n tionalwavesfromspinning ompa tbinariesininspirallinge entri orbits. Ourparametri solution a for the post(cid:21)Newtonian a urate onservative dynami s of spinning ompa t binaries learly indi- J ates, for the ases onsidered, the absen e of haos in these systems. Finally, we note that our 5 parametrization provides the (cid:28)rst step in deriving a fully se ond post(cid:21)Newtonian a urate `timing formula',thatmaybeusefulfortheradioobservationsofrelativisti binarypulsarslikeJ0737(cid:21)3039. 1 v PACSnumbers: 04.25.Nx,04.30.Db,97.60.Jd,97.60.Lf 1 1 0 (v/c)2 GM/(c2R) v,M, I. INTRODUCTION of motion in powers of ∼ , where 1 R 0 and are the hara teristi orbital velo ity, the total 5 Inspiralling ompa t binaries of arbitrary mass ratio, massandthe typi alorbitalseparationofthebinary. At 0 present, the orbital dynami s of non(cid:21)spinning ompa t onsistingof bla k holes and neutron stars, arethe most c/ plausible sour es of gravitational radiation for the om- b(vin/ac)r7iesareexpli itlyknownto3.5PNorder,whi hgives q missioned ground based and proposed spa e based laser orre tions to Newtonian equations of motion. - TheselengthyhighPN orre tionswereobtained,forthe r interferometri gravitational(cid:21)wave dete tors [1℄. The g possibilityofdete tinggravitationalradiationfromthese (cid:28)rst time, in Arnowitt, Deser, and Misner (ADM)(cid:21)type : oordinates [7(cid:21)10℄. Independently, they were later om- v sour esarebasedonthefollowingastrophysi alanddata puted in harmoni oordinates and, as expe ted, found i analysis onsiderations. The detailed astrophysi al in- X to be in perfe t agreement [11(cid:21)16℄. Further, we point vestigations indi ate that the inspiral of ompa t bina- r ries should be observed by gravitational(cid:21)wave dete tors out that the very re ent determination of the highly de- a sirable 3.5PN (relative) a urate phase evolution for the [2, 3℄. The temporallyevolvinggravitationalwavepolar- h (t) h (t) + × gravitationalwavepolarizationswaspossible,mainlybe- izations, and ,asso iatedwiththeinspiralling ause of employing te hniques used in the omputations ompa tbinariesin quasi(cid:21) ir ularorbitsareknownvery of 3.5PN a urate equations of motion for the dynami s pre isely [4, 5℄. This allows data analysts to employ of ompa t binaries [9℄. the optimalmethod ofmat hed (cid:28)lteringto extra tthese weak gravitationalwavesignalsfrom the noisy interfero- However,the e(cid:27)e tofspinsandorbitale entri ihty(otn) + metri data [6℄. the hom(pt)a t binary dynami s and the asso iated × It should be noted that the onstru tion of the `ready and are not so a urately determined. The dy- h (t) + nami s of spinning ompa t binaries are determined not to use sear htemplates', namely above mentioned h (t) × onlybytheorbitalequationsofmotionfortheseobje ts, and , is possible mainly due to the fa t that the but also by the pre ession equations for the spin ve tors orbital dynami s, during the binary inspiral, is well de- themselves [17℄. In fa t, for the dynami s of spinning s ribed by the post(cid:21)Newtonian (PN) approximation to ompa t binaries only the leading order ontributionsto generalrelativity. The PN approximationto generalrel- spin(cid:21)orbitandspin(cid:21)spinintera tionsarewellunderstood ativity allows one to express the equations of motion for [18, 19℄. It is therefore quite ustomary, in the existing a ompa t binary as orre tionsto Newtonian equations literature, to onsider only the leading order ontribu- tions to spin(cid:21)orbit and spin(cid:21)spin intera tions, while ex- ploring the dynami s of spinning ompa t binaries [20℄ ∗ †Ele troni address: C.Koenigsdoerfferuni-jena.de or the in(cid:29)uen e of spins on the phase evolution and am- Ele troni address: A.Gopakumaruni-jena.de plitude modulations of the gravitational waveforms [21℄. 2 However, note that the equations of motion for spinning binaries moving even in inspiralling e entri orbits. ompa t binaries, whi h in lude (cid:28)rst post(cid:21)Newtonian There is an ongoing debate about whether or not the orre tions to the leading order spin(cid:21)orbit ontributions spinning ompa t binaries, of arbitrarymass ratio,mov- arealsoavailable[22℄. The leading orderspins e(cid:27)e ts on ing in ir ular or e entri orbits under PN a urate dy- the gravitationalwavepolarizations,mainlyfor ompa t nami s will exhibit haoti behavior [20℄. The question binaries in quasi(cid:21) ir ular orbits, were also explored in of haoswasoriginallymotivatedbytheobservationthat greatdetail [23℄. Asfarastheorbhita(lt)e enthri (itt)yis on- theequationsdes ribingthemotionofspinningtestpar- + × sidered, the temporally evolving and , whose ti le in S hwarzs hild spa etime allow haoti solutions amplitudes are Newtonian a urate and the orbital evo- [29℄. The issue is usually addressed by solving numer- lution is exa tly 2.5PN a urate, was re ently obtained i ally PN a urate equations des ribing the dynami s [24℄. However, the inputs required to ompute the ru- of spinning ompa t binaries to ompute ertain gauge ialse ularphaseevolutionfor ompa tbinariesininspi- dependent quantities like fra tal basin boundaries and rallinge entri orbitsarealsoavailableto2PNorderbe- Lyapunovexponents. Thesemi(cid:21)analyti parametrization yond the leading quadrupole ontributions [24, 25℄. Fur- presented here, along with the future extensions, should ther,veryre ently,aKeplerian(cid:21)typeparametrizationfor be very e(cid:27)e tive in analyzing the PN a urate dynam- thesolutionof3PNa urateequationsofmotionfortwo i s of spinning ompa t binaries and to explore if astro- non(cid:21)spinning ompa tobje tsmovingin e entri orbits physi ally realisti binary inspiral will be haoti or not. was obtained [26℄. It is therefore desirable to obtain a Further,theparametrizationforthe ases onsideredim- Keplerian(cid:21)type parametri solution to the dynami s of pliesthattheasso iatedPNa urate onservativebinary ompa t binaries, when spin e(cid:27)e ts are not negle ted. dynami s an not exhibit haos. In this paper, we obtain a Keplerian(cid:21)type parametri Finally, wenote that ourparametrizationmay be use- solution to the PN a urate dynami s of spinning om- ful to analyze the high pre ision radio(cid:21)wave observa- pa t binaries moving in e entri orbits, when the dy- tions of relativisti binary pulsars like J0737(cid:21)3039 [30℄. nami s in ludes the leading spin(cid:21)orbit intera tion. Our These radio(cid:21)wave observations employ a `timing for- parametri solutionisappli ableinthefollowingtwodis- mula', whi h gives the arrival times at the bary enter of tin t ases: (i) the binary is omposed of two ompa t the solar system for the ele tromagneti pulses emitted obje ts of equal mass and two arbitrary spins, and (ii) by a binary pulsar. The `timing formula' is important thetwoobje tshaveunequalmassesbut onlyoneobje t for obtaining astrophysi al informations from the om- has a spin. The present parametrization an easily be pa t binary as well as to test generalrelativity in strong addedtothere entlyobtained3PNa urategeneralized (cid:28)eld regimes [31, 32℄. The heavily employed `timing for- quasi(cid:21)Keplerian parametrization for the solution of the mula',usuallyin orporates1PNa urateorbitalmotion, 3PN a urate equations of motion for two non(cid:21)spinning leading order se ular e(cid:27)e ts due to gravitational radia- ompa tobje tsmovingine entri orbits[26℄. Thiswill tion rea tion, spin(cid:21)orbit oupling as well as 2PN (se u- provide,forthe(cid:28)rsttime, almostanalyti ,3PNa urate lar) orre tions to the advan e of periastron [31, 33(cid:21)35℄. parametri solution to the dynami s of spinning om- Theparametri solutionobtainedherewillberequiredto pa t binaries moving in e entri orbits, when the spin obtain a 2PN a urate `timing formula', where all spin(cid:21) e(cid:27)e ts are restri ted, for the time being, to the leading orbit and 2PN orre tions are fully in luded. This im- order spin(cid:21)orbit ontributions [27℄. As an appli ation of plies a `timing formula', whi h in ludes not only 2PN the parametrization, we phres(etn)t exphli i(tt)expressions for order se ular e(cid:27)e ts, but all 2PN order periodi terms, + × thespin(cid:21)orbitmodulated and , whose ampli- whi h may leave some potentially observable signature tudes are restri ted, for onvenien e, to the Newtonian [28, 36, 37℄. order and the orbital motion is restri ted to the above The paper is stru tured in the following manner. In mentioned onservativePN order. Ourresultsgeneralize Se .II,weexhibitandexplain,indetail,thetotalHamil- and improve, for the two ases onsidered, a restri ted toniandes ribingthe onservativedynami s,whosepara- parametrization for the orbital motion of ompa t bina- metri solution we are seeking in this paper. In Se . III, ries with leading order spin(cid:21)orbit oupling [28℄. we summarize the Keplerian(cid:21)type parametrization that Our parametrization will have the following possible des ribes the solution to the 3PN a urate equations of appli ations. The onstru tion of `ready to use' sear h motion for ompa t binaries, in e entri orbits, when h (t) h (t) + × templates, namely and , for ompa tbinaries spine(cid:27)e tsareignored. Se .IVdes ribesthedetermina- in inspirallingorbitsrequiresadetailedknowledgeofthe tion of a Keplerian(cid:21)type parametrization for the onser- PNa uhrTatTeorbitaldynami sandaPNa uratedes rip- vativedynami sofspinning ompa tbinaries,whenspin tionfor ij ,thetransverse(cid:21)tra eless(TT)partofthera- e(cid:27)e ts are restri ted to the leading order spin(cid:21)orbit in- h (t) + diation (cid:28)eld. As mentioned earlier, time evolving tera tion. Theparametri solutions,presentedinSe .III h (t) × and fornon(cid:21)spinning ompa tbinariesofarbitrary and Se . IV, are ombined in Se . V, to obtain PN a - masses moving in inspiralling e entri orbits were ob- urate Keplerian(cid:21)type parametrization for the onserva- tained in Ref. [24℄. The parametrization presented here, tive dynami s of spinning ompa t binaries moving in alongwith[26℄,willberequiredto onstru tPNa urate e entri orbits. As an appli ation to our PN a urate `ready to use' referen e templates for spinning ompa t parametri solution, we present expli it analyti expres- 3 h (t) + sions for the gravitational wave polarizations, and naries, when the spin e(cid:27)e ts are negle ted. The leading h (t) × , for spinning ompa t binaries in e entri orbits orderspin(cid:21)orbit ouplingtothebinarydynami sisgiven h (t) + SO in Se . VI. The temporal evolution of above and byH . Wedeterminetheparametri solutiontothedy- h (t) × , whoseamplitudesareNewtoniana urate,willbe nami s,givenbyEq.(2.1),inthefollowingway. First,we governed,forthe timebeing,by the onservativePN dy- obtain a parametri solution to the PN a urate onser- nami s dis ussed in this paper. Finally, in Se . VII, we vative dynami s, negle ting the e(cid:27)e ts due to spin(cid:21)orbit summarize our results and dis uss its future extensions oupling. We then ompute a parametri solution to the + N SO and appli ations. onservativedynami s, given by H H . The se ond step is onsistent in a post(cid:21)Newtonian framework as the spin(cid:21)orbit intera tions are restri ted to the leading or- II. DYNAMICS OF COMPACT BINARIES der. In the (cid:28)nal step, we onsistently ombine these two WITH LEADING ORDER SPIN(cid:21)ORBIT parametrizations,toobtainaPNa urateparametri so- INTERACTION lution to the onservative ompa t binary dynami s, as spe i(cid:28)ed by H. In this paper, as mentioned earlier, we are interested in the 3PN a urate onservative dynami s of spinning In the present work, we employ the following 3PN a - ompa t binaries, when spin e(cid:27)e ts are, for the time be- urate onservativeHamiltonian,inArnowitt,Deser,and ing,restri tedtotheleadingorderspin(cid:21)orbitintera tion. Misner (ADM)(cid:21)type oordinates [38, 39℄, supplemented The dynami s is fully spe i(cid:28)ed by a post(cid:21)Newtonian a - with a ontribution des ribing the leading order spin(cid:21) urate Hamiltonian H, whi h may be symboli ally writ- orbit oupling. We work, as is usual in the literature [26℄, with the following 3PN a urate onservative re- ten as H = /µ du ed Hamiltonian, H , where the redu ed mass H=HN+H1PN+H2PN+H3PN+HSO, (2.1) of the binary is given by µ = mM1m=2/Mm, +m1mand m2 1 2 being the individual masses and is the N 1PN 2PN 3PN where H , H , H and H respe tively are the totalmass. The3PNa urate(redu ed)Hamiltonian,in Newtonian, (cid:28)rst, se ond and third post(cid:21)Newtonian on- ADM(cid:21)type oordinatesandinthe enter(cid:21)of(cid:21)massframe, tributions to the onservative dynami s of ompa t bi- with the leading order spin(cid:21)orbit ontributions reads H(r,p,S ,S )=H (r,p)+H (r,p)+H (r,p)+H (r,p)+H (r,p,S ,S ), 1 2 N 1PN 2PN 3PN SO 1 2 (2.2) where the Newtonian, post(cid:21)Newtonian and spin(cid:21)orbit ontributions are given by p2 1 H (r,p)= , N 2 − r (2.3a) H (r,p)= 1 1(3η 1) p2 2 1 (3+η)p2+η(n p)2 1 + 1 , 1PN c2 8 − − 2 · r 2r2 (2.3b) (cid:26) (cid:27) H (r,p)= 1 1 1 5η(cid:0)+5(cid:1)η2 p(cid:2)2 3+ 1 5 20η 3η(cid:3)2 p2 2 2η2(n p)2p2 3η2(n p)4 1 2PN c4 16 − 8 − − − · − · r 1(cid:26) (cid:0) (cid:1)(cid:0) (cid:1) 1 h(cid:0)1 1 (cid:1)(cid:0) (cid:1) i + (5+8η)p2+3η(n p)2 (1+3η) , 2 · r2 − 4 r3 (2.3 ) (cid:27) H (r,p)= 1 (cid:2) 1 5+35η 70η2+(cid:3)35η3 p2 4+ 1 7+42η 53η2 5η3 p2 3 3PN c6 128 − − 16 − − − +(2(cid:18) 3η)(cid:0)η2(n p)2 p2 2+3(1 (cid:1)η(cid:0))η2((cid:1)n p)4ph2(cid:0) 5η3(n p)6 1 (cid:1)(cid:0) (cid:1) − · − · − · r + 1 27+136η+(cid:0) 10(cid:1)9η2 p2 2+ 1 (17+30η)η(n p)2p2i+ 1 (5+43η)η(n p)4 1 16 − 16 · 12 · r2 (cid:20) (cid:21) 1(cid:0) (cid:1)(cid:0) (cid:1) 1 1 + [ 600+ 3π2 1340 η 552η2]p2 (340+3π2+112η)η(n p)2 192 − − − − 64 · r3 (cid:26) (cid:27) 1 (cid:0) 1(cid:1) + 12+ 872 63π2 η , 96 − r4 (2.3d) (cid:19) 1 (cid:2) (cid:0) (cid:1) (cid:3) H (r,p,S ,S )= (r p) S . SO 1 2 c2r3 × · e(cid:27) (2.3e) 4 r = R/(GM) r = r n = r/r In thpe=abPov/eµequationRs P , | |, e(cid:27)e ts enter the dynami s formally at 1PN order. How- and ,where and aretherelativeseparation ever,mfor romvpspai nt obGje mts2, tvhspeins/pci2n is roughmly ,griven by ve torand its onjugaηte momentumηv=e µto/rM, respe tively. Svsp∼in co co ∼ co , where co co and The (cid:28)nite mass ratio is given by . The spin(cid:21) are the typi al mass, size and rotationalvelo ity of S orbit oupling involves the e(cid:27)e tive spin e(cid:27), given by tvhspeinspinning ompa t obje t. This implies, for moderate S =δ1S1+δ2S2, values, that the leading order spin orbi(t1/ co4u)pling e(cid:27) (2.4) will enter the ompa t binary dynami s at O vspin, i.ec. at 2PN order. It is interesting to note that if ∼ , where then theleading orderspin(cid:21)orbitintera tionwill numer- 3m η 3 2 i allymanifestat1.5PNorder. However,inthat asethe δ =2η 1+ = + 1 1 4η , 1 (cid:18) 43mm1(cid:19) η2 43(cid:16) −p − (cid:17) (2.5a) bniengaler yteddynPaNm i osrrseh otiuolndsbteo dHoSmOi.nIantetdhibsypathpeer ,uwrerewntillly, 1 δ =2η 1+ = + 1+ 1 4η . 2 for the sake of larity and simpli ity, assume that the 4m 2 4 − (2.5b) (cid:18) 2(cid:19) (cid:16) p (cid:17) spin(cid:21)orbit intera tion in(cid:29)uen e the ompa t binary dy- S S nami sat2PNorder. Wewouldliketopointoutthatthe 1 2 The redu ed spinSve torsS andS =arSe r/e(laµtGedMt)o the presentderivationoftheKeplerian(cid:21)typeparametrization 1 2 1 1 Sindiv=idSual/(sµpGinMs ) and by R aPnd forthe PN a uratedynami s ofspinning ompa tbina- 2 2 S S , respe tively. We re all that , , ries does not really are if the spin(cid:21)orbit oupling mani- 1 2 and are anoni al variables, su h that the or- fests at 1.5PN or 2PN order. bital variables ommute with the spin variables, e.g. see In the next se tion, we will display and explain the Ref. [17, 19℄. S re ently obtained Keplerian(cid:21)type parametri solution to The above de(cid:28)nitioζn of the e(cid:27)e tive spin e(cid:27) is iden- the3PNa urate onservativeorbitalmotionoftwo om- ti al to the quantity , introdu ed in Ref. [28℄, and re- S 2S = pa t obje ts, of negligible proper rotations, moving in lGaMted2Sto e(cid:27)|TD, introdu ed in Ref. [19℄, by e(cid:27)|TD e entri orbits [26℄. e(cid:27). The PN orre tions, asso iated with the motion of non(cid:21)spinning ompa t binaries, are ompiled using H III. KEPLERIAN(cid:21)TYPE PARAMETRIZATION Refs. [9, 40℄. The spin(cid:21)orbit ontribution to , avail- FOR THE ORBITAL MOTION OF COMPACT able in Ref. [35℄, employsthe spin(cid:21)supplementary ondi- BINARIES WITH NEGLIGIBLE PROPER tion (SSC) of Pry e, Newton and Wigner [41, 42℄. The ROTATION SSC,whi hde(cid:28)nesthe entralworldlineofea hspinning body, adopted in this paper is given by Using the fully determined 3PN a urate onserva- 1 2 + Uj =0 (i,j =1,2,3), tive Hamiltonian, in ADM(cid:21)type oordinates and in the i0 ij S cS (2.6) enter(cid:21)of(cid:21)mass frame, available in Refs. [9, 40℄, very re- Uµ 4 ently a Keplerian(cid:21)type parametrization for the orbital µν where S is the spin(cid:21)tensor and the4 (cid:21)velo ity of motion of ompa t binaries in e entri orbits was de- α the enter of mass of the body. The spin (cid:21)ve tor S is rived [26℄. The derivation of the above parametri so- de(cid:28)ned by lution, usually referred to as the 3PN a urate general- 1 ized quasi(cid:21)Keplerian parametrization, ru ially depends = ε Uβ µν (α,β,µ,ν =0,1,2,3), Sα −2c αβµν S (2.7) on the following important points. First, the 3PN a - urate onservative Hamiltonian is invariant under time ε ε = +1 αβµν 0123 translation and spatial rotations, implying the existen e where is the Levi(cid:21)Civit(aUtµen=socrδµw)ith . E =H In the rest frame of the body 0 of 3PN a urate (redu ed) eLne=rgyr p and (redu ed) orbital angular momentum × , for the binary in =(0, 23, 31, 12)=(0,S) Sα S S S (2.8) theL enter(cid:21)of(cid:21)massframe. Inparti ular,the onservation of indi ates that the motion is restri ted to a plane, S S 1 2 holds. The spins, and , of the ompa t obje ts namely the orbital planre,=anr(dcowseϕ,msianyϕi)ntrodu e polar may be given in terms of their moments of ineΩrtiaaan=d oordinates su h that . Finally, the a a angular velo ities of proper rotations, I and ( Hamiltonian equations of motion governing the relative 1,2 ) respe tively, as motion of the ompa t binary, namely the 3PN a urate r˙ = dr/dt ϕ˙ = dϕ/dt S1 = 1Ω1, expressions for and GM (cid:22) where t de- I (2.9a) notes the oordinate time s aled by (cid:22) in terms of S = Ω . E,L= L r 1/r 2 I2 2 (2.9b) | |and , arepolynomialsofdegreesevenin . Thethirdpost(cid:21)Newtoniana urategeneralizedquasi(cid:21) Usingtheabovede(cid:28)nitions,itispossibletodetermineat Keplerian parametrization for ompa t binaries moving what PN order the leading order spin(cid:21)orbit intera tion in e entri orbits, in ADM(cid:21)type oordinates and in the will manifest. It is easyto see, using Eq. (2.3), that spin enter(cid:21)of(cid:21)mass frame, is given by 5 r =a (1 e cosu) , r r − (3.1a) g g f f i h 4t 6t 4t 6t 6t 6t l n(t t )=u e sinu+ + (v u)+ + sinv+ sin2v+ sin3v, ≡ − 0 − t c4 c6 − c4 c6 c6 c6 (3.1b) (cid:16) (cid:17) (cid:18) (cid:19) f f g g i h 4ϕ 6ϕ 4ϕ 6ϕ 6ϕ 6ϕ ϕ ϕ =(1+k)v+ + sin2v+ + sin3v+ sin4v+ sin5v, − 0 c4 c6 c4 c6 c6 c6 (3.1 ) (cid:18) (cid:19) (cid:16) (cid:17) 1/2 1+e u ϕ v =2arctan tan . where "(cid:18)1−eϕ(cid:19) 2# (3.1d) a e2 n e2 k Te2he PN a urate orbital elements gr, gr, ,f t ,f , aind by the leading order spin(cid:21)orbit intera tion. Let us (cid:28)rst ϕ, and the PN orbital fun tions 4t, 6t, 4t, 6t, 6t, des ribe, in the Hamiltonian framework, the binary dy- h f f g g i h 6t 4ϕ 6ϕ 4ϕ 6ϕ 6ϕ 6ϕ , , , , , , and expressible in terms nami s we are interested in. E,L η of and are obtainable from Ref. [26℄ and will be expli itly displayed in Se . V, after in luding the e(cid:27)e ts due to the leading order spin(cid:21)orbit intera tions. A. The Newtonian binary dynami s with leading Let us make a few omments about the parametriza- order spin e(cid:27)e ts tion. The radial motion is uniquely parametrized by Eq.(3.1a)intermsofsomePNa uratesemi(cid:21)majoraxis We investigate the binary dynami s, given by the re- a e u H H =H +H r r , radial e entri ity and the e entri anomaly . du ed Hamiltonian NSO, where NSO N SO: The angular motion,vdes ribed by Eq. 3.1 ,eis spe i(cid:28)ed p2 1 1 by the true anomaly , angular e entri ity ϕ, advan e H = + L S . k NSO 2 − r c2r3 · e(cid:27) (4.1) oftheperiastron and some2PNand 3PNorderorbital fun tions. The expli it time dependen e is provided by TheaboveHamiltonianpres ribes,viathePoissonbra k- the 3PN a urate `Kepler equation', namely Eq. 3.1b, l ets,thefollowingevolutionequationsfortheredu edan- whi h onne ts the mean anomaly , and hen e the o- L = r p u v gular momentum ve tor × , and the individual ordinate time, to e entri and true anomalies and , S1 S2 redu ed spin ve tors and respe tively. The PN a urate `Kepler equation' also in- n dL 1 ludeessomePNa uratemeanmotion ,timee entri - = L,H = S L, ity t and some2PN and 3PNorderorbitalfun tions. It dt { NSO} c2r3 e(cid:27)× (4.2a) e ,e e shouldbenotedthatallthesee entri ities, r ϕ and t dS1 = S ,H = δ1 L S , are onne tEed,Lto ea ηh other by PN a urate expressions dt { 1 NSO} c2r3 × 1 (4.2b) intermsof and ,givenbyEq.(21)inRef.[26℄. This dS2 = S ,H = δ2 L S , implies thatit ispossibleto spe ify, asin the Newtonian dt { 2 NSO} c2r3 × 2 (4.2 ) ase,aPNa uratee entri orbitintermsof,forexam- a e r r ...,... ple, and . Finally,were allthattheKeplerian(cid:21)type where { } denotes the Poisson bra kets. Note that dL/dt parametrization for ompa t binaries in e entri orbits , given by Eq. (4.2a), gives only the pre essional at (cid:28)rst post(cid:21)Newtonian order was obtained in Ref. [43℄. motion of the orbital plane. We still need to obtain the Its extension to 2PN order was derived in Refs. [35, 44℄. equations des ribing the orbital motion. Before we go In the next se tion, we will improve the above ontoderivethoseequations,letus onsiderthe onserved H parametrizationby in luding the e(cid:27)e ts due to the lead- quantities asso iated wiEth= NHSO. ing order spin(cid:21)orbit intera tions. T∂hHe redu= ed0 energy L NSO is onserved be ause t of NSO . Though is noLt =onLserved, it is fairly easy to show that its magnitude | | is onserved: IV. QUASI(cid:21)KEPLERIAN PARAMETRIZATION dL2 d 2 OF THE CONSERVATIVE DYNAMICS OF A = (L L)= L (S L)=0. SPINNING COMPACT BINARY (cid:22) dt dt · c2r3 · e(cid:27)× (4.3) NEWTONIAN MOTION AUGMENTED BY THE FIRST(cid:21)ORDER SPIN(cid:21)ORBIT INTERACTION Similarly,belowweshowthatthemagnitudesofthespins are also onserved: In this se tion, we in orporate in to the parametriza- dS12 = d (S S )= 2δ1 S (L S )=0, tion, obtained in the previous se tion, the e(cid:27)e ts due to dt dt 1· 1 c2r3 1· × 1 (4.4a) the leading order spin(cid:21)orbit oupling. The straightfor- dS2 d 2δ ward way of implementing that is to analyze the orbital dt2 = dt(S2·S2)= c2r23S2·(L×S2)=0. (4.4b) dynami s,whi hissimplytheNewtonianoneaugmented 6 S˙ = L˙ S = r˙ NotethatEqs.(4.2)indi atethat − ,where The omponents of in the spheri al polar oordi- S +S µGM 1 2 is the total spin redu ed by , the redu ed nates, whi h also de(cid:28)ne the orbital equations of motion H total spin. We now de(cid:28)ne the onserved (redu ed) total asso iated with NSO, read angular momentum ve tor r˙ =n r˙ =p , r · (4.11a) J =L+S. e S (4.5) rθ˙=eθ·r˙ =pθ+ φc2·r2e(cid:27) , (4.11b) µGM e S mThoemaebnotuvemexJpr,esnsaiomneltyimJes = R ×givPes+theSt.otaMloarnegouvlearr, rsinθφ˙ =eφ·r˙ =pφ− θc2·r2e(cid:27) . (4.11 ) J is onserved both in its magnitude and dire tion as dJ/dt=0 dJ/dt=0 J = J and , where | |. Intheaboveequations,wehaveusedHamilton'sequation dJ/dt = 0 r˙ =∂H /∂p n e =e n e = e θ φ φ θ The fa t that (eall,oews,ues t)o introdu e aeref- NSO , × and × − . X Y Z Z eren e orthonormal triad , su h that is Summarizing, we note that the dynami s of the bi- J H along the (cid:28)xed ve tor . This gives narysystem,des ribedbytheHamiltonian NSO,isalso J =Je . uniquelydeterminedbytheevolutionequationsgivenby Z (4.6) Eqs. (4.2) and (4.11). Before trying to (cid:28)nd parametri solutions to these equations, let us point out severalfea- Further, for later use, we hoose the line(cid:21)of(cid:21)sight unit N e e tures of the above binary dynami s. Y Z ve tor to lie in the (cid:21) (cid:21)plane (see Fig. 1). This is It is easy to write down the pre essionalequations for S S always possible and reasonable be ause of the degree of eX eY the (redu ed) total spin and the e(cid:27)e tive spin e(cid:27) as freedom asso iatedwith the hoi eof and . These e e 1 unit ve tors X and Y spanJthe invariable plane whi h S˙ =S˙1+S˙2 = c2r3L×Se(cid:27) =−L˙ , (4.12a) is the plane perpendi ular to . 1 We now introdu e highly advantageous spheri al (po- S˙ =δ S˙ +δ S˙ = L (δ2S +δ2S ). lar) oordinates (r,θ,φ) and the asso iated orthonormal e(cid:27) 1 1 2 2 c2r3 × 1 1 2 2 (4.12b) (n,e ,e ) θ e θ φ Z triad , where is the angle between and S S n φ and is the azimuthal angle de(cid:28)ned in the invariable It is lear that the motiSons of Sand e(cid:27) are more om- e e 1 2 X Y pli ated than those for and . We dedu e that the (cid:21) (cid:21)plane (see Fig. 1), su h that S S magnitudes of and e(cid:27) are not preserved in general n=sinθcosφe +sinθsinφe +cosθe . X Y Z (4.7) and satisfy following equations dS2 3√1 4η r = − L (S S ), rT˙h=e drerl/adtirve separation ve tor and its time(dne,reiva,teive) dt − c2r3 · 1× 2 (4.13a) θ φ , written in the orthonormal triad dS2 3√1 4η(12η+η2) reads dte(cid:27) =− − 4c2r3 L·(S1×S2). (4.13b) r =rn, (4.8a) (L S ) r˙ =r˙n+rθ˙e +rsinθφ˙e , Wenotethatthequantity · e(cid:27) isexa tlypreserved θ φ (4.8b) sin e p d dL dS In spheri al oordinates,the linear momentum and its (L S )= S +L e(cid:27) =0. dt · e(cid:27) dt · e(cid:27) · dt (4.14) magnitude may be expressed as L p=prn+pθeθ+pφeφ, (4.9a) LF=inJaellZy, leSt us onsider the evolution of Z. Using p2 =p2+p2+p2 =(n p)2+(n p)2 − on the r. h. s. of Eq. (4.2a) we obtain r θ φ · × dL 3√1 4η L2 Z = − e (S S ). =p2r+ r2 . (4.9b) dt 2c2r3 Z · 1× 2 (4.15) L E = H The above equations imply that, in general, Z is not With the help of these relations andp NSO, the onserved. However LZ along with S and Se(cid:27) are on- omponents of the linear momentum an be expressed E L (L S ) served for the following two ases. In the (cid:28)rst instan e, using the quantities , and · e(cid:27) as ase (i), we require the binary to haveequal masses, but S S m =m η =1/4 p2r =2E+ 2r − Lr22 − 2(Lc2·rS3e(cid:27)), (4.10a) δw1it=hδa2r)b.itIrnartyhespsein osnd1inasntdan e2,( as1e(ii),2th⇔ebinarym⇔ay pφ = rLsiZnθ , (4.10b) h(mav1e6=armbi2t,raSr1y6=ma0ssoers,Sb2u6=t o0n)l.y one of them is spinning L2 1 L2 Inthispaper,whenwesolvethedi(cid:27)erentialequations, p2 = p2 = L2 Z , θ r2 − φ r2 − sin2θ (4.10 ) Eqs. (4.2) and (4.11), we restri t ourselves, for the time (cid:18) (cid:19) being,totheabovetwo ases. Inthese ases,thee(cid:27)e tive S S L = e L L spin e(cid:27) and the redu ed total spin are related by Z Z Z where · . Note that in general is not S =δ S +δ S =χ S, 1 1 2 2 onserved. e(cid:27) so (4.16) 7 L S E whereχthe newly de(cid:28)ned mass dependent oupling on- e2r =1+2EL2+8(1+EL2) ·L2e(cid:27)c2 , (4.21b) stant so is given by n=( 2E)3/2, δ =δ =7/8 , − (4.21 ) χso :=(δ11 orδ22 ffoorr ((ii)i),,tthheeesqinugalle(cid:21)(cid:21)mspasins(cid:21)(cid:21) aassee. e2t =1+2EL2+4L·LS2e(cid:27)cE2 . (4.21d) We would like to emphasize that in the ase (i) the re- Eq. (4.20b) gives the `Kepler equation', modi(cid:28)ed by S S 1 du ed total spin is the sum of two arbitrary spins the spin(cid:21)orbit intera tion, whi h onne ts the e entri S S S S u 2 1 2 and . However, in the ase (ii) is either or . anomaly to the oordinate time. The ru ial require- Theseobservationsallowustopresentthepre essional ments to determine the above parametrization are the L S E L L S equations for and in the following ompa tform for (dorn/sdertv)2ationof , and 1·/re(cid:27). Thisallowsus to treat the spe ial ases as asapolynomialin with onstant oe(cid:30) ients. dL χ Let us now (cid:28)nd parametri solution to the angular = so J L, dt c2r3 × (4.17a) partsoftheorbitalequationsofmotion,Eqs.(4.11) om- dS χ bined with Eq. (4.16), written in the form = so J S, χ dt c2r3 × (4.17b) rθ˙ =pθ 1− c2sro , (4.22a) (cid:16) χ (cid:17) χ Jsinθ TmhoemEenqtsu.m(4.1L7)ainmdptlyheth(artedthue e(dr)edtuo teadl)soprinbitSal,afnorgutlhaer rsinθφ˙ =pφ 1− c2sro + soc2r2 . (4.22b) J = (cid:16) (cid:17) tJweoZ aatsetshe osnasmideerraedte, pwriet heassna(binosuttanthtaen(cid:28)exoeuds)vper et oerssion Forthe asesofinterest,wΘhereLZ isae onstaLnt,wemay Z frequen y given by Lintro=duL ecoas Θonstantangle between and su hthat Z χ J (see Fig. 1) and Eqs. (4.10b) and (4.10 ) ωp = c2sor3 . (4.18) simplify to LcosΘ Note that ωp an only be de(cid:28)ned in a physi ally mean- pφ = r sinθ , (4.23a) ingful way when spin e(cid:27)e ts are in luded in the binary L2 cos2Θ p2 = 1 . dynami s. In the non(cid:21)spinning limit, the ross prod- θ r2 − sin2θ (4.23b) (cid:18) (cid:19) u ts appearing on the r. h. s. of Eqs. (4.17) vanish, L leaving the (redu ed) orbital angular momentum as a The e(cid:30) ient way of determining solution to the r onstant ve tor. It is interesting to observe that in the ω χ Eqs. (4.22) begins by expressing the radial ve tor in p non(cid:21)spinning limit, neither nor so go to zero. terms of an orbitaltriad. This is a hieved by onne ting (e ,e ,e ) In the next subse tion, we will (cid:28)nd a parametri so- X Y Z via two rotations the referen e triad to an (i,j,k) lution to the dynami s of spinning ompa t binaries in orbitaltriadde(cid:28)ned by . Inourorbitalorthonor- k k = L/L e entri orbits, given by Eqs. (4.11) and (4.17). mal triad, the unit ve tor , given by , and it e Z along with de(cid:28)nes e k B. The Keplerian(cid:21)type parametrization asso iated i= Z × H e k (4.24) with the Hamiltonian NSO | Z × | e k =sinΘ Z Note that | × | , whi h is indeed always posi- We start by onsidering the radial motion, governed 0 Θ<π tive be ause of ≤ . We note that the unit ve tor by Eq. (4.11a), whi h reads i 2 L2 2(L S ) givesthe line ofnodes, asso iatedwith the int(eerse, etio)n r˙2 =2E+ r − r2 − c2·r3e(cid:27) (4.19) of the orbital plane with the invariabΘle plane X Y . The orrespondingin linationangleis . Sin etheabove mentioned line of nodes vanishes in the non(cid:21)spinning We obtain parametri solution to the above equation i limit, the unit ve tor is only de(cid:28)ned when spin e(cid:27)e ts by followingexa tlythesamepro eduredes ribedin de- are in luded in the binary dynami s. tailinSe .IIIofRef.[26℄. Theradialmotionisdes ribed The two rotations arise from the observation that the by (instantaneous) position and orientation of the orbital r =ar(1−ercosu), (4.20a) planewithrespe ttothereferen etriad(eX,eY,eZ)are l ≡n(t−t0)=u−etsinu, (4.20b) dΥe(cid:28)(n0ed bΥy<tw2oπa)ngles: the longitude of the line of nodes , ≤ and the in lination of the orbital plane u l eX eY Θ (0 Θ< where and arethee entri andmeananomaEliesL. The wπ)ithrespe tto theinvariable (cid:21) (cid:21)plane , ≤ orbital elements, expli itly given in terms of , and . In terms of rotational matri es, we have L S · e(cid:27), are i 1 0 0 cosΥ sinΥ 0 eX 1 L S E j = 0 cosΘ sinΘ sinΥ cosΥ 0 e . ar =−2E 1−2 ·L2e(cid:27)c2 , (4.21a) k 0 sinΘ cosΘ− 0 0 1eYZ (cid:18) (cid:19) −       8 r The omparison of , given by Eqs. (4.8a) and (4.7), withtheoneinthenewangularvariables,Eq.(4.25)with (i,j,k) In the new orbital orthonormal triad , the rel- Eqs.(4.26), implies thefollowingtransformationsforthe r ative separation ve tor is given by angular variables: r =rcosϕi+rsinϕj, cosθ =sinϕsinΘ (4.25) (θ,φ) (Υ,ϕ): sin(φ Υ)sinθ =sinϕcosΘ  where the unit ve tors (i,j,k) in terms of the referen e −→ cos(φ− Υ)sinθ =cosϕ (e ,e ,e ) − X Y Z triad are expli itly given by  (4.27) i=cosΥeX +sinΥeY , A lever ombination of the above angular transforma- (4.26a) j = cosΘsinΥe +cosΘcosΥe +sinΘe , tion equations and their orresponding time derivatives X Y Z − leadsto thefollowingrelationsforthe angularvelo ities: (4.26b) k=sinΘsinΥe sinΘcosΥe +cosΘe , X − Y Z (4.26 ) θ˙2 = 1 cos2Θ ϕ˙2, − sin2θ (4.28a) (cid:18) (cid:19) The geometri al interpretations of the newly introdu ed cosΘ angles and basi ve tors are illustrated in Fig. 1. φ˙ =Υ˙ + ϕ˙, sin2θ (4.28b) J =JeZ eZ where the over dot again means the derivative with re- t Θ k=L/L spe t to time and is tθ˙r2eated as a onstant angle. Using Eq. (4.28a) for in Eq. (4.22a) with (4.23b) N Line of sight leads to L χ ϕ˙ = 1 so . r2 − c2r (4.29) PSfrag repla ements (cid:16) (cid:17) Θ = 0 Note that the above derivation requires 6 , whi h is j S = 0 Θ always satis(cid:28)ed for 6 , and hen e Eq. (4.29) is not Θ = 0 de(cid:28)ned when . We again invoke the pro edure θ employed in Se . III of Ref. [26℄ to obtain the following ϕ parametri solution for : n=r/r Invariable plane φ ϕ ϕ =(1+k)v, 0 Υ ϕ eY − 1+e 1/2 u (4.30a) ϕ v =2arctan tan , eX "(cid:18)1−eϕ(cid:19) 2# (4.30b) i ϕ ϕ t 0 0 Orbital plane where is the value of at the time . The quantity k e ϕ is ameasureof the advan eof the periastronand is the so alled angular e entri ity. They are expressible E,L L S in terms of and · e(cid:27) as 1 L S k = χ 3 · e(cid:27) , c2L2 so− L2 (4.31a) (cid:18) (cid:19) Figure 1: The binary geometry and interpretations of vari- E ous angles appearing in this se tion. Our referen e frame is e2 =1+2EL2 4χ (1+2EL2) (eX,eY,eZ), where the basi ve tor eZ is aligned with the ϕ − so c2 J = L+S L S E (cid:28)Jxe=d JtoetZal angular momentum ve teoXr eY , su h that +4(3+4EL2) · e(cid:27) . . The invariable plane ( , ) is perpendi ular L2 c2 (4.31b) J to . Important for the observation is the line(cid:21)of(cid:21)sight unit N r l ϕ ve tor from the observer to the seoXur e ( oemYpa t binary). The parametrization for , and an also be ob- We may have, byNa lever heoYi eeoZf andk =, tLhe/Lline(cid:21)of(cid:21) tainedusingthe on hoidal transformationsemployedin sight unit ve tor in the (cid:21) (cid:21)plane. is the Ref. [33℄ and found to be in total agreement. Υ unitve torinthedire tion oftheorbitalangularmomentum L Wenowmoveontoderivethetimeevolutionof ,the , whi h is perpendi ular to the orbital plane. The onstant longitude of the line of interse tion (denoted by the line in lination of theorbital plane with respe t to the invariable i JplaneisΘ,whi hisalsothepre ession oneangleofLaround of nodes unit ve tor φ˙in Fig. 1), in a parametri way. . Theorbitalplaneinterse tstheinvariableplaneattheline Using Eq. (4.28b) for with Eq. (4.29) in Eq. (4.22b) i Υ of nodes ,ewXithΥthe longitude measured in the invariable withΥEq.(4.23a)wegetthefollowingdi(cid:27)erentialequation planefrom . isalsothephaseoftheorbitalplanepre es- for : i,j sion. Tjh=eokrb×itial planeisspannedbythebasi ve tors( ), dΥ = χsoJ , where . dt c2r3 (4.32) 9 (Θ = 0) +(J LcosΘ)e , Z whi h is also restri ted to the spinning ase 6 , − (4.39) ϕ˙ sin e we made use of Eq. (4.29) for . Nωotethatther. h. s. oftheaboveequationisidenti al TheΥabove equation, along with the parametri solution to p, given by Eq. (4.18). This is not surpkris=inLg/aLs forS , des ribes, in a parametri way, the time evolution the frequen ies of the pre essional motion for of . i and should be identi al due to Eqs. (4.24) and (4.26). We (cid:28)nally olle t all the relevant equations, namely Further,a loseinspe tionofFig.1revealsthatthephase Eqs. (4.20), (4.30), and (4.36), and display below our k (e ,e ) oftheproje tionofe ontotheinvaΥria+b2le7p0◦lane X Y , Hparametri solution for the binary dynami s given by as measured from X, is given by . NSO: To solve the ddiϕ(cid:27)/edretntial equation (4.32) analyti ally, r =rcosϕi+rsinϕj, we divide it by , given by Eq. (4.29), and dedu e (4.40) L=Lk, at the leading order (4.41) S =Je Lk, dΥ χ J 1 Z − (4.42) = so . dϕ L c2r (4.33) (i,j,k) where the basi ve tors are expli itly given by r The radial separation appearing on the r. h. s. of i=cosΥe +sinΥe , X Y (4.43a) above equatvion may be repla ed by following expression j = cosΘsinΥeX +cosΘcosΥeY +sinΘeZ, in terms of as shown below − a(1 e2) L2 (4.43b) r =a(1 ecosu)= − = , k=sinΘsinΥe sinΘcosΥe +cosΘe , − 1+ecosv 1+ecosv (4.34) X − Y Z (4.43 ) a e where and maybetreatedastheNewtoniana urate The time evolution for the radial and angular variables a e expressions for r and r. is given by This allows us to write Eq. (4.33) (cid:22) within the a u- r=a (1 e cosu), r r − (4.44a) ra y needed (cid:22) as n(t t )=u e sinu, 0 t dΥ χ J − − (4.44b) dv = c2sLo3(1+ecosv), (4.35) ϕ−ϕ0 =(1+k)v, (4.44 ) χ J ϕ = v Υ−Υ0 = c2sLo3(v+esinv), (4.44d) where we also used the fa t that at the leading 1/2 order. The Eq. (4.35) is easily integrated to obtain the 1+e u Υ v =2arctan ϕ tan , parametri solution to χasJ "(cid:18)1−eϕ(cid:19) 2# (4.44e) Υ−Υ0 = c2sLo3(v+esinv), (4.36) where the orbital elements are given by v(t )=0 0 1 S E whTerheerweeepxuistts an alter.nate way to obtain dΥ/dt, given ar =−2E 1−2χsocosαLc2 , (4.45a) (cid:18) (cid:19) byEq.(4.32). Notingthatthetimeevolutionfortheunit S E k e2 =1+2EL2+8(1+EL2)χ cosα , ve tΥor , de(cid:28)ned by Eq. (4.26 ), is solelykgiven by that r so Lc2 (4.45b) for , we ompute the time derivative of and it reads n=( 2E)3/2, k˙ =Υ˙ sinΘ(cosΥe +sinΥe ). − (4.45 ) X Y (4.37) e2 =1+2EL2+4χ cosαS E , L = Lk L˙ = Lk˙ t so Lc2 (4.45d) Using the fa t that and in Eq. (4.17a), 1 S dΥ/dt k = χ 3χ cosα , wearrive(again)at ,asgivΥenbyEq.(4.32). There- c2L2 so− so L (4.45e) fore,theparametri solutionfor readilyde(cid:28)nesasimi- (cid:18) (cid:19) L=Lk k E larsolutionfor , where isgivenby Eqs.(4.26 ) e2 =1+2EL2 4(1+2EL2)χ with (4.36). The parametri solution to L reads ϕ − soc2 S E L=L(sinΘsinΥe sinΘcosΥe +cosΘe ). +4(3+4EL2)χ cosα . X − Y Z so Lc2 (4.45f) (4.38) e As noted earlier, is given by the Newtonian ontribu- e L S Finally, let us deriveSa parametri solution to the tχionLStocosr.αIn Eqs. (α4.45), we have repla ed · e(cid:27) bLy pre essional motion of , given by Eq. (4.17b). This so S χ, where is the onstant angle between parametri solution follows immediately by noting that S = J L J = JeZ L = Lk and and so is given by − , where and . Using k Eq. (4.26 ) for , we dedu e that χ := δ1 =δ2 =7/8 for (i), the equal(cid:21)mass(cid:21) ase, S =LsinΘ(−sinΥ)eX +LsinΘcosΥeY so (δ1 orδ2 for (ii), the single(cid:21)spin(cid:21) ase. 10 Θ Further, we note that the onstant angle is not a free V. THIRD POST(cid:21)NEWTONIAN ACCURATE variable and is given by one of the following relations: GENERALIZED QUASI(cid:21)KEPLERIAN Ssinα PARAMETRIZATION FOR COMPACT sinΘ= , BINARIES IN ECCENTRIC ORBITS WITH THE J (4.46a) FIRST(cid:21)ORDER SPIN(cid:21)ORBIT INTERACTION L+Scosα cosΘ= , J (4.46b) We are now in a position to have parametri solution H to the dynami s, de(cid:28)ned bythe Hamiltonian , asgiven where the magnitudeJo=f t(hLe2(+reSdu2 +ed2)LtSotcaolsaαn)g1u/2lar mo- by Eq. (2.2). This is done by ombining onsistently mentum is given by . the parametrizations presented in the previous two se - Weareawarethattheaboveparametrizationdoesnot tions,Se . IIIandSe . IV. Thetwoparametri solutions lead to the lassi Keplerian parametrization simply by S = 0 of Se . III and Se . IV an be added linearly to obtain putting . There are several arguments for this ap- the PN a urate binary dynami s, given by Eqs. (2.2) parent la k of a simple non(cid:21)spinning limit. Noti e that Υ ϕ and (2.3), for the following reasons. Re all that in the and are de(cid:28)ned with respe t to the line of inter- i Hamiltonian, given by Eqs. (2.2) and (2.3), the spin(cid:21) se tion, hara terized by the line of nodes unit ve tor . orbit ontribution is added linearly to the PN a urate When the spin e(cid:27)e ts are negle ted, the above line of non(cid:21)spinning ontributions. Moreover, as we are on- interse tion disappears, sin e the orbital plane be omes sidering only leading orderspin(cid:21)orbitintera tions, spin(cid:21) the invariable plane and the asso iated in lination an- Θ Υ ϕ orbit ontributions only ross with the Newtonian terms gle vanishes. In this ase, the related angles and in the Hamiltonian. This is why we an treat the spin(cid:21) are not individually de(cid:28)ned, though Eq. (4.27) gives us ϕ+Υ = φ orbit ontributions and the non(cid:21)spinning PN ontribu- , as required. We emphasize that the related tions separately and later add the two parametri solu- di(cid:27)erentialequations,givenbyEqs.(4.29)and(4.32),are Θ = 0 S = 0 tions linearly. However, as a autionary note, we state obtained using 6 , orresponding to 6 . There- Θ = 0 that are should be taken while merging the above two fore, Eqs. (4.29) and (4.32) are not de(cid:28)ned if . parametri solutions to avoid adding similar ontribu- Further, the apparent non(cid:21)vanishing of the time evolu- Υ tions twi e. Finally, we display below, in its entirety, tion of in the non(cid:21)spinning limit is also attributable ωp the parametri solution to the onservative third post(cid:21) to the similar behavior for . However, a lose s rutiny Newtonian dynami s of spinning ompa t binaries mov- of Eqs. (4.19), (4.22) with (4.23), (4.27) and (4.28) for S 0 Θ 0 θ π/2 inginane entri orbit,inADM(cid:21)type oordinates,with → , whi h implies → and → , reveals that spin e(cid:27)e ts restri ted to the leading order spin(cid:21)orbit in- the binarydynami sin the non(cid:21)spinning ase isdes rib- r φ φ=ϕ+Υ tera tions: able in terms of and , where , as explained earlier. r =rcosϕi+rsinϕj, Our parametri solution generalizes a restri ted anal- (5.1) ysis onsidered in Ref. [28℄. The analysis, given in L=Lk, (5.2) Ref. [28℄, negle ts the pre essional motion of the spin S =Je Lk, S ζ Z − (5.3) ve tors aned restri ts e(cid:27), denoted by in Ref. [28℄, to Z lie along . Due to these restri tions, that analysis r (i,j,k) provides only a parametri solution to . We have, in where the basi ve tors are expli itly given by the other hand, onsistently taken into onsideration all the leading order spin(cid:21)orbit intera tions and obtained a i=cosΥe +sinΥe , X Y parametri solution to the entire binary dynami s. In (5.4a) j = cosΘsinΥe +cosΘcosΥe +sinΘe , a future ommuni ation we will onne t the above pre- − X Y Z sentedparametri solutiontoquantitiesrelatedtoobser- (5.4b) vation, espe ially asso iated with binary pulsars [45℄. k=sinΘsinΥeX sinΘcosΥeY +cosΘeZ, − (5.4 ) In the next se tion, we will ombine the Keplerian(cid:21) type parametrization developed above with the one pre- sented in Se . III. and r =a (1 e cosu) , r r − (5.5a) g g f f i h 4t 6t 4t 6t 6t 6t l n(t t )=u e sinu+ + (v u)+ + sinv+ sin2v+ sin3v, ≡ − 0 − t c4 c6 − c4 c6 c6 c6 (5.5b) (cid:16) (cid:17) (cid:18) (cid:19) f f g g i h 4ϕ 6ϕ 4ϕ 6ϕ 6ϕ 6ϕ ϕ ϕ =(1+k)v+ + sin2v+ + sin3v+ sin4v+ sin5v, − 0 c4 c6 c4 c6 c6 c6 (5.5 ) (cid:18) (cid:19) (cid:16) (cid:17)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.