SPRINGER BRIEFS IN PETROLEUM GEOSCIENCE & ENGINEERING Helei Liu Raphael Idem Paitoon Tontiwachwuthikul Post-combustion CO Capture 2 Technology By Using the Amine Based Solvents 123 SpringerBriefs in Petroleum Geoscience & Engineering Series editors Dorrik Stow, Heriot-Watt University, Edinburgh, UK Mark Bentley, AGR TRACS International Ltd., Aberdeen, UK Jebraeel Gholinezhad, University of Portsmouth, Portsmouth, Hampshire, UK Lateef Akanji, King’s College, University of Aberdeen, Scotland, UK Khalik Mohamad Sabil, Heriot-Watt University, Putrajaya, Malaysia Susan Agar, Houston, USA Kenichi Soga, Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA A. A. Sulaimon, Department of Petroleum Engineering, Universiti Teknologi Petronas, Seri Iskandar, Perak, Malaysia The SpringerBriefs series in Petroleum Geoscience & Engineering promotes and expedites the dissemination of substantive new research results, state-of-the-art subject reviews and tutorial overviews in the field of petroleum exploration, petroleumengineeringandproductiontechnology.Thesubjectfocusisonupstream exploration and production, subsurface geoscience and engineering. These concise summaries (50–125 pages) will include cutting-edge research, analytical methods, advancedmodellingtechniquesandpracticalapplications.Coveragewillextendto all theoretical and applied aspects of the field, including traditional drilling, shale-gas fracking, deepwater sedimentology, seismic exploration, pore-flow modelling and petroleum economics. Topics include but are not limited to: (cid:129) Petroleum Geology & Geophysics (cid:129) Exploration: Conventional and Unconventional (cid:129) Seismic Interpretation (cid:129) Formation Evaluation (well logging) (cid:129) Drilling and Completion (cid:129) Hydraulic Fracturing (cid:129) Geomechanics (cid:129) Reservoir Simulation and Modelling (cid:129) Flow in Porous Media: from nano- to field-scale (cid:129) Reservoir Engineering (cid:129) Production Engineering (cid:129) Well Engineering; Design, Decommissioning and Abandonment (cid:129) Petroleum Systems; Instrumentation and Control (cid:129) Flow Assurance, Mineral Scale & Hydrates (cid:129) Reservoir and Well Intervention (cid:129) Reservoir Stimulation (cid:129) Oilfield Chemistry (cid:129) Risk and Uncertainty (cid:129) Petroleum Economics and Energy Policy Contributionstotheseriescanbemadebysubmittingaproposaltotheresponsible Springercontact,[email protected] Series Editor, Prof Dorrik Stow at [email protected]. More information about this series at http://www.springer.com/series/15391 Helei Liu Raphael Idem (cid:129) Paitoon Tontiwachwuthikul Post-combustion CO 2 Capture Technology By Using the Amine Based Solvents 123 HeleiLiu Paitoon Tontiwachwuthikul ProcessSystems Engineering ProcessSystems Engineering University of Regina University of Regina Regina, SK,Canada Regina, SK,Canada Raphael Idem ProcessSystems Engineering University of Regina Regina, SK,Canada ISSN 2509-3126 ISSN 2509-3134 (electronic) SpringerBriefs inPetroleum Geoscience &Engineering ISBN978-3-030-00921-2 ISBN978-3-030-00922-9 (eBook) https://doi.org/10.1007/978-3-030-00922-9 LibraryofCongressControlNumber:2018956589 ©TheAuthor(s),underexclusivelicencetoSpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Introduction and Background Information. . . . . . . . . . . . . . . . . . . . 1 1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives of This Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Solvent Property of Amine Based Solvents . . . . . . . . . . . . . . . . . . . . 7 2.1 The Selection of Amine for CO Capture. . . . . . . . . . . . . . . . . . . 7 2 2.2 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Density, Viscosity and Specific Heat Capacity. . . . . . . . . . 8 2.2.2 Henry’s Law Constant and Diffusivity . . . . . . . . . . . . . . . 9 2.3 Chemical Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Thermodynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Ion Speciation of Amine-CO -H O Systems . . . . . . . . . . . 15 2 2 2.3.3 Kinetics of CO Absorption into Aqueous Amine 2 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Novel Approaches and Future Trends . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 The Improvement of the Present Solvent. . . . . . . . . . . . . . 18 2.4.2 Alternative Solvents for Post Combustion CO Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Design, Modeling and Simulation of Post Combustion CO 2 Capture Systems Using Reactive Solvents. . . . . . . . . . . . . . . . . . . . . 23 3.1 Determination of Column Height for CO Absorber . . . . . . . . . . . 23 2 3.2 Developed Process Configurations for Post Combustion CO 2 Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Absorber Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Stripper Modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.3 Economizer Modification . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 v vi Contents 4 Solvent Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 Corrosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 Effects of Corrosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.2 Suggestions to Solve the Issues . . . . . . . . . . . . . . . . . . . . 33 4.2 Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.1 Oxidative Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.2 Thermal Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3 Suggestions to Solve the Issues . . . . . . . . . . . . . . . . . . . . 38 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5 Pilot and Demonstration Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Chapter 1 Introduction and Background Information Abstract Recently the worsening global warming issue caused by emissions and accumulationofgreenhousegasesintheatmospherehasbecomeasubjectofpublic concern.Carbondioxide(CO )iswidelyconsideredasthepredominantcontributor 2 of greenhouse gases. The post combustion CO capture technology is one of the 2 commonlyusedtechnologiesfordealingwithCO emissions.TheabsorptionofCO 2 2 intoaqueousaminesolutionisregardedtobeoneofthemostpromisingtechnologies forpostcombustionCO captureduetoitsmaturity,costeffectiveness,andcapacity 2 tohandlelargeamountsofexhauststreams.Inthischapter,thegeneralinformation about the CO capture is present. The comparison of the several technologies for 2 CO capture is also discussed in order to give the detail about the advantages and 2 disadvantages foreach technology. Inaddition,thedetailed introductionaboutthe postcombustionCO capturebyusingtheaminebasedsolventisprovidedinthis 2 chapter. 1.1 General Recently the worsening global warming issue caused by emissions and accumula- tionofgreenhousegasesintheatmospherehasbecomeasubjectofpublicconcern. Nationalandinternationalgovernmentsandindustrieshavecollaboratedforthepur- poseofformulatingstrategiestocontrolGHGs.Also,anumberofinstitutionsand programs aimed at addressing this issue have emerged, including the Intergovern- mentalPanelonClimateChange(IPCC),theGlobalClimateChangeInitiativeand theUnitedNationsFrameworkCommissiononClimateChange. Carbon dioxide (CO ) is widely considered as the predominant contributor of 2 greenhouse gases, with an annual global emissions having escalated by approxi- mately80%between1970and2004(D’Alessandroetal.2010).Giventhatthemain source of the huge demand for energy for mankind is still fossil fuel combustion (i.e. petroleum, coal and natural gas), there is an urgent need to develop strategies tomitigateCO dischargeintheatmosphere.AccordingtoIPCC,atmosphericcon- 2 centrationsofCO equivalentmustbelimitedto450ppmby2100toavoidglobal 2 ©TheAuthor(s),underexclusivelicencetoSpringerNatureSwitzerlandAG2019 1 H.Liuetal.,Post-combustionCO2CaptureTechnology,SpringerBriefsinPetroleum Geoscience&Engineering,https://doi.org/10.1007/978-3-030-00922-9_1 2 1 IntroductionandBackgroundInformation warming greater than 2 °C (Miller et al. 2016). There are a number of means to achievethistargetincludingenergyproductionwithhigherefficiency,energycon- servation, renewable energy and CO capture and storage (CCS). After studying 2 andevaluating anumber oftheseapproaches anditscombinations,theIPCCcon- cludedthatwithoutCCSasanoptionthecostsoflimitingtemperatureincreaseare significantlyhigherby38%(Milleretal.2016). CO capturecanbeappliedtolarge-scaleemissionsprocesses,includingcoaland 2 gas-fired power generation, natural gas processing and fertilizer production. Cur- rently,itcanbecategorizedintothreemaintechniquesinindustry:pre-combustion capture,oxy-fuelcombustionandpost-combustioncapture.Amongthesetechnolo- gies,post-combustionprocesshasthehighestpotentialtoberetrofittedtotraditional pulverized coalpower plants(Kenarsarietal.2013;Liangetal. 2015).Themajor fullcommercialdemonstrationsaretheTMCMongstadinNorway(300,000tonnes peryearCO captured)andBD3SaskPowerinCanada(1milliontonnesperyear 2 CO ).Chemicalsolventabsorption,solidsorbentadsorption,cryogenicdistillation 2 andmembraneseparationareimportanttechniquesinpost-combustioncapture.In the chemical solvent scrubbing, an aqueous solution of some absorbent, e.g. alka- nolamineorpotassiumcarbonate,reactsreversiblywithcarbondioxide.Absorbent foradsorptiongenerallycanbecategorizedintotwogroups:(i)physicalabsorbent, and(ii)chemicalabsorbent.PhysicalabsorbentreliesonclathratethatcagesCO . 2 Chemical absorbent utilizes the attraction with CO molecule (Yang et al. 2008). 2 Cryogenic distillation uses the principle of separation on the basis of cooling and condensation, thus the substantial energy requirement makes it less desirable for industrialapplication(Figueroaetal.2008).Membraneseparationisbasedonthedif- ferentphysicalor/andchemicalinteractionsbetweendifferentgasesandmembrane material.Thelong-termstabilityofthemembraneperformanceandexpenditurefor largesizemembranesaremajorhindrancesforindustrialimplementations(Brunetti etal.2010).ThecharacteristicsofeachtechnologyaresummarizedinTable1.1. ChemicalabsorptionhasbeeninvestigatedextensivelyforpostcombustionCO 2 capturebecauseithasshownthemostpotentialforvalidCO control,andithasbeen 2 commercializedformanydecades.Alkanolaminesarewidelyusedastheabsorbents for CO capture, and can be classified into three types, namely, primary amines, 2 secondaryaminesandtertiaryamines.ThecondensedstructuralformulasareRNH , 2 R NHand R N,respectively, inwhichthealkanolamines compriseofatleastone 2 3 OH and one amine groups. For one thing, primary and secondary amines, such as monoethanolamine (MEA) (Rochelle 2009) and diethanolamine (DEA) (Mandal etal.2003),havehighratesofreactionandhighmasstransfertowardCO toform 2 carbamate.However,MEAandDEAhaveseveraldrawbacks,includinglowerCO 2 loadingcapacityat0.5molCO /molamine,andhighenergyconsumptionforloaded 2 amine regeneration because the carbamate formed has relatively high heat of CO 2 absorption(Mondaletal.2012).Fortertiaryaminessuchasmethyl-diethanolamine (MDEA)(BenamorandAroua2007),whichhasarelativelylowerreactivitytowards CO ascomparedwiththeprimaryandsecondaryamines,buttheloadingcapacityof 2 MDEAishighabout1molCO /molamine,andexhibitsalowerenergypenaltyfor 2 1.1 General 3 Table1.1 Characteristicofabsorption,adsorption,distillationandmembraneinPost-combustion (Kenarsarietal.2013;Sema2012) Technology Characteristic Chemicalabsorption (cid:129) Mostmatureandbeenprovencommercially (cid:129) Easytoberetrofittedtotheexistingpowerplant (cid:129) Highselectivity,highabsorptionefficiencyandlowcapacitycost (cid:129) Highregenerationenergyrequirement (cid:129) Solventmanagement,i.e.corrosiveness,degradation Chemicaladsorption (cid:129) Highthermalandchemicalstability (cid:129) Nocorrosivenessandeasytooperate (cid:129) Highcapacityandoperationcost (cid:129) Lowadsorptionandregenerationefficiency Physicaladsorption (cid:129) Lowselectivityandlowadsorptionefficiency (cid:129) Highenergyconsumptionforregeneration Cryogenicdistillation (cid:129) CanobtainliquidCO2withhighpurity (cid:129) Significantlyenergypenalty Membraneseparation (cid:129) Noneedforregenerationprocess (cid:129) Highseparationenergyefficiency (cid:129) Lowpermeationselectivity (cid:129) Limitedontheoperatingtemperature regeneration resulting from the relatively lower heat of CO absorption associated 2 withbicarbamateformation(Ramachandranetal.2006;VaidyaandKenig2007). In addition to the primary, secondary and ternary amines, the specialty amines likesterichindranceamine[e.g.2-amino-2-methyl-1-propanol(AMP)](Tontiwach- wuthikuletal.1991)andcyclicdiamine[e.g.piperazine(PZ)](Rochelleetal.2011) havealsobeencommerciallyemployed.InthereactionofAMPandCO theformed 2 carbamateisnotstable,andthestabilityconstantofcarbamateforAMPandMEAare 0.1and12.5,respectivelyat303K(VaidyaandKenig2007),andCO mainlyreactsto 2 formcarbonateandbicarbonateions(Khanetal.2015).AMPhasoutstandingabsorp- tionanddesorptioncharacteristics,suchaslowerenergyconsumptionfordesorption, higherdegradationresistanceandhigherloadingcapacityof1molCO /molamine 2 (Yehetal.2001).PZisgenerallyusedasanactivatortoaddintotheotheraminesys- temsforCO captureduetoitsrapidreactionratewithCO (CullinaneandRochelle 2 2 2005;Xuetal.1998),anditcanimproveCO masstransferratesandimprovekinet- 2 ics,andblendedaminessuchasMEAwithPZandMDEAwithPZarethetypical representatives(Hilliard2008).Inaddition,someresearchershavereportedtheuse ofPZasanabsorbentforabsorption/desorptionsystemtocaptureCO ,andthecon- 2 centrated PZ showed better performance than MEA, including, higher absorption rate,lowerequivalentworkandlowerdegradationrate.Nevertheless,thesolubility ofPZinwaterisverylow,forexample,thesolubilityis14wt%at293K,CO cap- 2
Description: