ebook img

Post-AGB stars as testbeds of nucleosynthesis in AGB stars PDF

0.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Post-AGB stars as testbeds of nucleosynthesis in AGB stars

Astronomy&Astrophysicsmanuscriptno.stasinska-3533 February5,2008 (DOI:willbeinsertedbyhandlater) Post-AGB stars as testbeds of nucleosynthesis in AGB stars G.Stasin´ska1,R.Szczerba2,M.Schmidt2,andN.Sio´dmiak2 1 LUTH,ObservatoiredeMeudon,5PlaceJulesJanssen,F-92195MeudonCedex,France 2 N.CopernicusAstronomicalCenter,Rabian´ska8,87-100Torun´,Poland 6 Received/Accepted 0 0 2 Abstract. We construct a data base of 125 post-AGB objects (including R CrB and extreme helium stars) with published photospheric parameters(effectivetemperature andgravity) andchemical composition. Weestimatethemassesof thepost- n AGBstarsbycomparingtheirpositioninthe(logT ,logg)planewiththeoreticalevolutionarytracksofdifferentmasses.We a eff J constructvariousdiagrams,withtheaimoffindingcluestoAGBnucleosynthesis.Thisisthefirsttimethatalargesampleof post-AGBstarshasbeenusedinasystematicwayforsuchapurposeandwearguethat,inseveralrespects,post-AGBstars 3 2 should be morepowerful than planetary nebulaetotest AGB nucleosynthesis. Our mainfindings arethat: thevast majority ofobjectswhichdonotshowevidenceofNproductionfromprimaryChavealowstellarmass(M⋆ <0.56M⊙);thereisno 1 evidencethatobjectswhichdidnotexperience3rddredge-up haveadifferentstellarmassdistributionthanobjectsthatdid; v thereisclearevidencethat3rddredge-upismoreefficientatlowmetallicity.Thesampleofknownpost-AGBstarsislikelyto 4 increasesignificantlyinthenearfuturethankstotheASTRO-Fandfollow-upobservations,makingtheseobjectsevenmore 0 promisingastestbedsforAGBnucleosynthesis. 5 1 Keywords.stars:AGBandpostAGBstars—Stars:abundances—Stars:evolution—Physicaldataandprocesses:Nuclear 0 reactions,nucleosynthesis,abundances 6 0 / h 1. Introduction to the planetary nebula ejection. With the availability of fast p computers,itisnowpossibletocomputecompleteAGBmod- - o The asymptotic giantbranch (AGB) phase, a late stage in the els(Karakasetal.2002,Herwig2004)thatfollowallthepulses r evolution of low and intermediate mass stars, is quite com- t indetail.Testingmodelpredictionsbeforeusingtheminchem- s plex.Duringthisphase,variousnuclearprocessesareatwork ical evolution models of galaxies is vital, especially because a in different zones of the star, and a variety of mixing mecha- : even full evolutionary calculations are computationally diffi- v nisms take place (see e.g. Charbonnel2002 or Lattanzio2002 cult and still imply some ad hoc parameters (mixing length, i forshortreviews).Understandingthisphaseisimportant,since X mass loss ratesetc.). Indeed,as shown recentlybyVentura& theelementsmanufacturedduringtheAGBcontributesignifi- r D’Antona (2005a, 2005b), the predicted yields of intermedi- a cantlytothechemicalcompositionofgalaxies. ate mass stars depend strongly on the treatment adopted for The first models to give some predictions on the stellar convection and mass loss and on the nuclear reaction cross- yields from AGB stars are those by Iben & Truran(1978) sections. andRenzini&Voli(1981).Unfortunately,evennowadays,the As mentioned before, synthetic models published since state of stellar physics does not allow one to construct mod- 1993 reproduce some observables (e.g. the luminosity func- els entirely from first principles, and some quantities have to tionsofcarbon-starsandoflithium-richstars)byconstruction. be set as free parameters. The next generation of AGB mod- However, additional tests are needed and are crucial to con- els (Groenewegen & de Jong1993, Marigo et al.1996) ad- strainAGBmodels.Theanalysisofthechemicalcomposition justed those free parameters (essentially mass loss rate and ofplanetarynebulaecanprovidesometests.Suchanapproach mixing length) to reproduce a few observational constraints hasbeenadoptedrecentlybyMarigoetal.(2003)usingadata on stellar populations. Further models have been constructed baseof10planetarynebulae(PNe)observedinawidespectral since then (e.g. by Forestini & Charbonnel1997, Boothroyd range, from the far infrared to the ultraviolet. Previously, the &Sackmann1999,Marigo2001,Izzardetal.2004).Allthose chemical composition of planetary nebulae samples had been modelsare so-called synthetic modelsin that, for the thermal usedinamoreempiricalwaytotestAGBnucleosynthesisand pulsephase,theyuseanalyticalexpressionstoextrapolatecer- getaninsightintotherelationbetweenplanetarynebulae,the tainquantitiesobtainedfromfullevolutionarycalculationsup finalproductsoflowandintermediatemassstarsandtheirpro- Sendoffprintrequeststo:G.Stasin´ska, genitors. For example, Peimbert(1978) defined a category of e-mail:[email protected] planetarynebulae,called TypeI PNe, as objectshavingHe/H 2 Stasin´skaetal.:Post-AGBstarsastestbedsofnucleosynthesisinABGstars > 0.125andN/O > 0.5.Those PNe were interpretedasbeing 2. Theopticalsampleofpost-AGBstars. bornfromstarsthatexperiencedtheseconddredge-up.While the designation”TypeI PNe” stayed in the literature,its defi- 2.1.Generalpresentation nitionchangedseveraltimes(seeStasin´ska2004).Kingsburgh Asmentionedabove,thepost-AGBphasestartswhenthestar & Barlow(1994) comparedthe nebular N/H ratio to the solar hasexpelleditsenvelopeandlefttheAGBbranch,andisthen (C+N)/H ratio to find out which planetary nebulae exhibit N movingtotheleftintheH-Rdiagram.TheendofAGBischar- producedfromprimaryC.Theyalso identifiedplanetaryneb- acterized by strong mass loss, which (sometimes) can reach ulaewhoseprogenitorshadexperienced3rddredge-up,bring- ingtothesurfacecarbonproducedbythetriple-αreaction.To valuesof10−4 M⊙yr−1.Forstarsthathaveexperiencedintense masslossontheAGB,duetothelargedustopacityintheenve- thisend,theyconstructeda(C+N+O)/HvsC/Hdiagram.The lope,thepost-AGBstarisfirstseenthroughitsinfraredemis- N/O vs O/H diagram has been interpreted (e.g. Henry1990) sionduetoreprocessingofthestellarradiationbythecircum- as indicating that in some objects N is produced at the ex- stellardustgrains.Itisonlywhentheenvelopehassufficiently pense of O (during ON cycling). However, this diagram, de- expandedandbecomeopticallythinthatsuchstarsstartbeing pendingonauthorsandsamples,doesnotalwaysleadtosuch optically visible. In this paper, we are interested in optically a straightforward interpretation (Kingsburgh & Barlow1994, visiblepost-AGBstars.Weusedthepresentversion(Szczerba Leisy&Dennefeld1996).Henryetal.(2000)haveplottedPN etal.,inpreparation)ofourcatalogueofpost-AGBcandidates abundancesof C and N as a function of progenitormass (es- (Szczerbaetal.2001),whichnowcontainsabout330objects. timated from the stellar remnantmasses by Go´rny et al.1997 For all the sources from this catalogue we have searched the and Stasin´ska et al.1997 and converted to progenitor masses availableliteratureforstellarparametersandchemicalcompo- usinganinitial-finalmassrelation),andcomparedthiswiththe sition. predictionsfromsyntheticAGBmodels.Thiswasthefirstat- tempttocomparePNe abundancesdirectlywiththeresultsof We then estimated the stellar masses, M⋆, by comparison AGB model computations for a given initial mass and it was withtheoreticalevolutionarypathsinthe(logTeff,logg)plane. notveryconclusive. The theoretical paths we used were interpolated by Go´rny et al.(1997) from the post-AGB models of Scho¨nberner(1983) Thereisanothercategoryofobjectsthatmayservefortests and Blo¨cker(1995). The uncertaintiesin logTeff and logg in- ofAGBmodels.Thesearepost-AGBstars,i.e.starsthathave duce an uncertainty in the derived M⋆. The main source of already ejected their envelope but are not yet hot enough to uncertaintiesisthelowaccuracyofthedeterminationsofsur- ionizeitandproducea planetarynebula.Suchstarshavesev- facegravity,especiallyinthecaseofcoolpost-AGBstars(Teff eraladvantageswithrespecttoPNeandconstituteanexcellent below 10,000K). Since the relation between logg and stel- complementfortestingAGBnucleosynthesis.Themainadvan- lar mass on the post-AGB tracks is highly nonlinear,for each tage is that the stellar mass can be obtained directly from the object we determined the mass M⋆min corresponding to (log observed stellar spectrum by fitting a model atmosphere that Teff − ∆(logTeff), log g − ∆(logg)) and the mass M⋆max cor- allowsonetoderivethestellareffectivetemperature,Teff,and responding to (log Teff +∆(logTeff), log g +∆(llogg)). Since gravityg(thiscanalsobedoneforPNenuclei,butasthestars the derived stellar mass is a decreasing function of both Teff hotterandburiedintheionizedgas,thisismoredifficult).The andlogg,thevaluesof M⋆min and M⋆max shoulddefineacon- abundancesofquiteavarietyofelements(He,Li,C,N,O,Na, servativestellar mass interval.1 However,oneshould keepin Mg,Al,Si,S, Ca,Sc,Ti, Fe,Ni,Zn...)canbeobtainedfrom mind that many post-AGBstars are pulsating stars (Gautschy astellaratmosphereanalysis.Forcarbon,aparticularlyimpor- & Saio1996), while such pulses are not reproduced by the tantelementinAGBevolution,theuncertaintyintheestimated evolutionary models used to derive the stellar masses. In ad- abundanceisofthesameorderasfortheotherelements.Thisis dition, the pulsating nature of the atmosphere may introduce notthecaseinplanetarynebulae,wherenostrongcarbonline errorsin the abundancedeterminations,which are doneusing existsintheoptical,implyingthatthecarbonabundancedeter- static atmosphere models. A further source of uncertainty in minationissubjecttoa higheruncertaintythantheoxygenor thedeterminationofmassescomes,ofcourse,fromthemodel thenitrogenabundancedetermination.Finally,post-AGBstars tracksthemselves.Allthisimpliesthatthemassesofpost-AGB are expected to extend to smaller masses than the nuclei of starsarequiteuncertainandmodel-dependent.Inspiteofthis, planetary nebulae. Indeed,planetary nebulae with central star webelievethatthemethodprovidesusefulinformation.Itcan masses lowerthan0.55M⊙ do notexistsince the nebulargas be improvedon in the future, as better spectra become avail- has dissipated in the interstellar medium long before the star ableforspectroscopicanalysisandasprogressinunderstand- hasbecomehotenoughtoionizeit.Ontheotherhand,thereis ingthephysicsofpost-AGBstarsismade.Inparticular,when nosuchlimitationforpost-AGBstars. completegridswithdifferentmetallicitiesbecomeavailable,it shouldbepossibletoaccountforthemetallicityinthederiva- This paperpresentsthe first attemptto use a largesample tion of the stellar masses. For the moment, as far as one can ofpost-AGBstarstotestAGBnucleosynthesis.InSect.2,we judge from several tracks computed by Vassiliadis & Wood describe the constitution of our sample. In Sect. 3 we show (1994)atdifferentmetallicities,theeffectofmetallicityinmass some empirical diagrams and propose simple interpretations. In Sect. 4 we summarize the main findings and outline some 1 The available model grid allows us to determine masses only prospects. withintherange(0.55–0.94M⊙). Stasin´skaetal.:Post-AGBstarsastestbedsofnucleosynthesisinABGstars 3 derivationwouldbecompletelydominatedbythelargeerroron sources for the abundances are the same as given in col. (8) logg. ofTable1.Overall,thetypicaluncertaintyinelementalabun- The details of our search and the above estimates of the dancesisabout0.2-0.3dex.However,theuncertaintyinabun- stellarmassesarepresentedinTable1.Theobjectsaregrouped danceratiosofheavyelementsissmaller,sincemanysources intoseveralsubtypes:RVTaustars(29objects),suspectedRV of errors affect the derived abundancesin a similar way. One Taustars(6objectsfromMaasetal.2005),RCrBstars(19ob- exceptionisthecase ofoxygen,if itsabundancehasbeende- jects),extremeheliumstars(15objects)andalltheremaining terminedfromtheO7771-5triplet.Itiswellknownthatthis post-AGBstars(56objects). triplet gives enhanced abundances,if non-LTE effects are not TheRVTaustarsarehighlyluminousvariablestarscharac- taken into account, and that the O  7771-5vs [O  ] discrep- terizedbylight-curveswithalternatedeepandshallowminima, ancy is higher for low metallicity (Takeda2003). In most ob- periodsbetween30and150days,andF,GorKspectraltypes jectslistedinTable2,itappearsthattheuseofthistripletwas (seee.g.Prestonetal.1963).Theyhavebeenidentifiedaspost- avoided. AGBstarsbyJura(1986),whoshowedthattheirIRASfluxes indicatethattheyhavejustleftaphaseofveryrapidmassloss. 2.2.Notesonindividualobjectsanddiscussionof TheRCrBstars(alreadyknownformorethan200years!) abundanceuncertainties arerareH-deficientandC-richsupergiantsthatundergoirreg- ulardeclinesofupto8magnitudeswhendustformsinclumps Forseveralsourceswefoundmorethanonereferencewithstel- alongthelineofsight(seee.gClayton1996forareview).The lar parameters and chemical composition determined. Below extreme H-deficiency of the R CrB stars suggests that some we presentargumentsforthepreferredsourceofinformation. mechanism removedthe entire H-rich stellar envelope.There Theobjectnumbercorrespondstothenumbergivenincolumn aretwomajormodelswhichexplaintheirorigin:amergersce- (1)ofTables1and2. nario(Webbink1984,Ibenetal.1986)orthefinalheliumshell Object 1: IRAS18384−2800. The atmospheric parameters flashscenario(Fujimoto1977,Renzini1979).Thereisstillno and chemical abundances have been analyzed recently by consensusaboutwhichscenarioisvalid(noneofthemcanex- AFGM01andRvW01.Thesameatmosphericparameterswere plainalltheobservedproperties).Onlythesecondscenarioim- derivedinbothanalyses.ThespectraobtainedbyRvW01have pliesapost-AGBnature.WehaveincludedthesestarsinTable apparentlymuchhigherS/N-ratiothanthoseofAFGM01,and 1, but we do not consider them as bona-fide post-AGB stars. thechemicalanalysisofRvW01isbasedonahighernumberof Extremeheliumstars,whichcouldbeevolutionarilyconnected lines,sotheresultsofRvW01werechosenforfurtheranalysis. toRCrBstars(see e.g.Pandeyetal.2001),arealso included Object3:IRAS17279−1119.Thisstarhasbeenanalyzedby inourTableanddiscussedtogetherwithRCrBstars. AFGM01andVW97.BothanalysesgavesimilarvalueforT Ineachsubtype,theobjectsinTable1areorderedbygalac- eff butratherdifferentvaluesforthesurfacegravity.Sincethede- ticcoordinateslandb.Forsomesources,thereareseveralen- terminationofAFGM01wasbasedonasinglespectrum,while triesandinSect.2.2webrieflydiscussthepreferreddetermina- thevW97determinationwasbasedonseveralspectraatdiffer- tions- usually,theyarebasedonhigherqualityspectroscopic entphotometricphases,itislikely thatmoreconsistentatmo- material. The columnscontain the followingdata: (1) the ob- spheric parameters and chemical composition are obtained in jectnumber;(2)theobjectcoordinatesl,b;(3)theIRASname; theAFGM01paper. (4)theHD number;(5)othername(eithertheusualnameor Object 5: IRAS19500−1709. Both analyses by vWR00 and the designation in one of the following catalogues (chosen in vWWW96 give similar atmospheric parameters. The vWR00 thisorder:GeneralCatalogueofVariableStars,LS,BD,SAO, paperisbasedonahigherS/Nandabroaderspectralcoverage andCD catalogues); (6)the effectivetempearture;(7)the er- andwaschosenforthesubsequentanalysis. ror attributed to T ; (8) the logarithm of the surface gravity incms−2;(9)theeerffrorattributedtologg;(10)referencesand Object6:IRAS19590−1249.WeadoptedtheRDM03values. TheanalysisofRDM03isbasedonhigherqualitymaterialand notesforthecollectedstellarparameters(explanationsforthe is based on fullyblanketednon-LTEatmosphericmodelsthat abbreviations used and for notes are given at the end of the shouldguaranteemoreaccuratevaluesforT andlogg. table); (11) M⋆ in units of solar mass; (12) M⋆min and (13) eff Object8:PHL1580.KL86donotgiveabundances,sowehad M⋆max. torelyonthosegivenbyCDK91. Table2isorderedinthesamewayasTable1.Itscolumns contain:(1)theobjectnumber;(2)theobjectcoordinatesl,b; Object10:IRAS19114+0002.TheanalysisofRH99isbased (3)– (8)theabundancesofC, N,O,S, Fe,andZn,expressed on higher quality material than in ZKP96. As a consequence asǫ(X)=12+ log(X/H) whereX/His theabundanceofele- the microturbulence derived by RH99 (5.25 km s−1) is much mentX in numberrelativeto H. In thecase of RCrB andex- lower than the supersonic value found by ZKP99 (8 km s−1). tremeheliumstars,theabundancesarelistedasǫ(X)=12.15+ Since TPJ00 give a really unusual result we selected the data log(X/N),whereX/Nistheratioofnumberdensityofelement fromRH99. XtothetotalnumberdensityofnucleonsN.Notethatthesec- Object12:PG1704+222.TheanalysisofMH98is basedon onddefinitionismoregeneralthantheearlieroneandbothare better quality spectra than the preliminary results of CTM93, consistentiftheabundanceofheliumamountstoǫ(He)=11,a andtheirresultswereadopted. conditionwhichisfulfilledwithgoodaccuracyintheremain- Object14:IRAS18062+2410.Thereareemission linesvisi- ingstars(seeAsplundetal.2000andPandeyetal.2001).The bleinthespectrum.Thefourpaperscontainingadetermination 4 Stasin´skaetal.:Post-AGBstarsastestbedsofnucleosynthesisinABGstars Fig.1. a-(left)The ǫ(S) vs. ǫ(Zn) relation in our post-AGBsample. b-(right)The S/Zn vs. ǫ(Zn) relation. Objects from the R CrBclassandextremeheliumstarsarerepresentedbyblackcircles.Thenumberofobjectsinoursamplewithavailabledatais indicatedinthetoprightcornerofeachpanel. of atmosphericparametersare notindependent.The paper by and vWR00 are based on a higher quality spectrum than the AFGM01wassuggestedbytheworkofPGS00.Itisnotquite paperbyK95,yetthereisadifferenceintheabsolutedetermi- clear how the atmospheric parameters were determined. The nationofthecarbonabundance.Theremainingabundancesare analysis of RDM03 is based on non-LTE, fully blanketed at- similar.DatafromvWR00wereadopted. mosphericmodelsandthesamespectroscopicmaterialasused Object 37: IRAS06530−0213. The analysis of RvWG04 is in the LTE analysis by MRK02. Hence preferenceis givento based onhigherqualityspectroscopicmaterialthanHR03, so work by RDM03. Their values consistently point to a higher theirresultswereused. massofthestar. Object 50: IRAS12538−2611. The analysis of GAFP97 is Object 19: IRAS19475+3119. Since the paper of KPT02 is basedonhigherqualityspectraandmorelinesareusedforthe based on spectra with relatively low resolution (15000), the determinationofthechemicalabundances,sotheirvalueswere analysisbyAFGM01isprobablymorereliable. preferred. Object 20: IRAS17436+5003.Both analysis by KPT02 and Object52:BPSCS22877−0023.Bothanalysesleadtouncer- LBL90resultinamassivepost-AGBstar.KPT02spectrahave taindeterminationsofatmosphericparameters,butMH98used lowerresolutionthanthoseofLBL90,soweadoptedthedata alargernumberofmethods,soweadoptedtheirvalues. fromthelatter. Object54:LS3591.WeadoptedtheVSL98resultssinceonly Object 22: IRAS22223+4327. Both papers by vWR00 and theirworkgiveschemicalabundances. Object57:V453Ophandobject60:HD216457.Theabun- DvWW98arebasedonthesamespectroscopicalmaterialand danceanalysisofRDvW04 isbasedonhigherqualityspectra the same methods of analysis. We adopted the data from the andawiderspectralrangethanthatofGLG00andGLG98,so morerecentpapervWR00. weadoptedtheresultsfromRDvW04. Object 24: IRAS22272+5435. Both papers by ZKP95 and Object 98: IRAS15465+2818. The paper by AGL00 is the RLG02giveconsistentatmosphericparametersbutdifferinde- onlyonethatgiveschemicalabudances. rivedabundances,particularlyofFe.Otherdeterminationsare Object 113:V4732Sgr and object 117:FQ Aqr. The paper basedonrelativelyfewlines(C,N)oronjustoneline(Zn,O) of PRL01givesa consistentsetof abundancesforthe sample and maybe in error. Thepaper by RLG02 is based on higher ofextremeheliumstarsanalyzedhere,sotheirresultsarepre- qualitymaterialsoweusedtheirresults. ferred. Object 25: IRAS23304+6147The vWR00 analysis is based onmuchhigherresolutionspectra(60000)comparedtothatof KSP00(15000),soweusedtheresultsfromvWR00. 3. Empiricaldiagrams Object 29: IRAS04296+3429. The works by vWR00 and 3.1.Choiceofametallicityindicator DvWW98arebasedonthesamespectroscopicalmaterialand thesamemethodsofanalysis.DatafromvWR00wereadopted. Since it is expected that yields are strongly dependent on KSP99spectrahavelowerresolution. “metallicity” or, better said, on the initial chemical composi- Object35:IRAS07134+1005.AllanalysesofHD56126give tion ofthe star, we first haveto choosea reasonablemetallic- similarvaluesofatmosphericparameters.ThepapersbyHR03 ity indicator.As stressed, e.g.,by Mathis & Lamers(1992) or Stasin´skaetal.:Post-AGBstarsastestbedsofnucleosynthesisinABGstars 5 Lambert(2004),theusualmetallicityindicatorinstellaratmo- spheres,Fe,cannotbeusedforpost-AGBstarsbecauseofpos- siblestrongdepletionindustgrainsinaformerstageandsub- sequent ejection of the grains (dust-gas separation). Oxygen, themostabundant‘’metal”andthusthebesttheoreticalmetal- licity indicator,is possiblyaffected by nucleosynthesison the AGB(ONcycle,hotbottomburning).Fromthelistofelements forwhichwecompiledtheabundances,goodmetallicityindi- catorswouldbeSandZn.Thefirstoneisanα-element,likeO, anditsabundanceintheGalaxyisproportionaltothatofO.For the secondone,the nucleosynthesismechanismis unknowna priori, but Zn appears to roughly follow Fe (Mishenina et al. 2002).Figure1ashowsǫ(S)vs.ǫ(Zn)inourobjects.Thecor- relationisquitegood(thereisoneoutlier:VCrA, whichalso appearstobeasanextremeobjectinmanyoftheabundance- ratio diagrams of Asplund et al. 2000). The dispersion gives anideaofarealisticaverageabundanceuncertainty:about0.3 dex.Note that the data set spans a metallicity rangeof 2 dex. Figure1bshowsthatS/Znhasatendencytoincreaseasǫ(Zn) decreases (on average by 0.5dex per dex). This is the well- knownα-enhancementobservedinPopulationIIstars(Norris Fig.2. Theǫ(O)vs.ǫ(S)relation. etal.2001).Theeffectofα-enhancementonstellarparameters andstellarevolutioniscomplex(Kimetal.2002)andhasnot yetbeeninvestigatedinAGBstars.We choseSasourprinci- palmetallicityindicator,sincetherearemorestarswithdeter- minationsofSabundances(113)thanofZnabundances(76). We keepZnasasecondaryindicatorthatmighttesttheeffect ofα-enhancedmixturesinthestars.Wenote,however,thatthe Znabundancemeasurementsoftenrelyonlyononeline,which makestheevaluationofstatisticalerrorsdifficult. Figure 2 shows ǫ(O) vs. ǫ(S). The dispersion is such that obviouslyoxygencannotbechosenasametallicityindicatorin oursample.Thereasonforthisdispersionisnotclearapriori.It canbeduetonucleosynthesisandmixingaffectingtheoxygen abundance. But it could also be due to larger uncertainties in theoxygenabundancethanwasthought.NotethattheRCrB starsandextremeheliumstarsshowthelargestdispersionand thelargerproportionofobjectswithO/Ssmallerthansolar. 3.2.Nitrogenenhancement Figure3showslogN/Ovs.ǫ(O).TheobjectsfromtheRCrB Fig.3. ThelogN/Ovs.ǫ(O)relation. class and the extreme helium stars (which are represented by blackcircles)showdifferentbehaviourfromtherest:theydraw a clear anticorrelation between N/O and ǫ(O). This diagram He-burningproductshastobeinvokedtoreachthishighNen- hasalsobeenconstructedforplanetarynebulae(e.g.Henryet hancement. al.1989,Kingsburgh&Barlow1994,Leisy&Dennefeld1996) withdifferentresultsdependingontheauthorsandonthesam- 3.3.Indicationsofdredge-up ples.Someclaimnottoseeanyanticorrelation.Toourknowl- edge, never has the anticorrelation been seen so prominently Figure 4 shows ǫ(C+N+O) vs. ǫ(C). Only objects in which fora class ofPNe as forourR CrB and extremeheliumstars the abundancesof the three elements(C, N, andO) are avail- subsampleofpost-AGBstars.Oneinterpretationofsuchanan- able are represented here. This plot is very similar to the ticorrelation is the production of N at the expense of O (ON plot presented by Kingsburgh & Barlow(1994) and Leisy & cycle) brought to the stellar surface by the 2nd dredge-up. Dennefeld(1996)forplanetarynebulae,butwithalargernum- However, the N/O values reached by R CrB stars are much berofpoints.Theobjectswiththehighestcarbonabundances, higher than for the remaining post-AGB stars and for plane- which are mainly R CrB stars and extreme helium stars, are tarynebulae.Asplundetal.(2000)arguethatCNOcyclingon carbondominated.ThisagreeswithascenarioofCbeingpro- 6 Stasin´skaetal.:Post-AGBstarsastestbedsofnucleosynthesisinABGstars Fig.4. ǫ(C+N+O)vs.ǫ(C). Fig.6.[(C+N+O)/S](i.e.the logarithmof (C+N+O)/Sminus the logarithmof the solar value of this ratio) as a function of themassofthepost-AGBstar.Objectswithmasseslowerthan ducedbythetripleαreactionandbroughttothestarsurfaceby 0.55 M⊙ have been placed at 0.54 M⊙, objects with masses thethirddredge-up. largerthan0.94M⊙at0.95M⊙, 3.4.Dredge-upandstellarmass thanintheSun.Figure6plots[(C+N+O)/S](i.e.thelogarithm A more quantitative way to define whether dredge-up mech- of (C+N+O)/S minus the logarithm of the solar value of this anisms have occurred is to compare abundance ratios ob- ratio) as a function of the stellar mass. This diagram shows served in post-AGB stars or planetary nebulae with estimates that, according to our definition ([(C+N+O)/S] > 0), the vast of the initial abundance ratios. For example, Kingsburgh & majority of post-AGB stars in our sample (about 70%) have Barlow(1994) have proposed to call Type I PNe (understood experienced3rddredge-up.Italso suggeststhatthe massdis- as“objectsthathaveexperiencedenvelope-burningconversion tributionsofthetwosubclassesdonotdiffersignificantly. to nitrogen of dredged up primary carbon”) those objects in which the nitrogen abundance exceeds its progenitor’s C+N 3.5.Dredge-upandmetallicity abundance. As a proxy to the progenitor’s C+N abundance, theyusethevalueofC+NintheOrionnebula.Sincethepost- Theoreticalmodels(e.g.Marigo2001)predictthat3rddredge- AGB consideredhere are notnecessarily all close to the Sun, upismoreimportantatlowmetallicity.Figure7teststhispre- and because of abundance gradients in the Galaxy, perhaps a dictionbyplotting[(C+N+O)/S]asafunctionofǫ(S).Itshows safer way is to compare the N/S value in the post-AGB stars a net decrease in the efficiency of the 3rd dredge-up as the to the solar (C+N)/S value, instead of using abundanceswith metallicityincreases,inagreementwiththemodels.Thisisthe respectto hydrogen.Forthe solarabundances,we relyonthe first time that the observational evidence for this is so clear. compilation by Lodders(2003). Defining as Type I those ob- Note that, qualitatively, the same conclusion can be drawn, jects in which N/S is larger than the solar (C+N)/S ratio, we at least for bona-fide post-AGB stars, when using Zn instead show histograms of masses of Type I (left) and non-Type I of S as a metallicity indicator, as seen in Fig. 8, which plots (right)post-AGBstarsinFig.5.Itisseenthat,whileTypeIob- [(C+N+O)/S] as a function of ǫ(Zn). However, R CrB and jectsextendovertheentirerangeofmassesinoursample,more extreme helium stars tend to have higher [(C+N+O)/S] than thanhalfofthenon-TypeIobjectshavemassesbelow0.56M⊙. bona-fidepost-AGBstarsofsamemetallicity.Theyalsobehave The difference in stellar mass distributions is so tremendous differentlyinFigs.7and8,butmoreZnabundancedetermina- that it is highly significant, even taking into account the fact tionswouldbenecessarytomakethisclear. that error bars on stellar masses are large (as seen in Table 1 anddiscussedinSect.2.1).Theconclusionremainsthesame, 3.6.Carbon-richversusoxygen-richpost-AGBstars. althoughnotsostrong,ifweuseZninsteadofSasthemetal- licity indicator. However, when considering only R CrB and Figure9displaysthevalueofC/Oasafunctionofstellarmass. extremeheliumstars,nosuchdifferenceisseen. It clearly shows that oxygen-rich stars, at least in our sam- Similarly, one can identify objects that have experienced ple,tendtoaccumulateatthelowestmasses, whilethisisnot 3rddredge-upas those objectsin which (C+N+O)/Sis larger thecaseforcarbon-richstars.Notealsothattheproportionof Stasin´skaetal.:Post-AGBstarsastestbedsofnucleosynthesisinABGstars 7 Fig.5. Stellar mass distributionfor Type I post-AGBstars (left) and non-TypeI post-AGBstars (right).We call Type I those objectsinwhichN/Sishigherthanthesolar(C+N)/Svalue. Fig.7. [(C+N+O)/S] as a function of the metallicity as mea- Fig.8. [(C+N+O)/S] as a function of the metallicity as mea- suredbyǫ(S). suredbyǫ(Zn). 4. Summary,openquestions,andprospects carbon-richstars is 36%, while the proportionof stars having Themainaimofthispaperwastoshowtheutilityofpost-AGB experienced3rddredge-upisaslargeasabout70%.Ofcourse, starsto testtheoriesof AGBnucleosynthesis.So far,theonly these percentages should be taken with a grain of salt since testsofAGBnucleosynthesisbasedonlargesampleshavebeen the errors in determined abundances may place an object in madeusingplanetarynebulae.Post-AGBstarshaveseveralad- thewrongcategory.However,thedifferencebetweentheseper- vantagesoverplanetarynebulae:1) abundancesofa largeva- centagesandthelargespreadofC/O,aswellas[(C+N+O)/S] riety of elements can be derived, including of s-process ele- values,arguesinfavourofthenumberofcarbon-richstarsbe- ments;2)theabundanceofcarbon,anextremelyimportantel- ingsignificantlysmallerthanthenumberofstarshavingexpe- ement for the diagnostics, is known with the same accuracy rienced3rddredge-up.Qualitatively,thisisexpected,since3rd as the other elements, while in planetary nebulae, the carbon dredge-upisnotnecessarilysufficienttoproduceacarbonstar. abundance is significantly less reliable and more difficult to 8 Stasin´skaetal.:Post-AGBstarsastestbedsofnucleosynthesisinABGstars mer stages may have affected its present photospheric abun- dance).FollowingthedefinitionofTypeIplanetarynebulaeby Kingsburgh&Barlow (1994)butaccountingforthe metallic- ity,we definea classofTypeI post-AGBstars. We showthat non-typeIobjectsareinvastmajorityoflowmass(M⋆<0.56 M⊙).We alsoshowclearevidencethat3rddredge-upismore efficientatlowmetallicity. Wehavethusdemonstratedthepotentialofpost-AGBstars toconstrainthemodelsofAGBstarsandthepredictedyields. Thesampleofpost-AGBstarsislikelytogrowinthenearfu- ture, thanks to ASTRO-F, which is much more sensitive than IRASandshouldallowthediscoveryofmanyinfrared-excess stars amongwhich post-AGBstars are found.This will make the use of post-AGB stars even more attractive and powerful. In the present paper, we limited ourselves to only a few ele- mentsandtosimpleinterpretationswithoutdirectcomparison tomodels.Wedidnotaddressthequestionofobservationalbi- ases, which shouldbe investigatedby performingsimulations on models. Future studies will address other issues related to AGB nucleosynthesis,such as the productionof s-processel- Fig.9. Photospheric C/O versus the mass of the post-AGB ements,whicharemoreeasilydonewithpost-AGBstarsthan stars. withplanetarynebulae. Acknowledgements. This work was partly supported by grant obainthanthatofOandN;3)the determinationoftheatmo- 2.P03D.017.25ofthePolishStateCommitteeforScientificResearch spheric parameters T , and gravity g allows one to estimate and by the European Associated Laboratory ”Astronomy Poland- eff France”. G.S.isgrateful toBeatrizBarbuyandCorinneCharbonnel themassofthepost-AGBstarbycomparisonwiththeoretical forusefulcommentsonapreviousversionofthepaper.Commentsby stellarevolutionarytracks. thereferee,M.Reyniersaregratefullyacknowledged. Ofcourse,thestudyofpost-AGBstarshasitsowndifficul- ties.Inparticular,theabundanceanalysisisquitedifficultand manyeffectshavetobeconsideredindetail(seee.g.Asplund References et al. 2000). The lack of suitable lines for reliable analysis is Arellano Ferro, A.A., Giridhar, S., & Mathias, P. 2001, A&A, 368, oftenaproblem:i)forcoolerobjects,theoxygenabundanceis 250(AFGM01) hardtoderive,since usefullinesofoxygenonlystarttoshow Asplund, A., Gustafsson, B., Lambert, D.L., & Rao, N.K., 2000, up at temperaturesabove6000K;ii) nitrogen is often derived A&A,353,287(AGL00) from a few red lines, which are known to suffer non-LTE ef- Blo¨cker,T.,1995,A&A,299,755 Boothroyd,A.I.&Sackmann,I.-J.,1999,ApJ,510,232 fects;iii)starsthatarenotenrichedincarbon,sometimeshave Charbonnel,C.,2002,Ap&SS,281,161 onlyafewsuitablecarbonlines. Clayton,G.C.,1996,PASP,108,225 We considered all those objects from the present version Conlon, E.S., Dufton, P.L., & Keenan, F.P., 1994, A&A, 290, 897 of the catalogue of post-AGB objects (Szczerba et al.2001, (CDK94) Szczerba et al., in preparation)for which photosphericchem- Conlon,E.S.,Dufton,P.L.,Keenan,F.P.,&McCausland,R.J.H.,1991, ical abundances have been determined. We plotted diagrams MNRAS,248,820(CDK91) basedontheseabundances,similartotheonesbuiltforplane- Conlon, E.S., Theissen, A., Moehler, S., 1993, A&A, 269, L1 tarynebulaestudies.Thesametrendsasforplanetarynebulae (CTM93) werefound,butinaclearerfashion(e.g.N/Ovs.ǫ(O),reveal- Decin,L.,VanWinckel,H.,Waelkens,C.,&Bakker,E.J.,1998,A&A, ing the effect of the ON cycle, or (C+N+O)/H vs. ǫ(C) indi- 332,928(DvWW98) Drilling, J.S., Jeffery, C.S., & Heber, U., 1998, A&A, 329, 1019 catingthepresenceofobjectswithCproducedbythetripleα (DJH98) reaction).This is extremelyencouragingand shows the inter- ForestiniM.&Charbonnel,C.,1997,A&AS,123,241 estofusingpost-AGBstarstocomplementplanetarynebulae, Fujimoto,M.Y.,1977,PASJ,29,331 despitethedifficultiesinabundancedeterminations. Gauba,G.,&Parthasarathy,M.,2003,A&A,407,1007(GP03) Because thepost-AGBstars inoursampledonothaveall Gautschy,A.,Saio,H.,ARA&A1996,34,551 Giridhar, S., Arellano Ferro, A.A., & Parrao, L., 1997, PASP, 109, thesamemetallicities,wearguedthatabetterindicatorofthird 1077(GAFP97) dredge-upand/orhotbottomburningisobtainedbyconsider- Giridhar, S., Lambert, D.L., & Gonzalez, G., 1998, ApJ, 509, 366 ing the photosphericabundancesof C, N, O with respectto a (GLG98) metallicity indicator (and not with respect to H). It is there- Giridhar, S., Lambert, D.L., & Gonzalez, G., 2000, ApJ, 531, 521 fore these ratios that we compared with the solar ratios. We (GLG00) show that a convenient metallicity indicator is S (Fe cannot Giridhar, S., Rao, N.K., & Lambert, D.L., 1994, ApJ, 437, 476 be used for post-AGB objects because dust depletion in for- (GRL94) Stasin´skaetal.:Post-AGBstarsastestbedsofnucleosynthesisinABGstars 9 Gonzalez, G., Lambert, D.L., & Giridhar, S., 1997a, ApJ, 479, 427 Maas,T.,VanWinckel,H.,&LloydEvans,T.,2005,A&A,429,297 (GLG97a) (MvWLE05) Gonzalez, G., Lambert, D.L., & Giridhar, S., 1997b, ApJ, 481, 452 Maas, T., Van Winckel, H., & Waelkens, C., 2002, A&A, 386, 504 (GLG97b) (MvWW02) Gonzalez,G.,&Wallerstein,G.,1992,MNRAS,254,343(GW92) Marigo,P.,2001,A&A,370,194 Go´rny,S.K.Stasin´ska,G.,Tylenda,R.,1997,A&A,318,256 Marigo, P., Bernard-Salas, J., Pottasch, S.R., Tielens, A.G.G.M., Groenewegen,M.A.T.&deJong,T.1993,A&A,267,410 Wesselius,P.R.,2003,A&A,409,619 Hambly, N.C., Dufton, P.L., Keenan, F.P., & Lumsden, S.L., 1996, Marigo,P.,Bressan,A.&Chiosi,C.,1996,A&A,313,545 MNRAS,278,811(HDK96) Mathis,J.S.&Lamers,H.J.G.L.M.,1992,A&A,259,39 Harrison,P.M.,&Jeffery,C.S.,1997,A&A,323,177(HJ97) McCausland,R.J.H.,Conlon,E.S.,Dufton,P.L.,&Keenan,F.P.,1992, Heber,U.,1983,A&A,118,39(H83) ApJ,394,298(MCD92) Henry,R.B.C.,1990,ApJ,356,229 Mishenina,T.V.,Kovtyukh,V.V.,Soubiran,C.,Travaglio,C.,Busso, Henry,R.B.C.,Kwitter,K.B.&Bates,J.A.,2000,ApJ,531,928 M.,2002,A&A,396,189 Henry,R.B.C.,Liebert,J.,Boroson,T.A.,1989,ApJ,339,872 Moehler,S.,&Heber,U.,1998,A&A,335,985(MH98) Herwig, F., 2004, in Asymmetrical Planetary Nebulae III: Winds, Mooney,C.J.,Rolleston,W.R.J.,Keenan,F.P.,etal.,2002,MNRAS, StructureandtheThunderbird, ed.M.Meixner,J.H.Kastner,B. 337,851(MRK02) Balick&N.Soker,ASPConferenceProceedings,313,387 Munn,K.E.,Dufton,P.L.,Smartt,S.J.,&Hambly,N.C.,2004,A&A, Hrivnak,B.L.,&Reddy,B.,2003,ApJ,590,1049(HR03) 419,713(MDS04) IbenI.,Jr.&Truran,J.W.1978,ApJ,220,980 Napiwotzki, R., Heber, U., & Ko¨ppen, J., 1994, A&A, 292, 239 Izzard, R.G., Tout, C.A., Karakas, A.I., Pols, O.R., 2004, MNRAS, (NHK94) 350,407 Norris,J.E.,Ryan,S.G.,Beers,T.C.,2001,ApJ,561,1034 Jeffery,C.S.,1993,A&A,279,188(J93) Parthasarathy, M., Garc´ia-Lario, P., Sivarani, T., Manchado, A., & Jeffery,C.S.,&Heber,U.,1993,A&A,270,167(JH93) SanzFernana´ndezdeCo´rdoba,L.,2000,A&A,357,241(PGS00) Jeffery,C.S.,Hanill,P.J.,Harrison,P.M.,&Jeffer,S.V.,1998,A&A, Pereira,C.B.,Lorenz-Martins,S.,&Machado, M,2004,A&A,422, 340,476(JHHJ98) 637(PLM04) Jeffery,C.,&Heber,U.,1992,A&A,260,133(JH92) Pandey,G.,Lambert,L.D.,Rao,N.K.,&Jeffery,C.S.,2004,ApJ,602, Jeffery,C.S.,Hill,P.W.,&Heber,U.,1999,A&A,346,491(JHH99) L113(PLRJ04) Karakas,A.I.,Lattanzio,J.C.,Pols,O.R.,2002,PASA,19,515 Pandey,G.,Rao,N.K.,Lambert,L.D.,Jeffery,C.S.,&Asplund,M., Kendall, T.R., Dufton, P.L., Keenan, F.P., Beers, T.C., & Hambly, 2001,MNRAS,324,937(PRL01) N.C.,1997,A&A,317,82(KDK97) Pandey, G., Kameswara R.N., Lambert, D.L., Jeffery, C.S., & Kilkenny,D.,&Lydon,J.,1986,MNRAS,218,218(KL86) Asplund,M.2001,MNRAS,324,937 Kim,Y.-C.,Demarque,P.,Yi,S.K.,Alexander,D.R.,2002,ApJS,143, Peimbert,M.,1978,inPlanetaryNebulae,IAUSymposium78,p.217 499 Preston, G.W., Krzemi/’nski, W., Smak, J., & Williams, J.A., 1963, Kingsburgh,R.L.,Barlow,M.,1994,MNRAS,271,257 ApJ,137,401 Klochkova,V.G.,1995,MNRAS,272,710(K95) Rao, N.K., Giridhar, S., & Ashoka, B.N., 1990, MNRAS, 244, 29 Klochkova, V.G., & Panchuk, V.E., 1996, Bull. Spec. Astrophys. (RGA90) Observ.,41,5(KP96) Rao,N.K.,Goswami,A.,&Lambert,D.L.,2002,MNRAS,334,129 Klochkova, V.G., & Panchuk, V.E., & Tavolzhanskaya, N.S., 2002, (RGL02) Astron.Lett.,28,49(KPT02) Rao,N.K.,&Lambert,D.L.,2003,PASP,115,1304(RL03) Klochkova,V.G.,Szczerba,R.,&Panchuk,V.E.,2000,Astron.Lett., Reddy, B., Bakker, E.J., & Hrivnak, B.J., 1999, AJ, 117, 1834 26,88(KSP00a) (RBH99) Klochkova,V.G.,Szczerba,R.,&Panchuk,V.E.,2000,Astron.Lett., Reddy,B.,&Hrivnak,B.J.,1999,AJ,117,1834(RH99) 26,439(KSP00b) Reddy,B.,Lambert,D.L.,Gonzalez,G.,&Yong,D.,2002,ApJ,564, Klochkova, V.G., Szczerba, R., Panchuk, V.E., & Volk, K., 1999, 482(RLG02) A&A,345,905(KSP99) Klochkova, V.G., Yushkin, M.V., Miroshnichenko, A.S., Panchuk, Reddy, B., Parthasarathy, M., & Sivarani, T., 1996, A&A, 313, 191 V.E.&Bjorkman,K.S.,2002,A&A,392,143(KYM02) (RPS96) Kodaira,K.,1973,A&A,22,273 Renzini, A., 1979, in Stars and Star Systems, ed. B.E. Westerlund, Kwok, S., Volk, K., & Bidelman, W.P., 1997, ApJS, 112, 557 Reidel,Dordrecht,155 (KVB97) Renzini,A.&Voli,M.,1981,A&A,94,175 Iben,I.Jr,Tutukov,A.V.,&Yungelson,L.R.,1986,ApJ,456,750 Reyniers, M., Deroo, P., Van Winckel, H., Goriely, S., & Siess, L., Jura,M.,1986,ApJ,309,732 2004,Mem.S.A.It.,75,584(RDvW04) Lambert, D.L. in the XIII Canary Islands Winter School of Reyniers,M.,&VanWinckel,H.,2001,A&A,365,465(RvW01) Astrophysics, “Cosmochemistry. The melting pot of the ele- Reyniers, M., Van Winckel, H., Gallino, R., & Straniero, O., 2004, ments”, ed. C. Esteban, R. J. Garcia-Lo´pez, A. Herrero, F. A&A,417,269(RvWG04) Sa´nchez,CambridgeUniversityPress,p.81 Ryans,R.S.I.,Dufton,P.L.,Mooney,C.J.,etal.2003,A&A,401,1119 Lattanzio,J.,2002,NewAstronomyReviews,46,469 (RDM03) Leisy,P.&Dennefeld,M.,1996,A&AS,116,95 Scho¨nberner,D.,1983,ApJ,272,708 Lodders,K.,2003,ApJ,591,1220 Sivarani, T., Parthasarathy, M., Garc´ia-Lario, P., Manchado, A., & Luck,R.E.,&Bond,H.E.,1984,ApJ,279,729(LB84) Pottasch,S.R.,1999,A&AS,137,505(SPG99) Luck, R.E., Bond, H.E., & Lambert, D.L., 1990, ApJ, 357, 188 Stasin´ska, G., 2004, in the XIII Canary Islands Winter School of (LBL90) Astrophysics, “Cosmochemistry. The melting pot of the ele- Luck, R.E., Lambert, D.L., & Bond, H.E., 1983, PASP, 95, 413 ments”, ed. C. Esteban, R. J. Garcia-Lo´pez, A. Herrero, F. (LLB83) Sa´nchez,CambridgeUniversityPress,p.115 10 Stasin´skaetal.:Post-AGBstarsastestbedsofnucleosynthesisinABGstars Stasin´ska,G.,Go´rny,S.K.,Tylenda,R.,1997,A&A,327,736 Szczerba, R., Go´rny, S.K., Zalfresso-Jundziłło, 2001, in Post-AGB ObjectsasaPhaseofStellarEvolution,ed.R.SzczerbaandS.K. Go´rny,ASSLVol.265,p.13 Takeda,Y.,2003,A&A,402,343 The´venin,F.,Parthasarathy,M.,&Jasniewicz,G.,2000, A&A,359, 138(TPJ00) VanWinckel,H.,1995,Ph.D.Thesis,(vW95) VanWinckel,H.,1997,A&A,319,561(vW97) VanWinckel,H.,Oudmaijer,R.,D.,&Trams,N.,R.,1996,A&A,312, 553(vWOT96) VanWinckel,H.,&Reyniers,M.,2000,A&A,354,135(vWR00) VanWinckel,H.,Waelkens,C.,&Waters,L.B.F.M.,1996,A&A,306, L37(vWWW96) Vassiliadis,E.,Wood,P.R.,1994,ApJS,92,125 Venn, K.A.,Smartt,S.J.,Lennon, D.J.,& Dufton, P.L,1998, A&A, 334,987(VSL98) Ventura,P.,&D’Antona,F.,2005a,A&A431,279 Ventura,P.,&D’Antona,F.,2005b,astro-ph/0505221 Waelkens, C., Van Winckel, H., Bogaert, E., & Trams, N.R., 1991, A&A,251,495(WvWB91) Waelkens, C., Van Winckel, H., Trams, N.R., & Waters, L.B.F.M., 1992,A&A,256,L15(WvWTW92) WalkerH.J.,&Scho¨nbernerD.,1981,A&A,97,291(WS81) Zacˇs,L.,Klochkova,V.G.,&Panchuk,V.E.,1995,MNRAS,275,764 (ZKP95) Zacˇs, L., Klochkova, V.G., Panchuk, V.E., & Spe´lmanis, R., 1996, MNRAS,282,1171(ZKP96)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.