ebook img

Possible proximity of the Mott insulating Iridate Na2IrO3 to a topological phase: Phase diagram of the Heisenberg-Kitaev model in a magnetic field PDF

0.45 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Possible proximity of the Mott insulating Iridate Na2IrO3 to a topological phase: Phase diagram of the Heisenberg-Kitaev model in a magnetic field

PossibleproximityoftheMottinsulatingIridateNa IrO toatopologicalphase: 2 3 PhasediagramoftheHeisenberg-Kitaevmodelinamagneticfield Hong-Chen Jiang,1 Zheng-Cheng Gu,2 Xiao-Liang Qi,1,3 and Simon Trebst1 1Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106 2KavliInstituteforTheoreticalPhysics, UniversityofCalifornia, SantaBarbara, CA93106 3Department of Physics, Stanford University, Stanford, CA 94305 (Dated:January7,2011) MotivatedbytherecentexperimentalobservationofaMottinsulatingstateforthelayeredIridateNa IrO , 2 3 wediscusspossibleorderingstatesoftheeffectiveIridiummomentsinthepresenceofstrongspin-orbitcoupling andamagneticfield.Forafieldpointinginthe(cid:104)111(cid:105)direction–perpendiculartothehexagonallatticeformed bytheIridiummoments–wefindthatacombinationofHeisenbergandKitaevexchangeinteractionsgivesrise toarichphasediagramwithbothsymmetrybreakingmagneticallyorderedphasesaswellasatopologically 1 ordered phase that is stable over a small range of coupling parameters. Our numerical simulations further 1 indicatetwoexoticmulticriticalpointsattheboundariesbetweentheseorderedphases. 0 2 PACSnumbers:71.20.Be,75.25.Dk,75.30.Et,75.10.Jm n a J In the realm of condensed matter physics, spin-orbit cou- ityprovideevidenceofeffectivespin-1/2momentsandmag- 6 pling has long been considered a residual, relativistic cor- neticcorrelationsbelowT ≈ 15KindicatingthatNa IrO N 2 3 rection of minor relevance to the macroscopic properties of is indeed a Mott insulator [4]. Theoretically, it has been ar- ] l a material. In recent years this perspective has dramatically gued[7,8]thattheinteractionsbetweentheeffectiveIridium e - changed,especiallyduetothetheoreticalpredictionandsub- moments in the Mott regime are captured by a combination r sequentexperimentalobservationoffundamentallynewstates of isotropic and highly anisotropic exchanges, which can be t s of quantum matter, so-called topological insulators [1], that trackedbacktothespinandorbitalcomponentsoftheeffec- . t aresolelyduetotheeffectofspin-orbitcoupling. Thetopo- tive momenta. A microscopic Hamiltonian interpolating be- a m logicalinsulatorsexperimentallyrealizedsofararesemicon- tweenthesetwotypesofexchangesisgivenby d- dbuanctdorths,eworhyoosefpnhoyns-iicnatelrparcotipnegrtieelsecctarnonbse.lIatrgiselayncainptteurreesdtibngy HHK =(1−α)(cid:88)(cid:126)σi·(cid:126)σj −2α (cid:88) σiγσjγ, (1) n challenge,forboththeoryandexperiment,toidentifyaneven (cid:104)i,j(cid:105) γ−links o c broaderclassofmaterialswherethisphysicsplaysoutevenin wheretheσidenotetheeffectivespin-1/2momentoftheIr4+ [ thepresenceofinteractionsandstrongcorrelations[2]. Good ions, γ = x,y,z indicates the three different links of the candidatematerialsforthelatteraretheIridates[3,4]. These hexagonal lattice, and 0 ≤ α ≤ 1 parametrizes the relative 1 5dtransitionmetaloxidesarepronetoexhibitelectroniccor- v coupling strength of the isotropic and anisotropic exchange relationsandform(weak)Mottinsulators,whiletherelatively 5 between the moments. For α = 0 the Hamiltonian reduces 4 largemassoftheIridiumions(Z = 77)givesrisetoacom- totheordinaryHeisenbergmodel,whileintheoppositelimit 1 parably strong spin-orbit coupling, which has been found to of highly anisotropic exchanges (α = 1) the system corre- 1 be as large as λ ≈ 400 meV [5]. The most common va- spondstotheKitaevmodel[9]. Thelatterisknowntoexhibit . 1 lence of the Iridium ions in these materials is Ir4+. The d- a gapless spin-liquid ground state (for equal coupling along 0 orbitalsofthis5d5configurationaretypicallysplitbythesur- thelinks)thatcanbegappedoutintoatopologicalphasewith 1 roundingcrystalfield,andfortheoctahedralgeometryofthe 1 non-Abelianquasiparticleexcitationsbycertaintime-reversal IrO oxygencage,resultinanorbitalconfigurationwherefive : 6 symmetry breaking perturbations [9]. One such perturbation v electrons occupy the lowered, threefold degenerate t level. 2g isamagneticfieldpointinginthe(cid:104)111(cid:105)direction,perpendic- i X Spin-orbitcouplingwillfurtherliftthisdegeneracyofthet2g ulartothehoneycomblayer orbitals and for strong coupling the effective l = 1 orbital ar angular momentum [6] is combined with the s = 1/2 spin H =H −(cid:88)(cid:126)h·σ(cid:126) . (2) HK+h HK i degree of freedom carried by the hole of this partially filled i t orbital configuration. This leaves us with two Kramers 2g The main result of our manuscript is the rich phase diagram doublets of total angular momentum j = 3/2 and j = 1/2, of this model, shown in Fig. 1. Besides two conventional, ofwhichtheformerisoflowerenergyandfullyoccupiedby magnetically ordered phases we find a topologically ordered four electrons, while the partial filling of the latter gives rise phase and two multicritical points, which we will discuss in toaneffectivespin-1/2degreeoffreedom. detailintheremainderofthemanuscript. In this manuscript we focus on the Iridate Na IrO , in Numerical simulations.– We determine the ground-state 2 3 which NaIr O slabs are stacked along the crystallographic phase diagram of Hamiltonian (2) by extensive ‘quasi-2D’ 2 6 c-axis, and the Ir4+ ions in the layers form a hexagonal lat- density-matrix renormalization group (DMRG) [10] calcula- tice [4]. Recent measurements of the magnetic susceptibil- tions on systems with up to N = 64 sites. In particular, 2 2 2 senceofamagneticfield. Interpolatingtherelativecoupling 0.16 strength α between the isotropic Heisenberg limit (α = 0) and the highly anisotropic Kitaev limit (α = 1) a sequence 1.5 h0.08 1.5 ofthreephaseshasbeenobserved[8]: TheNe´elorderedstate h d 0 of the Heisenberg limit is stable for α (cid:46) 0.4, when it gives netic fiel 1 Necealn AteFdM polar0i.z75ed phase0α.8 0.85 1 wcpoaavryaemrtosetathe‘resrtcreoigpuiymp’leiNn0ge´.e8rleo(cid:46)gridmαeere≤0d.4s1ta(cid:46)thteeαicllou(cid:46)lslter0ca.tt8iev.deIingnrtoFhuiegn.ed2xstwteanhtdeiecidhs g a m agaplessspinliquid. Nearα=1,perturbationtheoryreveals 0.5 0.5 thatthegaplessexcitationsofthisphaseareemergentMajo- topological ranafermionsformingtwoDiracconesinmomentumspace. canted phase stripy AFM Including a magnetic field in the (cid:104)111(cid:105) direction a rich 0 0 phase diagram evolves out of this sequence of three phases. 0 0.2 0.4 0.6 0.8 1 Heisenberg coupling parameter α Kitaev Forthemagneticallyorderedstateswefindthattheorientation model model oftheorderintheNe´elandstripyAFMphasecantsalongthe FIG. 1: (color online) Ground-state phase diagram of the (cid:104)111(cid:105) direction. To further characterize these canted states, Heisenberg-Kitaev model (1) in a (cid:104)111(cid:105) magnetic field of strength itishelpfultoanalyzetheindependentsymmetriesofHamil- h. Interpolating from the Heisenberg (α = 0) to Kitaev (α = 1) tonian (2). Besides the lattice translational symmetry T and limitforsmallfieldstrength, asequenceofthreeorderedphasesis a reflection symmetry I around the centers of the hexagons, observed:acantedNe´elstateforα(cid:46)0.4,acantedstripyNe´elstate there is an additional C∗ symmetry, which is a combination illustratedinFig.2c)for0.4(cid:46)α(cid:46)0.8,andatopologicallyordered 3 of a three-fold rotation around an arbitrary lattice site and a state for non-vanishing field around the Kitaev limit. All ordered three-fold spin rotation along the (cid:104)111(cid:105) spin axis [12]. Both phasesaredestroyedforsufficientlylargemagneticfieldgivingway toapolarizedstate. canted phases break a subset ofthese discrete symmetries of the Hamiltonian. The canted Ne´el order breaks the C∗ and 3 theI symmetries,whichthusleadstoasix-foldground-state degeneracyinthisphase. Thecantedstripyphasebreaksboth theC∗andtranslationalsymmetry(sincetheorderingpattern 3 doubles theunit cell). As aconsequence, wealso find asix- foldground-statedegeneracyinthisphase. For sufficiently large magnetic field, the order of both cantedphasesisdestroyedandtheygivewaytoasimplepo- larizedstate. Ournumericalsimulationsstronglysuggestthat the transitions between the polarized state and these canted FIG. 2: (color online) a) The hone√ycomb lattice spanned by unit statesarecontinuous, whichisinagreementwiththeirspon- vectors(cid:126)a1 =(1,0)and(cid:126)a2 =(1/2, 3/2).Illustrationofmagnetic taneoussymmetrybreaking. Ontheotherhand,thetransition stateswithb)Neelorderandc)stripyNeelorder. betweenthetwocantedstatesatfinitefieldstrength(indicated bytheboldlineinFig.1)isfoundtobefirst-order.Inoursim- ulationsthisisindicatedbyasharpdropofthefirstderivative we consider clusters of size N = 2×N ×N , which are 1 2 of the energy dE/dα as a function of the coupling parame- spannedbymultiplesN (cid:126)a andN (cid:126)a oftheunitcellvectors 1 1 √ 2 2 terαacrossthistransition–asshowninFig.3forincreasing (cid:126)a = (1,0) and(cid:126)a = (1/2, 3/2) as illustrated in Fig. 2. 1 2 strength of the magnetic field h. Approaching the endpoint ItshouldbenotedthatthenumericalanalysisofHamiltonian (2)isachallengingendeavor,sincenotonlytheentireHilbert spaceneedstobeconsidered(duetothelackofSU(2)invari- 70 ) ance),butonealsohastoworkwithcomplexdatatypes(due α d 60 to the (cid:104)111(cid:105) orientation of the magnetic field). Our DMRG E/ d 50 calculations keep up to m = 2048 states, which is found δ( to give excellent convergence with typical truncation errors p 40 m 30 of less than 10−8. We further use periodic boundary condi- u tions in both lattice directions, which reduces finite-size ef- gy j 20 fects. WehavedeterminedthephaseboundariesinFig.1by ner 10 e 0 extensivescansoftheground-stateenergy,magnetization,and 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 theirderivativesinthe(α,h)-parameterspace[11]. magnetic field h Magnetically ordered states.– We start our discussion of thephasediagramshowninFig.1byfirstrecapitulatingprevi- FIG. 3: (color online) Energy jump along the first-order transition betweenthecantedNe´elandstripyAFM. ousresults[8]fortheHeisenberg-Kitaevmodel(1)intheab- 3 of this first-order line around h (cid:39) 0.7 this drop smoothly 8 8 c vanishes, which indicates that this endpoint possibly is a tri- κ 6 6 critical point at which the two canted magnetically ordered m t o p noolong-iAcable lpiahnase polarized phase phases and the polarized phase meet. The existence of such er4 4 atricriticalpointcanbeunderstoodwithinaLandaudescrip- g t n tionwithtwodistinctorderparameters–correspondingtothe ru2 2 discretesymmetrybreakingofthetwodifferentmagnetically orderedphases–openingagaptomagnonexcitations. 0 0 0 0.08 0.16 0.24 0.32 Topologicalphase.– Wenowturntothespinliquidphase magnetic field h foundforcouplingparameters0.8 (cid:46) α ≤ 1. FortheKitaev limit (α = 1) it has previously been argued [9] that an in- h)0.5 50 flfiornogimitceastlihlmeyagolarfidpeellerdsesdalsoppnhingastlehiq.euA(cid:104)i1ds1iw1n(cid:105)teodwiarieglclatdipoipsnecdwusinslolidnnr-iAtvhebeethlfioealnsloytwsotpienomg- zation M(000...243 κκκκ ==== 0063.09 234000M / dh our numerical simulations allow us to confirm the existence eti d gn0.1 10 ofsuchatopologicallyorderedstateforsmallmagneticfield a m 0 0 strengths not only in the Kitaev limit, but for the full extent 0 0.08 0.16 0.24 0.32 0.4 0.48 0 0.08 0.16 0.24 0.32 0.4 0.48 h h ofthegaplessspinliquidphase,asindicatedinthephasedi- agram of Fig. 1. We will further present an independent and non-perturbative way to determine the topological nature of FIG.4:(coloronline)Toppanel:Ground-statephasediagramofthe this phase. This complements the original argument by Ki- Kitaevmodel(α=1)intheh−κplane,wherehisthestrengthof taev[9],whichwasprimarilybasedonaperturbationexpan- amagneticfieldpointinginthe(cid:104)111(cid:105)directionandκisthestrength sionshowingthattheleadingordereffectofasmallmagnetic ofatime-reversalsymmetrybreakingthree-siteterm. Lowerpanel: field h is to introduce a topological mass term for the Majo- Magnetizationsweepsanditsderivativeforvariousκ. ranafermions–however,suchaperturbativeargumentshould be carefully tested when applied to a gapless state. For this purpose, weconsideranadditionalthree-spinexchangeterm behavior of the gap for the Majorana fermions in the exact κ,indicatedbythebluebondsinFig. 2a),inourHamiltonian solution for h = 0. The dispersion of the Majorana fermion (cid:114) (cid:12) (cid:12)2 HHK+h+κ =HHK+h−κ(cid:88)σixσjyσkz. (3) isgivenbyEk =2 (cid:12)(cid:12)1+ei(cid:126)k·(cid:126)a1 +ei(cid:126)k·(cid:126)a2(cid:12)(cid:12) +κ2sin2((cid:126)k√·(cid:126)a1). ijk Forsmallκ(cid:28)1,theMajoranafermionhasagapE (cid:39) 3κ. g IntheKitaevlimit(α=1,h=0)thisHamiltonianisexactly However, for large κ (cid:29) 1 the gap of Majorana fermion re- solvableinthesameMajoranafermionrepresentationusedin mainsfiniteandindependentfromκ,givenbyEg (cid:39)2. Since thesolutionoftheunperturbedKitaevmodel[9]. Inparticu- the magnetic field strength hc required to destroy the topo- lar,onecanprovethatthethree-spinexchangeκbreakstime- logical phase is determined by the Majorana fermion gap at reversal symmetry and gaps out the spin liquid phase into a h = 0, thecriticalfieldhc thusalsoincreasesandthensatu- topologically ordered state with non-Abelian excitations, so- ratesatlargeκ. called Ising anyons. To demonstrate that a small magnetic Field-driventransitionoutofthetopologicalphase.– We field in the (cid:104)111(cid:105) direction drives the system into the same now return to the phase diagram of the Heisenberg-Kitaev phase, we have numerically calculated the phase diagram in modelinFig.1andfocusonthetransitionbetweenthetopo- the presence of both perturbations as shown in Fig. 4. The logically ordered state and the polarized state for large field phaseboundarieswereagainobtainedbyscanningthederiva- strength. For the Kitaev limit (α = 1) this transition occurs tivesofground-stateenergyandmagnetizationinthe(h,κ)- at a critical field strength of hc ≈ 0.072 and remains almost parameterspace. Inparticular,thisphasediagramshowsthat constant as the coupling parameter α is decreased. Interest- one can adiabatically connect the phase for large κ and van- ingly,ournumericssuggestthatthisfield-drivenphasetransi- ishingmagneticfieldwiththephaseforsmall,non-vanishing tion might be continuous or weakly first-order. In particular, magneticfieldandκ=0,thusprovingthatthemagneticfield wefind thatthe second-derivativeof theground stateenergy gapsoutthespinliquidintothesamenon-Abeliantopological −d2E/dh2 atthistransitiondivergeswithincreasingsystem phasestabilizedbythethree-spinexchange. Theonlyfeature size, while the magnetization M(h) does not show any dis- in the diagram is a single phase transition line which sepa- continuity,asshowninFig.5a)andb),respectively. rates the topologically ordered state from the fully polarized While the limited system sizes in our study do not allow stateexpectedforlargemagneticfieldstrengths. FortheKi- to unambiguously determine the continuous nature of this taevlimit(κ = 0)thistransitionoccursforh (cid:39) 0.072. Itis field-driven phase transition, our numerics nevertheless pro- c interestingtonotethatthecriticalfieldh initiallygrowswith videsomefurtherinsightswhatmightcausesuchacontinuous c increasing κ, but then saturates to some finite value around transition[13]. Tothisend,weplotthenumberofvorticesin κ (cid:38) 6. Physically, this saturation can be understood by the thegroundstateasafunctionofmagneticfield,i.e. thenum- 4 8 700 2 6 2α600 h = 0.06 E / dh4 2E / d500 NN == 6448 == 22xx86xx44 2-d2 e -d400 NN == 3224 == 22xx44xx43 v 0 0.5 80 vati300 60 eri200 h d M / d M0.25 40 2nd 100 d 0 20 0 0 0.08 0.16 0.24 h 0.785 0.79 0.795 0.8 0.805 0.81 0.815 0.82 5 0 coupling α r be 4 um 3 N = 64 = 2x8x4 FIG.6:(coloronline)Constantfieldscaninthevicinityofthe(multi- n N = 32 = 2x4x4 critical)pointseparatingthestripyAFMfromthetopologicalphase. ex 2 N = 36 = 2x6x3 rt 1 N = 24 = 2x4x3 o v 0 Outlook.– Having established the rich phase diagram of 0 0.1 0.2 0.3 0.4 magnetic field h theHeisenberg-Kitaevmodelinamagneticfield,itisinterest- ing to speculate where one would place the Iridate Na IrO . 2 3 FIG.5:(coloronline)PhasetransitionfortheKitaevmodel(α=1) Whileexperiments[4]reportindicationsofanAFMordered ina(cid:104)111(cid:105)magneticfieldofstrengthh. a)Secondderivativeofthe ground state below T ≈ 15 K, the precise nature of the or- N groundstateenergy−d2E/dh2,b)MagnetizationM(h)anditsfirst derremainsopen. Giventheconsiderablesuppressionofthe derivativedM(h)/dhfordifferentsystemsizes.c)Vortexnumber. orderingtemperatureT incomparisonwiththeCurie-Weiss N temperatureΘ ≈116K[4],whichistypicallyinterpreted CW asanindicatoroffrustration,analternativeexplanationwould ber of plaquettes with a non-trivial flux, in Fig. 5c). Below betheproximitytoaquantumcriticalpoint,suchasthemul- the critical magnetic field, i.e. h < h , there are no vortices ticritical point α ≈ 0.8 in the context of our phase diagram. c indicating a deconfined phase as expected in the presence of This would bring the material in close proximity to the spin a vortex gap. At the phase transition, however, the vortices liquidphaseforα (cid:38) 0.8andthetopologicalphasefoundfor appeartocondenseandthenumberofvorticesintheground a magnetic field pointing in the (cid:104)111(cid:105) direction. To further state quickly increase above the critical field strength. The substantiatethispossibility, itisdesirabletostudythefinite- nature of the phase transition might thus be framed in terms temperature phase diagram of our model system and to con- of a confinement-deconfinement transition of a non-Abelian sider the effectsof disorder, such as sitemixing between the gaugefield,akintotheconfinement-deconfinementtransition IrandNasites[4]. Finally,itwouldbeinterestingtobringthe intheAbeliandiscretegaugetheory[14]. Anexampleofthe Mottphysicsdiscussedinthismanuscriptincompetitionwith latteristheZ gaugetheory,e.g. thetoriccodeinamagnetic thetopologicalinsulatorphasesuggestedinRef.17. 2 field [15], for which it is well known that flux condensation We acknowledge discussions with G. Jackeli, R. Kaul, D. leadstoaconfinementtransition[16]. N. Sheng, and R. Thomale. XLQ is supported partly by the Asecondmulticriticalpoint.– Finally, wenotethatthere AlfredP.SloanFoundation. appearstobeasecondmulticriticalpointinourphasediagram aroundα ≈ 0.8andh = 0,wherethestripyAFMphaseand the gapless spin liquid meet. We find that in the presence of themagneticfieldthetransitionlinesofthefield-drivenphase [1] Seee.g.J.E.Moore,Nature464,194(2010);M.Z.Hasanand transition out of the corresponding canted and topologically C.L.Kane,Rev.Mod.Phys.82,3045(2010);X.-L.QiandS. ordered states bend in and merge only in the zero-field limit C.Zhang,arXiv:1008.2026. as depicted in the inset of Fig. 1. To show that there is in- [2] S.Raghuetal.,Phys.Rev.Lett.100,156401(2008);H.M.Guo deednodirecttransitionbetweenthecantedstripyNe´elstate and M. Franz, Phys. Rev. Lett. 103, 206805 (2009); D. Pesin and the topological phase we have made extensive scans in andL.Balents,Nat.Phys.6,376(2010);B.-J.YangandY.B. thecouplingparameterαinthevicinityofthisputativemul- Kim,arXiv:1004.4630(2010);X.Wanetal.,arXiv:1007.0016 ticriticalpointforsmallfieldstrength. AsshowninFig.6for (2010); M.Dzeroetal.,Phys.Rev.Lett.104,106408(2010); h=0.06,thesecondderivatived2E/dα2 oftheground-state M.Kargarianetal.,arXiv:1101.0007(2011). [3] Y. Okamoto et al., Phys. Rev. Lett. 99, 137207 (2007). B. J. energyclearlyshowstwopeaksproliferatingwithincreasing Kimetal.,Phys.Rev.Lett.101,076402(2008); B.J.Kimet systemsizeindicativeoftwowellseparatedphasetransitions. al.,Science323,1329(2009);H.Jinetal.,arXiv:0907.0743. However,theunderlyingeffectivetheoryforsuchamulticrit- [4] Y.SinghandP.Gegenwart,Phys.Rev.B82,064412(2010). icalpointisnotknown,andwillbeleftforfurtherstudy. [5] O.F.Schrimeretal.,J.Phys.C17,1321(1984). 5 [6] A.AbragamandB.Bleaney,ElectronParamagneticResonance AbelianZ gaugetheory,ithasbeenshownthatthecriticalfield 2 ofTransitionIons(ClarendonPress,Oxford,1970). strengthisofthesamemagnitudeasthesinglevortexgapandas [7] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 aresult,theclosingofthegapforasinglevortexwillnaturally (2009). leadtovortexcondensation.Inthenon-Abeliancase,however, [8] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett. thesinglevortexgap,estimatedaround∼0.27,isconsiderably 105,027204(2010). larger than the critical field strength. There are two potential [9] A.Kitaev,Ann.Phys.321,2(2006). reasonsforthisdiscrepancyinthenon-Abeliancase: First,the [10] S.R.White,Phys.Rev.Lett. 69,2863(1992). non-Abeliannatureofthevorticesgivesrisetoamacroscopic [11] SomeofourcalculationsweresupplementedbyTRGcalcula- degeneracywhichmightinturnenhancethelowenergyquan- tionsdevelopedinH.C.Jiang,Z.Y.Weng,andT.Xiang,Phys. tum fluctuations. Second, in the limit of high vortex density, Rev.Lett. 101,090603(2008);Z.C.Gu,M.Levin,andX.G. thevortexcoreenergycanbemuchsmallerthaninthesingle Wen,Phys.Rev.B 78,205116(2008). vortexcaseandthusfurtherenhancethequantumfluctuations. [12] The three-fold spin rotation along the (cid:104)111(cid:105) spin axis corre- [15] S.Trebstetal.,Phys.Rev.Lett. 98,070602(2007);I.S.Tupit- spondstothecyclicsymmetryσ →σ ,σ →σ ,σ →σ . synetal.,Phys.Rev.B 82,085114(2010). x y y z z x [13] SeealsoC.Gilsetal.,Nat.Phys.5,834(2009). [16] E.FradkinandS.Shenker,Phys.Rev.D19,3682(1979). [14] Although the field-driven phase transition might share many [17] A.Shitadeetal.,Phys.Rev.Lett. 102,256403(2009). similaritiesfortopologicalstateswithAbelianandnon-Abelian topologicalorder,therealsoexistimportantdifferences.Forthe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.