Possibleobservables forthechiral electric separationeffect inCu +Au collisions Guo-Liang Ma1, and Xu-Guang Huang2, ∗ † 1Shanghai Instituteof AppliedPhysics, ChineseAcademyof Sciences, Shanghai 201800, China 2PhysicsDepartmentandCenterforParticlePhysicsandFieldTheory,FudanUniversity,Shanghai 200433,China Thequark-gluonplasma(QGP)generatedinrelativisticheavy-ioncollisionscouldbelocallyparity-odd. In parity-oddQGP,theelectricfieldmayinduceachiralcurrentwhichiscalledthechiralelectricseparationeffect (CESE).WeproposetwopossibleobservablesforCESEinCu+Aucollisions: Thefirstoneisthecorrelation ζ = cos[2(φ +φ 2Ψ )] ;thesecondoneisthecharge-dependentevent-planeangleΨqwithq= being cαhβargeh.Nonzerαo∆ζβ=−ζ RP ζi and∆Ψ= Ψ+ Ψ maysignaltheCESEinCu+Auc2ollisions.W±ithina opp− same h| 2 − −2|i multiphasetransportmodel,westudyhowthefinalstateinteractionaffectstheseobservables. Wefindthatthe correlationγ = cos(φ +φ Ψ ) issensitivetotheout-of-planechargeseparationcausedbythechiral 5 αβ h α β− RP i 1 magneticeffectandtothein-planechargeseparationcausedbythein-planeelectricfield,butitisnotsensitive 0 totheCESE.Ontheotherhand, ∆ζ and∆ΨaresensitivetotheCESE.Therefore,wesuggestthatthefuture 2 experiments measure the above observables in Cu+Au collisions in order to disentangle different chiral and chargeseparationmechanisms. y a PACSnumbers:25.75.-q,12.38.Mh,11.30.Er M 1 I. INTRODUCTION Heavy-ioncollisionscanalsogeneratestrongelectricfields 2 due to the event-by-eventfluctuation of the proton positions in the ions [3, 4] or due to asymmetric colliding geometry ] Relativistic heavy-ion collisions generate not only ex- h (for example, in Cu + Au collisions [30–32]). It was pro- tremely hot quark-gluon plasma (QGP) but also extremely t posed that the electric fields may also induce chiral current - large magnetic fields due to the fast motion of the colliding l andchiralseparationinQGP,whichiscalledthechiralelec- c ions. Recentdetailedcalculationsrevealedthatthemaximum u magnetic fields in Au + Au collisions at energies currently tric separation effect (CESE) [33–36]. It was also proposed n that the Cu+Au collisions may provide us a good chance to availableattheBNLRelativisticHeavyIonCollider(RHIC) [ can reach 5m2 1018 Gauss while in Pb + Pb collisions at detectCESE becausethereisa strongelectricfield directing π ∼ fromAutoCuduetothechargeasymmetrybetweenAuand 2 energiesavailableattheCERNLargeHadronCollider(LHC) v they can reach 60m2 1019 Gauss [1–5]. Under such large Cu nuclei[33]. Recently, the electromagneticfields in Cu + 3 π ∼ Aucollisionswerestudiedindetails,anditwasfoundthatthe magnetic fields, some novelquantum phenomenacan possi- 0 largein-planechargeseparationeffect(in-planeCSE)induced bly happen. The most intriguing ones are the so-called chi- 9 by the strong in-plane electric fields could stronglysuppress ral magnetic effect (CME) [6–10] and chiral separation ef- 3 orevenreversesignsofγ [30]. 0 fect (CSE) [11, 12]: They occur in parity- and charge-odd αβ 1. regions in QGP and can result in charge and chirality sepa- Inthispaper,weproposetwoobservablesthataredesigned rationsalongthedirectionofthemagneticfield,respectively. 0 solely for the detection of CESE. In addition, it is crucial to Recent experimental measurements of the charge azimuthal 5 takethefinalstateinteractionsintoaccountforanymodelcal- 1 correlation[13], culationsinordertolinktheinitialanomaloustransportstothe : v experimentaldatasinceheavy-ioncollisionsundergocompli- i γαβ = cos(φα+φβ 2ΨRP) , (1) cateddynamicalevolutionswhichinvolvemanyfinalinterac- X h − i tions. We study the effects of the final state interactions by r where φ and φ are the emission azimuthalangles of parti- usingamulti-phasetransport(AMPT)modelwhichsuccess- a α β cleswithchargesαandβandΨ isthereactionplaneangle, fully describes the main evolution stages of heavy-ion colli- RP showedsomeconsistentfeatureswiththeexpectationofCME sions.Byintroducingappropriateinitialdipolarorquadrupole atbothRHICandLHCenergies[14–16]. Anotherimportant charge distributions, the AMPT model can successfully de- experimentaltest of CME and CSE is the observationof the scribeboththechargeazimuthalcorrelationγ [37,38]and αβ charge asymmetry in the elliptic flow of pions [17, 18] that thechargeasymmetryofthepionellipticflow[39]inAu+Au is consistent with the expectation of a chiral magnetic wave collisionsatthetopRHICenergy. Inthiswork,weintroduce (CMW)[19,20]—acollectivemodearisingduetotheinter- differentkindsofinitialchargeseparationswhichareusedto playbetweenCMEandCSEinthepresenceofthemagnetic mimic differentinitial chiraleffectsinto the initialcondition field. However, one must notice that there are other back- oftheAMPTmodel,andpredictsomeobservableswhichcan grounds that contribute to the experimentalobservables, see be used to test whether these effects can be observed in the Refs.[21–29]fordiscussions. finalstateofCu+Aucollisionsat √s =200GeV. NN Thepaperis organizedas follows. InSec. IIwe setup the numericalsimulations, in Sec. IIIwe show our main results. FinallywesummarizeanddiscussinSec.IV.Throughoutthis ∗[email protected] †[email protected] paper,weusethenaturalunits~=kB =c=1. 2 II. GENERALSETUP ×10-3 > ) A. AMPTmodel φ+β0.5 Cu+Cu 200 GeV α φ ( TheAMPTmodelwithastringmeltingscenarioisutilized s o in this work [40]. The AMPT model is a dynamical trans- c < 0 port model which consists of four main components: initial condition,partoncascade,hadronization,andhadronicrescat- terings. The initialcondition,which includesthe spatialand opp, AMPT (Normal) momentumdistributionofparticipantmatter,minijetpartons -0.5 opp, AMPT (CME) productionandsoftstringexcitations,isobtainedthroughthe opp, exp. data HIJINGmodel[41,42].Thepartoncascadestartsthepartonic same, AMPT (Normal) same, AMPT (CME) evolutionwithaquark-anti-quarkplasmafromthemeltingof -1 same, exp. data strings. Parton scatterings are modelled by Zhang’s parton 0 10 20 30 40 50 60 70 cascade(ZPC),whichcurrentlyonlyincludestwo-bodyelas- % Most Central tic parton scatterings using cross sections from pQCD with screening masses [43]. The parton interaction cross section FIG. 1: (Color online) Centrality dependence of cos(φ +φ ) in is set as 10 mb in our work, by which the modelhas shown Cu+Cu collisions at √s =200 GeV. The open shymbolαs reprβesient NN goodabilitiestodescribemanykeyexperimentalobservables theresultsfromthenormalAMPTmodelwithoutanomalouseffects at RHIC [44–49]. A quark coalescence model is then used and the AMPT model with an initial CME-like charge separation, tocombinepartonsintohadronswhenthesystemfreezesout. andthesolidsymbolsrepresenttheexperimentaldata[14]. Theevolutiondynamicsofthehadronicmatterisdescribedby arelativistictransport(ART)model[50]. Becausethecurrent implementationoftheARTmodeldoesnotconservetheelec- with the factthatthe averagedmagneticfield is proportional tric charge, we in this study consider only resonancedecays to b [3, 4]. Comparing with the normal AMPT result, the andhadronicscatteringsareswitchedofftoensurethecharge AMPTresultwiththeinitialCME-likechargeseparationcan conservation. welldescribeCu+Cudatameasuredbythesolenoidaltracker atRHIC(STAR)experiment. We now turn to study the Cu + Au systems. The co- B. IntroducingtheinitialchargeseparationsintotheAMPT ordinate system of Cu + Au is set up similarly to that of model Cu+Cu, but the Au nucleus is set to the left of the Cu nu- cleus,i.e.,thedirectionofthetotalelectricfieldisrightward. Let us consider the chiral magnetic effect (CME) in Cu Figures2 (a)-(f)show the netelectric chargedistributionsin + Cu collisions first. This can serve as a test of the AMPT the transverse momentum space of the initial partonic states model.Thecoordinatesystemissetupsothatthex-axisisin in the AMPT models with different kinds of initial charge thereactionplane,i.e.,Ψ = 0,andthey-axisisperpendic- separationsforcentralitybinof30-40%inCu+Aucollisions RP ular to the reaction plane with the z-axis being the direction √s =200 GeV. After introducing the CME effect into the NN of the projectile nucleus. To mimic the CME, we introduce normal AMPT model, the net electric charge distribution is aninitialchargeseparationintotheinitialstateoftheAMPT changed from that in Fig. 2 (a) to that in Fig. 2 (b). Due model,sincethechargesarenotseparatedbutdistributedran- to the strong electric fields in the in-plane direction in Cu + domly in the normal AMPT model. To separate a percent- Aucollisions,theremayappearalsothein-planechargesep- ageoftheinitialcharges,wefollowtheprocedureofaglobal aration effect (in-plane CSE) [30]. To simulate the in-plane chargeseparation scenario, which has been employedin Ma CSE, we take an analogoussetup as above by switching the and Zhang’spreviouswork [37]. We switch a percentageof p values of a percentage of the leftward moving u quarks x thedownwardmovinguquarkswiththoseoftheupwardmov- with those of the rightward moving u¯ quarks, and likewise ing u¯ quarks in such a way that the total momentumis con- for d¯ and d quarks. The b dependence of the percentage is served,andlikewiseford¯anddquarks,wherethepercentage assumed to be the same as that for the out-of-plane separa- shouldpresumablydependontheimpactparameterborcen- tion. The corresponding net electric charge distribution is trality,becausethemagnitudeoftheaveragedmagneticfield shown in Fig. 2 (c). Now we take the chiral electric sepa- isbdependent. rationeffect(CESE) into account. We considerthe situation In Fig. 1 we show our AMPT results of the charge az- wheretheCESE, CME andin-planeCSE happensimultane- imuthal correlation γ (from the normal AMPT model and ously (denotedas CESE+CME+in-plane CSE) [33]: For the αβ the AMPT model with the initial CME-like charge separa- quarkswithp >0weswitchapercentage f%oftheleftward y tion) as well as the experimental data for Cu+Cu collisions movinguquarkswiththoseoftherightwardmovingu¯ quarks at √sNN = 200 GeV. We find that, to fit the Cu+Cu experi- (likewise for d¯and d quarks); while for quarkswith py < 0 mentaldata, the percentageof initial CME-like chargesepa- weswitchhalfofthepercentage(i.e. 0.5f%)fortheleftward ration f% should be proportionalto the impact parameter b movingu¯ (d)quarkswiththoseoftherightwardmovingu(d¯) with a slope of 1.56, i.e. f = 1.56b/fm. This is consistent quarks. For the initial charge separation f%, we apply the 3 ) V/c 1 (a) AMPT (Normal) 1 (b) AMPT (CME) 1 (c) AMPT (in-pla. CSE) e G ( y0.5 0.5 0.5 p 0 0 0 -0.5 -0.5 -0.5 -1 V/c) 1 (d) AMPT (CESE+CME+in-pla. CSE)1-1(e) AMPT (CESE+2xCME+in-pla.CSE)--111(f) AM-P0T.5(CESE+0CME+20xi.n5-pla.CSE1) e G (y0.5 0.5 0.5 p 0 0 0 -0.5 -0.5 -0.5 Cu+Au 200 GeV (30-40%) -1 -1 -1 -1 -0.5 0 0.5 1-1 -0.5 0 0.5 1-1 -0.5 0 0.5 1 p (GeV/c) p (GeV/c) p (GeV/c) x x x FIG.2:(Coloronline)Thenetelectricchargedistributionsinthetransversemomentumplaneintheinitialpartonicstatesfordifferentsettings of AMPTmodelsfor centralitybinof 30-40% inCu+Aucollisions √s =200 GeV.(a) Normalsettingwithout anyanomalous effect. (b) NN AMPTwithout-of-planechargeseparationwhichmimicthechiralmagneticeffect(CME).(c)AMPTwithin-planechargeseparationeffect (in-plane CSE) caused by the in-plane electric field. (d) AMPT with in-plane CSE plus a quadrupolar distribution due to chiral electric separationeffect(CESE)andCME.(e)Thesameas(d)butwiththestrengthofCMEdoubled.(f)Thesameas(d)butwiththestrengthofthe in-planeCSEdoubled. same b-dependentinitialchargeseparationasthatof Cu+Cu collisions at √s =200 GeV. In this case, this b-dependent NN percentageisexpectedtoprovidealowerlimitfortheinitial chargeseparationpercentage,since the Cu+Au system hasa littlebitstrongermagneticfieldthantheCu+Cusystematthe same impact parameter [30]. The net effect is equivalent to a configuration with a in-plane dipole plus a quadrupole as illustrated in Fig. 3. The net electric charge distribution for CESE+CME+in-planeCSE is shownin Fig. 2 (d). To study the case where the CME is much stronger, we do the CME FIG. 3: (Color online) Illustration of the charge configuration of switching once more after the above CESE+CME+in-plane chiral magnetic effect (CME) plus chiral electric separation effect CSE switching, whichis shownin Fig. 2(e). Ifthe in-plane (CESE)plusin-planechargeseparationeffect(in-planeCSE)inCu +Aucollisions. CSE effect is much larger, we do the in-plane CSE switch- ingoncemoreaftertheCESE+CME+in-planeCSEswitching, see Fig. 2 (f). In these ways, we have six differentkinds of III. RESULTSANDDISCUSSIONS initial charge distributions which mimic different initial chi- raleffects. We usethemasthedifferentinputsfortheinitial condition of the AMPT model, and then we extract various A. Correlationγαβ hadronic observables to test whether the initially embedded effects can survive after the final state interactions. The re- We first consider the correlationγ as definedin Eq. (1). αβ sultsarepresentedinthefollowing. The centrality dependence of γ in Cu+Au collisions at αβ √s =200 GeV from different settings of the AMPT model NN areshowninFigs.4(a)-(f),wherethecentralitybinsarede- fined by using different ranges of impact parameter. Also 4 ×10-3 > ) (a) AMPT (Normal) (b) AMPT (CME) (c) AMPT (in-pla. CSE) β φ + 0.5 α φ ( s o 0 c < -0.5 -1 ×10 ×10 ×10 > 0 10 20 30 40 50 60 70 )β (d) AMPT (CESE+CME+in-pla. CSE) (e) AMPT (CESE+2xCME+in-pla. CSE) (f) AMPT (CESE+CME+2xin-pla. CSE) φ + α 0.5 0.5 0.5 φ ( s o c 0 0 0 < -0.5 -0.5 -0.5 opp, AMPT (Cu+Au) same, AMPT (Cu+Au) opp, exp. data (Cu+Cu) -1 -1 -1 same, exp. data (Cu+Cu) 0 10 20 30 40 50 60 700 10 20 30 40 50 60 700 10 20 30 40 50 60 70 % Most Central % Most Central % Most Central FIG.4:(Coloronline)Centralitydependenceofγ = cos(φ +φ ) fromdifferentinitialsettingsofAMPTmodels(opensymbols)inCu+Au αβ h α β i collisionsat √s =200GeV.AlsoshownaretheexperimentaldataforCu+Cucollisionsat √s =200GeV(solidsymbols)[14]. Different NN NN panelsareinone-to-onecorrespondencewithFig.2. shownistheexperimentaldatafromCu+Cucollisionswhich lationsarestronglysuppressedto the levelsclose to thenor- are used as the baseline for comparison. Figure 4 (a) shows mal AMPT model [Fig. 4 (a)], which indicates the three ef- thatthenormalAMPTmodelwithoutanyinitialchargesep- fectsalmostcancelout. Thiscanbeunderstoodbyconsider- aration gives a zero opposite-charge correlation and a nega- ing a limiting case in which the emitting angles for positive tive same-chargecorrelationwhich have much smaller mag- chargesareπ/4and5π/4whilefornegativechargestheyare nitudes than the experimental data for Cu+Cu collisions at 3π/4 and 7π/4. In this special limit, one can easily check √sNN=200 GeV. After introducing the chiral magnetic effect that both γsame and γopp vanish. If the initial strength of the (CME) into the AMPT model, as shown in Fig. 4 (b), the CME-like charge separation gets larger, e.g. if it is doubled opposite-charge correlation becomes positive and the same- (denoted as CESE+2 CME+in-plane CSE), the magnitudes × chargecorrelationbecomesmorenegative,whichpresentsim- forbothopposite-chargeandsame-chargecorrelationsarebe- ilar magnitudesas the Cu+Cu data. It is consistent with the tweenthosefortheCMEandforCESE+CME+in-planeCSE, previousAMPT works aboutAu+Au collisions [37] and the whichisshowninFig.4(e). Ontheotherhand,ifwedouble aboveresultsaboutCu+Cucollisions.Iftheinitialchargesare the strength of the initial in-plane charge separation, e.g. in separated along the reaction plane direction [mimicking the thecaseofCESE+CME+2 in-planeCSE[Fig.4(f)],thein- × in-plane charge separation effect (in-plane CSE) caused by planeCSEwilldominatethefinalsignal,whichshowssimilar the strong in-plane electric field], comparing with the CME magnitudesas those for the in-planeCSE effectonly [Fig. 4 case, opposite-charge and same-charge correlations reverse (c)]. Fromthesesimulations,wefindthatthecorrelationγ αβ their signs, i.e. a negative opposite-chargecorrelation and a isverysensitivetoCMEandin-planeCSEbutnotsensitiveto positivesame-chargecorrelationareobservedandtheirmag- CESE.Totestthechiralelectricseparationeffect,weneedto nitudesarecomparabletotheCu+Cudata,asshowninFig.4 lookforotherobservables. (c). This result is consistent with recent study in Ref. [30] and more discussions can be found there. It is also consis- tent with the charge asymmetry of direct flow v suggested 1 B. TwoobservablesforCESE in Ref. [31]. If the chiral electric separation effect (CESE), CME, and in-plane CSE happen together in the initial stage Inthissubsection,weproposetwoobservablesforthechi- [Fig.4(d)],boththeopposite-chargeandsame-chargecorre- ral electric separation effect (CESE) in Cu + Au collisions. 5 ×10-3 0.4 ame AMPT (Normal) ad) AMPT (Normal) ζ-sp AMPT (CME) > (r AMPT (CME) ζop00..23 Cu+AAu M20P0T G (CeVESE+CME+in-pla.CSE) -ΨΨ+|-<|220.2 AAAAMMMMPPPPTTTT ((((CCCinEEE-pSSSlaEEE.+++C2CCSxMMEC)EEM++E2in+x-iipnnl--app.llCaaS..CCESS)EE)) Cu+Au 200 GeV 0.1 0.1 0 0 -0.1 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 % Most Central % Most Central FIG.5: (Color online) Centralitydependence of the difference be- FIG.6: (Color online) Centralitydependence of the difference be- tweenopposite-charge(ζ )andsame-charge(ζ )correlationsof tweenevent planeanglesreconstructedfromthepositivelycharged opp same ζαβ = hcos[2(φα+φβ)]iforthreedifferentinitialsettingsofAMPT hadronsandnegativelychargedhadrons,h|Ψ+2 −Ψ−2|i,forsixinitial models in Cu+Au collisions at √s =200 GeV. Some points are settingsofAMPTmodelsinCu+Aucollisionsat √s =200GeV. NN NN slightlyshiftedalongthehorizonalaxisforclearerrepresentation. peripheralCu+Au collisions, where the signal becomesvery Let us first consider the following charge azimuthal correla- clearinthemostperipheralcentralitybin. tion: As discussed above, the chiral electric separation effect ζ = cos[2(φ +φ 2Ψ )] . (2) (CESE)combinedwiththechiralmagneticeffect(CME)can αβ h α β− RP i lead to a quadrupolar charge distributions in Cu + Au col- We will set Ψ = 0 in the following. For a CESE + CME lisions, see Fig. 3. Therefore, we propose another observ- induced chargRePdistribution [see Fig. 3 for illustration], sup- able for CESE: ∆Ψ = h|Ψ+2 − Ψ−2|i, where Ψ+2 and Ψ−2 are pose the positive charges fly out along the azimuthal angles thesecondharmonicanglesoftheeventplanesreconstructed ψ andψ +πandthenegativechargesflyoutalong ψ and by final positively charged hadrons and negatively charged c c c ψ + π, where ψ is a deformation angle due to th−e CESE hadrons. If we follow the above assumption for the CESE, c c −efeffreecntt.frTomhusζζsame ∼1. hOcons(t4hψeco)ithsehrohualdndb,efoirnpguerneelyraldidpiof-- othfe∆nΨ∆Ψfo∼rs2ixhψdciif.feIrneFnitgi.n6itiwalessehtotiwngtsheofcethnetraAliMtyPdTepmenoddeenlcine opp larchargedistribu∼tion(duetothein-planeCSEorduetothe Cu+Aucollisions.Asweexpected,oncetheCESEhappens,it CME),ζ = ζ cos(4ψ ) ,whereψ isthedipolaran- leadstoasizable∆Ψwhichshowsalineardependenceonthe same opp d d gle(ψ =0forin-pl∼anhedipoleaindψ = π/2forout-of-plane centrality. More importantly, for those initial settings which d d dipole). Therefore,∆ζ,thedifferencebetweenζ andζ , do not include the CESE, we do not observe a nonzero ∆Ψ opp same can be an observable for the CESE since the in-plane CSE forthewholecentralitywindow. Itshouldbementionedthat or the CME does not contribute to it. In real experiments, our results are based on the fact that in each eventwe know the dominant background of ζ may be the elliptic flow v whichsideistheAunucleusandwhichsideistheCunucleus αβ 2 because, if we turn off all the anomalous effects, ζ v2. inthetransverseplane,i.e. thedirectionoftheelectricfield. Another backgroundmay be the transverse momentαuβm∼con2- In realexperiments,itbecomesverycomplexto identifythe servation[25]whichcausesacontributionζ v /Mwithv relativelocationsofAuandCuandonehastoreconstructthe αβ 4 4 thefourthharmonicflowand M themultiplici∝ty. In∆ζ these firstharmoniceventplaneinordertodistinguishtheAuside charge-blindv andv backgroundsaresubtracted. However, fromtheCu side,whichwillbehopefullyachievedbyusing 2 4 theremayremainotherbackgrounds,forexample,duetothe some event plane detectorssuch as zero degree calorimeters local charge conservation [26] (which leads to ζ v /M (ZDCs)infutureexperiments. opp 4 andζ 0andthus∆ζ v /M)orduetothechir∝almag- same 4 ∼ ∝ netic wave induced quadrupole. Because we do not encode these effects into our AMPT model, the following result is IV. SUMMARY supposed not to be related to the local charge conservation andchiralmagneticwave. InFig.5wepresentthecentrality Insummary,wehaveintroducedvariousinitialchargesepa- dependenceof∆ζ in Cu+ Aucollisionsfromthreedifferent rationeffects,includingthechiralmagneticeffect(CME),in- initialsettingsintheAMPTmodel. Onecanseethatthenor- planechargeseparationeffect(in-planeCSE),andchiralelec- malAMPTcaseandtheCMEcannotyieldavisiblesignalfor tricseparationeffect(CESE),intotheAMPTmodeltostudy allcentralitybins,whiletheresultforCESE+CME+in-plane howthefinalstateinteractionsrendertheinitialchargesepa- CESE case shows an increasing trend of ∆ζ from central to ration effects.To distinguish these initial effects, three possi- 6 ble observablesare tested in Cu+Au collisions at √s =200 ACKNOWLEDGMENTS GeV.Thechargeazimuthalcorrelation cos(φ +φ N2NΨ ) α β RP h − i is sensitive to the CME and the in-plane CSE but not to the CESE. The CME resultsin a positiveopposite-chargecorre- lation and a negative same-charge correlation, while the in- DiscussionswithJ.LiaoandG.Wangareappreciated. G.- plane CSE reverse their signs relative to those for the CME L.M.issupportedbytheMajorStateBasicResearchDevel- case. However,theζ ζ isanobservablethatissensi- opmentProgramin China underGrantNo. 2014CB845404, opp same − tivetotheCESEbutnotsensitivetoCMEandin-planeCSE the National Natural Science Foundation of China under which makes it be a possible observablefor the detection of Grants No. 11375251, No. 11175232, and No. 11421505, CESE. The difference between the second harmonic angles andtheKnowledgeInnovationProgramofChineseAcademy ofeventplanesreconstructedbyfinalpositive-chargehadrons of Sciences under Grant No. KJCX2-EW-N01. X. -G. H. or negative-chargehadrons, Ψ+ Ψ , is also sensitive to is supported by Shanghai Natural Science Foundation under h| 2 − −2|i theCESEandissizableinveryperipheralCu+Aucollisions. GrantNo. 14ZR1403000and Fudan UniversityunderGrant We thus propose that future experimentscan take advantage No. EZH1512519. We also acknowledge the support from ofCu+Aucollisionstomeasuretheseobservablesinorderto the Innovation Fund of Key Laboratory of Quark and Lep- identify or distinguish different chiral and charge separation ton Physics (MOE), CCNU (Grant No. QLPL2011P01 and mechanisms. QLPL20122). [1] V.Skokov,A.Y.IllarionovandV.Toneev,Int.J.Mod.Phys.A (2013). 24,5925(2009). [28] J. Bloczynski, X. G. Huang, X. Zhang and J. Liao, [2] V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya, arXiv:1311.5451[nucl-th]. V. P. Konchakovski and S. A. Voloshin, Phys. Rev. C 83, [29] J.Liao,arXiv:1401.2500[hep-ph]. 054911(2011). [30] W.T.DengandX.G.Huang,Phys.Lett.B742,296(2015). [3] W.T.DengandX.G.Huang,Phys.Rev.C85,044907(2012). [31] Y.Hirono,M.HongoandT.Hirano,Phys.Rev.C90,021903 [4] A.BzdakandV.Skokov,Phys.Lett.B710,171(2012). (2014). [5] J.Bloczynski,X.G.Huang,X.ZhangandJ.Liao,Phys.Lett. [32] V. Voronyuk, V. D. Toneev, S. A. Voloshin and W. Cassing, B718,1529(2013). Phys.Rev.C90,064903(2014). [6] A.Vilenkin,Phys.Rev.D22,3080(1980). [33] X.G.HuangandJ.Liao,Phys.Rev.Lett.110,232302(2013). [7] D.Kharzeev,Phys.Lett.B633,260(2006). [34] Y. Jiang, X. G. Huang and J. Liao, Phys. Rev. D 91, 045001 [8] D.KharzeevandA.Zhitnitsky,Nucl.Phys.A797,67(2007). (2015). [9] D.E.Kharzeev,L.D.McLerranandH.J.Warringa,Nucl.Phys. [35] S. Pu, S. Y. Wu and D. L. Yang, Phys. Rev. D 89, 085024 A803,227(2008). (2014). [10] K.Fukushima,D.E.KharzeevandH.J.Warringa,Phys.Rev. [36] S. Pu, S. Y. Wu and D. L. Yang, Phys. Rev. D 91, 025011 D78,074033(2008). (2015). [11] D.T.SonandA.R.Zhitnitsky,Phys.Rev.D70,074018(2004). [37] G.L.MaandB.Zhang,Phys.Lett.B700,39(2011). [12] M.A.MetlitskiandA.R.Zhitnitsky,Phys.Rev.D72,045011 [38] Q.Y.Shou,G.L.MaandY.G.Ma,Phys.Rev.C90,047901 (2005). (2014). [13] S.A.Voloshin,Phys.Rev.C70,057901(2004). [39] G.L.Ma,Phys.Lett.B735,383(2014). [14] B.I.Abelevetal.[STARCollaboration],Phys.Rev.Lett.103, [40] Z.W.Lin,C.M.Ko,B.A.Li,B.ZhangandS.Pal,Phys.Rev. 251601(2009). C72,064901(2005). [15] B.Abelevetal.[ALICECollaboration],Phys.Rev.Lett.110, [41] X.N.WangandM.Gyulassy,Phys.Rev.D44,3501(1991). 012301(2013). [42] M.GyulassyandX.N.Wang,Comput.Phys.Commun.83,307 [16] L.Adamczyketal.[STARCollaboration],Phys.Rev.Lett.113, (1994). 052302(2014). [43] B.Zhang,Comput.Phys.Commun.109,193(1998). [17] G.Wang[STARCollaboration],Nucl.Phys.A904-905, 248c [44] L.W.Chen,C.M.KoandZ.W.Lin,Phys.Rev.C69,031901 (2013). (2004). [18] H.Ke[STARCollaboration], J.Phys.Conf.Ser.389, 012035 [45] B.Zhang,L.W.ChenandC.M.Ko,Phys.Rev.C72,024906 (2012). (2005). [19] D.E.KharzeevandH.U.Yee,Phys.Rev.D83,085007(2011). [46] J.H.Chen,Y.G.Ma,G.L.Ma,X.Z.Cai,Z.J.He,H.Z.Huang, [20] Y.Burnier,D.E.Kharzeev, J.LiaoandH.U.Yee,Phys.Rev. J. L. Long and W. Q. Shen et al., Phys. Rev. C 74, 064902 Lett.107,052303(2011). (2006). [21] F.Wang,Phys.Rev.C81,064902(2010). [47] G.L.MaandX.N.Wang,Phys.Rev.Lett.106,162301(2011). [22] A.Bzdak,V.KochandJ.Liao,Phys.Rev.C81,031901(2010). [48] Z. W. Lin, C. M. Ko and S.Pal, Phys. Rev. Lett. 89, 152301 [23] A.Bzdak,V.KochandJ.Liao,Phys.Rev.C83,014905(2011). (2002). [24] J.Liao,V.KochandA.Bzdak,Phys.Rev.C82,054902(2010). [49] C.M.Ko,L.W.Chen,V.Greco,F.Li,Z.W.Lin,S.Plumari, [25] S.Pratt,S.SchlichtingandS.Gavin,Phys.Rev.C84,024909 T.SongandJ.Xu,Nucl.Sci.Tech.24,050525(2013). (2011). [50] B.A.LiandC.M.Ko,Phys.Rev.C52,2037(1995). [26] S.SchlichtingandS.Pratt,Phys.Rev.C83,014913(2011). [27] A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503