ebook img

Positron-molecule interactions: Resonant attachment, annihilation, and bound states PDF

51 Pages·2010·2.13 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Positron-molecule interactions: Resonant attachment, annihilation, and bound states

REVIEWSOFMODERNPHYSICS,VOLUME82,JULY–SEPTEMBER2010 Positron-molecule interactions: Resonant attachment, annihilation, and bound states G. F. Gribakin* DepartmentofAppliedMathematicsandTheoreticalPhysics,Queen’sUniversityBelfast, Belfast,BT71NN,NorthernIreland,UnitedKingdom J. A. Young† JetPropulsionLaboratory,CaliforniaInstituteofTechnology,4800OakGroveDrive, Pasadena,California91109,USA C. M. Surko‡ DepartmentofPhysics,UniversityofCalifornia,SanDiego,9500GilmanDrive,LaJolla, California92093-0319,USA (cid:1)Published14September2010(cid:2) Thisarticlepresentsanoverviewofcurrentunderstandingoftheinteractionoflow-energypositrons withmoleculeswithemphasisonresonances,positronattachment,andannihilation.Measurementsof annihilation rates resolved as a function of positron energy reveal the presence of vibrational Feshbach resonances (cid:1)VFRs(cid:2) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented.Itistestedsuccessfullyforselectedmolecules(cid:1)e.g.,methylhalidesandmethanol(cid:2)whereall modes couple to the positron continuum. Combination and overtone resonances are observed and theirroleiselucidated.Moleculesthatdonotbindpositronsandhencedonotexhibitsuchresonances are discussed. In larger molecules, annihilation rates from VFR far exceed those explicable on the basisofsingle-moderesonances.Theseenhancementsincreaserapidlywiththenumberofvibrational degreesoffreedom,approximatelyasthefourthpowerofthenumberofatomsinthemolecule.While thedetailsareasyetunclear,intramolecularvibrationalenergyredistribution(cid:1)IVR(cid:2)tostatesthatdo not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. In connection with IVR, experimental evidence indicates that inelastic positron escape channels are relatively rare. Downshifts of the VFR from the vibrational mode energies, obtained by measuring annihilate rates as a function of incident positron energy, have provided bindingenergiesfor30species.Theirdependenceuponmolecularparametersandtheirrelationship to positron-atom and positron-molecule binding-energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecule (cid:1)negative-ion(cid:2) cases. The relationship of VFR-mediated annihilation to other phenomena such as Dopplerbroadeningofthegamma-rayannihilationspectra,annihilationofthermalizedpositronsin gases, and annihilation-induced fragmentation of molecules is discussed. Possible areas for future theoreticalandexperimentalinvestigationarealsodiscussed. DOI:10.1103/RevModPhys.82.2557 PACSnumber(cid:1)s(cid:2): 34.80.Lx,34.50.(cid:1)s,71.60.(cid:2)z,78.70.Bj CONTENTS G. Resonantannihilationinlargemolecules 2567 1. Vibrationalleveldensities 2567 2. Mode-basedresonantdoorwaystates 2569 I. IntroductionandOverview 2558 3. AnnihilationandtheonsetofIVR 2570 II. Theory 2561 H. Calculationsofannihilationandbinding 2571 A. Annihilationbasics 2561 1. Annihilation 2571 B. Gamma-rayspectraandannihilationrates 2562 2. Positron-moleculebinding 2573 C. Positron-moleculewavefunction 2563 III. ExperimentalToolsandProcedures 2576 D. Directannihilation:Virtualandweaklybound A. Annihilation-ratemeasurementswiththermalized positronstates 2564 positronsinatmosphericpressuregases 2576 E. Resonantannihilation 2566 B. Buffer-gaspositrontrapsastailoredsourcesof F. Resonancesduetoinfrared-activemodes 2566 positrons 2576 C. Annihilation-ratemeasurementsinpositrontraps 2577 D. Trap-basedcoldpositronbeams 2577 *[email protected] E. Energy-resolvedannihilationmeasurements 2578 †[email protected] F. Gamma-rayspectralmeasurements 2579 ‡[email protected] G. Annihilation-inducedfragmentation 2579 0034-6861/2010/82(cid:1)3(cid:2)/2557(cid:1)51(cid:2) 2557 ©2010TheAmericanPhysicalSociety 2558 Gribakin,Young,andSurko: Positron-moleculeinteractions:Resonant… IV. AnnihilationonSmallMolecules 2579 al.,1992;Churazovetal.,2005;Guessoumetal.,2010(cid:2).A A. HalomethanesasabenchmarkexampleofVFR 2580 current research goal is the creation of a Bose conden- B. Methanol:AcaseofmultimodeVFR 2581 sate of positronium (cid:1)Ps(cid:2) atoms (cid:1)i.e., the electron- C. VFRfromdipole-forbiddenvibrations 2582 positronanalogofthehydrogenatom(cid:2)thatoffersprom- D. EffectofmolecularsizeonthemagnitudesofVFR 2583 ise for the development of an annihilation gamma-ray E. Nonresonantannihilationinsmallmolecules 2583 laser (cid:1)Mills, 2002, 2007; Mills et al., 2004; Cassidy and F. Smallmoleculesummary 2585 Mills, 2007(cid:2). V. IVR-EnhancedResonantAnnihilationinLarger Typically, positrons from conventional sources (cid:1)e.g., Molecules 2585 radioisotopes or electron accelerators(cid:2) slow down from A. Overview 2585 energies of kilovolts to hundreds of kilovolts to (cid:4)50 eV B. Thealkanemoleculeparadigm 2586 beforeannihilating.Inthecaseofatomsormolecules,if C. DependenceofZ onmolecularsize 2587 the incident positron energy (cid:5) is greater than the Ps- eff D. Towardamodelofannihilationinlargemolecules 2589 formationthresholdE =E −E ,whereE istheioniza- th i Ps i E. Inelasticautodetachment 2589 tion energy of the target and E =6.8 eV is the binding Ps 1. Fluorine-substitutedalkanes 2589 energy of the ground-state Ps atom, then the dominant 2. EffectsofmoleculartemperatureonZ 2590 annihilationprocessisthroughPsformation.Theresult- eff F. OtherIVR-relatedphenomena 2591 ing Ps atom subsequently annihilates by emitting two or G. Largemoleculesummary 2592 three gamma-ray quanta. VI. Positron-MoleculeBindingEnergies 2592 In this review, attention is restricted to positron ener- A. Relationtomolecularproperties 2592 giesbelowthePs-formationthreshold,0(cid:6)(cid:5)(cid:6)E ,where th B. Comparisonwithnegativeionsofmoleculesand the Ps channel is closed. Here annihilation occurs as a clusters 2595 result of the overlap of the positron and electron densi- VII. AnalysisofAnnihilationRatesMeasuredwith tiesduringthecollision.Thebasicrateinthiscaseisthe ThermalizedPositrons 2596 Dirac rate (cid:7) for two-gamma annihilation in a free- D VIII. OtherTopics 2597 electron gas (cid:1)Dirac, 1930(cid:2) A. Gamma-rayDoppler-broadeningmeasurements 2597 B. Annihilation-inducedfragmentationofmolecules 2600 (cid:7) =(cid:8)r2cn , (cid:1)1(cid:2) D 0 e C. Nonlineardependenceofannihilationonmolecular wherer istheclassicalelectronradius,r =e2/mc2incgs density 2601 0 0 IX. SummaryandaLooktotheFuture 2602 units,e andm aretheelectronchargeandmass,c isthe Acknowledgments 2603 speed of light, and ne is the electron density. References 2604 In his seminal discovery of the positronium atom, Deutsch(cid:1)1951a,1951b(cid:2)foundacuriouseffect.Although the annihilation rate for thermal positrons at 300 K in I.INTRODUCTIONANDOVERVIEW atomicandmoleculargaseswasapproximatelyinaccord with Eq. (cid:1)1(cid:2) for some species (cid:1)e.g., argon and nitrogen(cid:2), The subject of this review is the interaction of low- the rate for dichlorofluoromethane CCl F (cid:1)“freon-12”(cid:2) energy positrons with molecules. Positrons, the antipar- 2 2 wasmuchlarger.Deutschinsightfullyascribedthiseffect ticles of electrons, are important in many areas of sci- to some type of resonant positron-molecule attachment ence and technology. Much of their utility relies on the process. A decade later, Paul and Saint-Pierre (cid:1)1963(cid:2) fact that, when an electron and positron interact, they measuredannihilationratesingasesofalkanemolecules can annihilate, producing a characteristic burst of C H , from methane to butane, n=1–4. They found gamma rays. The lowest order process results in two n 2n+2 back-to-back photons, each with the energy of the rest that the rate (cid:7) was much greater than (cid:7)D and that the mass of the electron (cid:1)or positron(cid:2) (cid:1)511 keV(cid:2). ratio (cid:7)/(cid:7)D increased exponentially with molecular size. The annihilation of low-energy (cid:1)e.g., (cid:3)50 eV(cid:2) posi- Annihilationratesingasesareconventionallynormal- ized to the Dirac rate. The corresponding dimensionless tronsonatomsandmoleculesplaysaparticularlyimpor- quantity is the “effective number of electrons”1 tant role in many fields. In medicine, positron emission tomography (cid:1)PET(cid:2) exploits two-gamma annihilation to (cid:7) studyhumanmetabolicprocesses(cid:1)Wahl,2002(cid:2).Inmate- Z = , (cid:1)2(cid:2) eff (cid:8)r2cn rial science, there are numerous positron-based tech- 0 niques to study the properties of matter (cid:1)Schultz and where n is the density of atoms or molecules (cid:1)Pomeran- Lynn, 1988; Puska and Nieminen, 1994; Dupasquier and chuk, 1949; Fraser, 1968(cid:2). For a simple collision and ne- Mills, 1995; Coleman, 2000(cid:2), including the Fermi sur- glectingelectron-positroncorrelations,onemightexpect faces in metals (cid:1)Major et al., 2004(cid:2), microscopic pores in that (cid:7)(cid:3)(cid:7) so that Z is comparable to Z=n /n, the solids(cid:1)Gidleyetal.,2000,2006(cid:2),thefreevolumeinpoly- D eff e mers (cid:1)Dlubek et al., 1998(cid:2), and the composition and structure of surfaces (cid:1)David et al., 2001(cid:2). In astronomy, 1In chemical kinetics, Z corresponds to the (cid:1)normalized(cid:2) 511 keV annihilation radiation (cid:1)the strongest gamma- rate constant of the anniheiflfation reaction. In positron physics ray line of extraterrestrial origin(cid:2) has been proven to be this quantity is commonly referred to as the “annihilation useful in elucidating astrophysical processes (cid:1)Ramaty et rate.” Rev.Mod.Phys.,Vol.82,No.3,July–September2010 Gribakin,Young,andSurko: Positron-moleculeinteractions:Resonant… 2559 total number of electrons per target atom or molecule. Gamma-ray spectra were measured for many molecules However, values of Z are often much larger (cid:1)e.g., for (cid:1)Iwata, Greaves, and Surko, 1997(cid:2). The Z /Z ratios eff eff butane, Z /Z=600(cid:2). werefoundtoincreaserapidlywithmolecularsizeupto eff Positronannihilationinatomsandmoleculeswassub- species as large as naphthalene and hexadecane sequently studied for a wide range of species (cid:1)Osmon, (cid:1)C H (cid:2), reaching values (cid:9)104 (cid:1)Surko, Passner, et al., 16 34 1965a, 1965b; Tao, 1965, 1970; McNutt et al., 1975; 1988; Murphy and Surko, 1991(cid:2).3 Sharma and McNutt, 1978; Charlton et al., 1980, 2002, A key to further progress was the development of a 2006; Heyland et al., 1985, 1986; Sharma et al., 1985; Al- trap-based positron beam with a narrow energy spread Qaradawi et al., 2000(cid:2). Early experiments were done (cid:1)(cid:3)40 meV(cid:2)(cid:1)Gilbertetal.,1997;Kurzetal.,1998(cid:2).Using withthermalpositronsingasesatatmosphericdensities, this beam, annihilation rates for atoms and molecules n(cid:3)1 amagat (cid:1)Deutsch, 1953; Paul and Saint-Pierre, weremeasuredasafunctionofincidentpositronenergy 1963; Griffith and Heyland, 1978(cid:2).2 Later, experiments from 50 meV to many electron volts. The result was the were done at much lower densities using positrons discovery of resonances associated with the molecular trappedandcooledto300 K(cid:1)Surko,Passner,etal.,1988; vibrational modes, namely, vibrational Feshbach reso- Murphy and Surko, 1991; Iwata et al., 1995; Iwata, nances (cid:1)VFRs(cid:2) (cid:1)Gilbert et al., 2002(cid:2). Greaves, and Surko, 1997(cid:2). The experiments showed A crucial point is that VFRs generally require the ex- that the annihilation rates for many molecular species istence of a bound state of the positron and the mol- exceededgreatlythenaivebenchmarkrate,Z (cid:3)Z,and eff ecule. They occur when the incident positron excites a a number of chemical trends were identified. vibrational mode and simultaneously makes a transition Since Deutsch’s first results, these large annihilation from the continuum into the bound state. The existence rates were associated with some kind of resonance phe- of both low-lying vibrational excitations and a positron nomenon or attachment process. Goldanskii and Saya- bound state thus enables the formation of long-lived sov (cid:1)1964(cid:2) discussed the possibility of resonance- positron-molecule resonant complexes in a two-body enhancedannihilationduetoaboundorvirtualpositron collision. The lifetime of these quasibound states is lim- stateclosetozeroenergy.SmithandPaul(cid:1)1970(cid:2)consid- ited by positron autodetachment accompanied by vibra- ered the possibility that the large annihilation rates in tional deexcitation. The upper limit on the lifetime is molecules were due to a vibrational resonance, and sev- (cid:4)0.1 ns,setbythepositronannihilationrateinthepres- eral other explanations were proposed (cid:1)Surko, Passner, ence of atomic-density electrons. et al., 1988; Dzuba et al., 1996; Laricchia and Wilkin, 1997;Gribakin,2000(cid:2).However,progresswashampered The annihilation rate as a function of positron energy Z (cid:1)(cid:5)(cid:2) (cid:1)i.e., the “annihilation spectrum”(cid:2) for the four- greatly by the lack of data other than for positrons with eff carbon alkane, butane, is shown in Fig. 1 (cid:1)Gilbert et al., thermal energy distributions at 300 K. The summary 2002(cid:2). While there is some qualitative correspondence statement in 1982 by Sir Harrie Massey was that annihi- between the Z (cid:1)(cid:5)(cid:2) and the infrared (cid:1)IR(cid:2) absorption lationstudieswere“completelymysteriousatpresentin eff almostallsubstances”(cid:1)Fraseretal.,1982;Massey,1982(cid:2), spectrumofthemolecule,theshapesofthespectralfea- tures are quite different (cid:1)Barnes et al., 2003(cid:2). and this remained more or less correct for another These positron VFRs can be compared to resonances 20 years. that play an important role in electron attachment to In the broader view, processes that are commonplace molecules and clusters (cid:1)Christophorou et al., 1984; Ho- inphysicsinvolvingmatter,suchaslow-energytwo-body scatteringevents,havefrequentlybeenfoundtobefrus- topetal.,2003(cid:2).Theelectroncollisionresultsinthepro- tratingly difficult to study when antiparticles are in- duction of long-lived (cid:1)metastable(cid:2) parent anions or mo- volved (cid:1)Schultz and Lynn, 1988; Eades and Hartmann, lecular fragment negative ions via dissociative 1999; Coleman, 2000; Charlton and Humberston, 2001(cid:2). attachment. A dominant mechanism of electron capture The advent of efficient positron traps marked a turning by molecules is via negative-ion resonant states (cid:1)Chris- point(cid:1)Surko,Leventhal,etal.,1988;MurphyandSurko, tophorou et al., 1984(cid:2). Dissociative attachment usually 1992; Surko et al., 2005(cid:2), enabling a new generation of proceeds via electron shape resonances of ground or studies (cid:1)Surko, Passner, et al., 1988; Murphy and Surko, electronically excited molecules. Such resonances are 1991;Iwataetal.,1995;Kurzetal.,1996;Iwata,Greaves, quite common in diatomic, triatomic, and polyatomic and Surko, 1997(cid:2). Experiments with trapped positrons species at energies in the range (cid:3)0–4 eV. The theoret- cooled to 300 K permitted studies of test species at low ical description of them involves (cid:1)complex(cid:2) Born- densities (cid:1)e.g., (cid:3)10−6 amagat(cid:2). This ensured that annihi- Oppenheimerpotential-energysurfaces(cid:1)O’Malley,1966; lation was strictly due to binary collisions rather than Bardsley, 1968a; Domcke, 1981(cid:2). All the data indicate many-particle effects (cid:1)Iakubov and Khrapak, 1982(cid:2), and that positrons generally do not form shape resonances it enabled study of a broader range of chemical species, or electronic Feshbach resonances in low-energy colli- including low-vapor-pressure liquids and solids. sions with molecules. Instead, energy-resolved annihila- 21amagat=2.69(cid:10)1019cm−3 is the density of an ideal gas at 3ThetheoreticalmaximumforthemagnitudeofZ isgiven eff standard temperature and pressure, 273.15K and 101.3kPa, bytheunitaritylimitoftheinelasticcrosssection(cid:1)Landauand respectively. Lifshitz,1977(cid:2),Z (cid:4)107 forroom-temperaturepositrons. eff Rev.Mod.Phys.,Vol.82,No.3,July–September2010 2560 Gribakin,Young,andSurko: Positron-moleculeinteractions:Resonant… TABLE I. Annihilation rates Z and binding energies (cid:5) for eff b selectedmolecules. (cid:5) b Class Molecule Z (cid:1)meV(cid:2)a Z a eff Smallinorganics H O 10 (cid:6)0 170b 2 NH 9 (cid:13)0 300b 3 Methylhalides CH F 18 (cid:13)0 250b 3 CH Br 44 40 2000b 3 Alkanes CH 10 (cid:6)0 70b 4 C H 18 (cid:13)0 900c 2 6 C H 26 10 10500c 3 8 C H 50 80 184000c 6 14 C H 98 220 9800000c 12 26 Alcohols CH OH 18 (cid:13)0 750b 3 C H OH 26 45 4500b 2 5 Aromatics C H 42 150 47000c 6 6 C H 68 300 1240000c 10 8 aValues from energy-resolved measurements (cid:1)Young and FIG. 1. The normalized annihilation rate Zeff(cid:1)(cid:5)(cid:2) for butane Surko, 2008b, 2008c(cid:2); typical uncertainties in Zeff and (cid:5)b are C H (cid:1)(cid:1)(cid:2)asafunctionofthetotalincidentpositronenergy(cid:5): ±20% and±10meV,respectively. 4 10 (cid:1)a(cid:2)uptothePsformationthreshold,E =3.8eV,and(cid:1)b(cid:2)inthe bMaximumvaluesforpositronenergies(cid:5)(cid:14)50meV. th region of the molecular vibrations; dotted curve, the infrared cValuesofZeffattheC-Hresonancepeak. absorption spectrum (cid:1)Linstrom and Mallard, 2005(cid:2) (cid:1)logarith- mic vertical scale, arbitrary units(cid:2); solid curve, the vibrational resonances at lower energies are due to C-C modes and mode density (cid:1)in arbitrary units(cid:2), with the modes represented C-H bend modes and exhibit the same downshift. by Lorentzians with an arbitrary FWHM of 10meV; dashed There are a number of important chemical trends as- line,meanenergyoftheC-Hstretchfundamentals. sociated with resonant annihilation on molecules (cid:1)Mur- phy and Surko, 1991; Iwata et al., 1995; Young and tion studies point to the important role played by the Surko, 2008b, 2008c(cid:2). Examples are shown in Table I. VFR. Very small molecules, such as CO , CH , or H O, have 2 4 2 These vibrational (cid:1)or “nuclear-excited”(cid:2) Feshbach relativelysmallvaluesofZ (cid:1)e.g.,Z /Z(cid:4)10(cid:2),andtypi- eff eff resonances involve coupling of the electronic and the cally they do not exhibit resonant annihilation peaks. nuclearmotionbeyondtheBorn-Oppenheimerapproxi- Positrons either do not bind to these species (cid:1)i.e., (cid:5) b mation. It cannot be described by potential-energy sur- (cid:6)0(cid:2) or they bind extremely weakly. With the exception faces. This type of resonances was originally introduced ofmethane,allofthealkanesexhibitVFRs,withvalues by Bardsley (cid:1)1968b(cid:2) as an “indirect” mechanism for dis- of (cid:5) increasing linearly with the number of carbon at- b sociative electron recombination and described using oms n, and the magnitudes of Z increasing approxi- eff Breit-Wigner theory. In the case of electrons, these matelyexponentiallywithn.Mosthydrocarbons,includ- VFRsleadtolargeattachmentcrosssectionswhichtypi- ing aromatic molecules, alkenes, and alcohols, exhibit cally reach their maximum values at thermal electron similar resonant annihilation spectra. energies (cid:1)Christophorou et al., 1984(cid:2). They are also re- Much progress has been made in the theoretical un- sponsiblefortheformationoflong-livedparentnegative derstanding of resonant positron annihilation in mol- ions for many complex polyatomic molecules. ecules(cid:1)Gribakin,2000,2001;GribakinandGill,2004(cid:2).A Referring to Fig. 1, the energy of the VFR corre- quantitative theory has been developed for the case of sponding to mode (cid:11)is given by energy conservation, isolatedresonancesofIR-activevibrationalmodes,such (cid:5)(cid:11)=(cid:12)(cid:11)−(cid:5)b, (cid:1)3(cid:2) asthoseobservedinexperimentsforselectedsmallmol- ecules. The prototypical example is that of the methyl where(cid:5)bisthepositron-moleculebindingenergyand(cid:12)(cid:11) halides, CH3X, where X is a F, Cl, or Br atom. Positron isthevibrationalmodeenergy.Thepositronbindingen- coupling to the IR-active modes is evaluated in the di- ergy (cid:1)i.e., the positron affinity(cid:2) can be measured by the poleapproximationusingdatafromIRabsorptionmea- downshift of the resonances from the energies of the surements. The only free parameter in the theory is the vibrational modes. In Fig. 1 for butane, this is most eas- positron binding energy, which can be taken from ex- ily seen as the shift in the C-H stretch vibrational reso- periment.Thisyieldstheoreticalannihilationspectrafor nance. The corresponding peak in Z occurs at methylhalidesthatareingoodagreementwiththemea- eff 330 meV, as compared with the vibrational mode fre- surements (cid:1)Gribakin and Lee, 2006a(cid:2). quency of 365 meV, indicating that (cid:5) =35 meV. The A more stringent test of the theory relies on the fact b Rev.Mod.Phys.,Vol.82,No.3,July–September2010 Gribakin,Young,andSurko: Positron-moleculeinteractions:Resonant… 2561 that positron binding energies are expected to change couplings, and this has not yet been done. littleuponisotopesubstitution.Fordeuterationthiswas Theenergy-resolvedannihilationexperimentsprovide confirmed experimentally. The binding energies mea- measures of positron-molecule binding energies, either sured for CH Cl and CH Br were used to predict Z directly using Eq. (cid:1)3(cid:2) or, for very weakly bound states, 3 3 eff for their deuterated analogs. The result is excellent indirectly through the dependence of Z on g. To date, eff agreement between theory and experiment with no ad- bindingenergiesforabout30 moleculeshavebeenmea- justable parameters (cid:1)Young et al., 2008(cid:2). In other small sured. They range from (cid:3)1 meV in small molecules, molecules, such as ethylene and methanol, IR-inactive such as CH F, to (cid:3)300 meV for large alkanes (cid:1)Young 3 modes and multimode vibrations are prominent and and Surko, 2008b, 2008c(cid:2). A recent analysis indicates must be included to explain the observations (cid:1)Young et that these binding energies increase approximately lin- al., 2008(cid:2). earlywiththemoleculardipolepolarizabilityanddipole ThistheoreticalapproachexplainsZ forsmallpoly- moment and, for aromatic molecules, the number of (cid:8) eff atomics in which the positron coupling to the mode- bonds (cid:1)Danielson et al., 2009(cid:2). based VFR and, possibly a few overtones, can be esti- For atoms, comparatively accurate positron binding mated (cid:1)e.g., when they have dipole coupling(cid:2). Their Z energieshavebeenpredictedtheoreticallyforaboutten eff values are between a few hundred and a few thousand.4 species (cid:1)Mitroy et al., 2002(cid:2), but there are no measure- However, larger molecules with more than one or two ments. There have been a number of calculations for carbons have values of Z that cannot be explained by positron binding to molecules (cid:1)Schrader and Wang, eff this theory (cid:1)cf. Fig. 1 for butane(cid:2). The current physical 1976; Kurtz and Jordan, 1978, 1981; Danby and Tenny- picture ascribes their large annihilation rates to large son,1988;Bressaninietal.,1998;Strasburger,1999,2004; densities of vibrational resonances, known as “dark Schrader and Moxom, 2001; Tachikawa et al., 2003; states” (cid:1)Gribakin, 2000, 2001(cid:2), that are not coupled di- Buenker et al., 2005; Chojnacki and Strasburger, 2006; rectly to the positron continuum. The positron first at- Gianturco et al., 2006; Buenker and Liebermann, 2008; tachestothemoleculeviaavibrational“doorwaystate” Carey et al., 2008(cid:2). Most of these molecules have large (cid:1)e.g., a dipole-allowed mode-based VFR(cid:2) (cid:1)Gribakin and dipole moments which facilitate binding. In contrast, Gill,2004(cid:2).Thevibrationalenergyisthentransferredto most molecules for which the binding energies are the dark states in a process known as intramolecular known from experiment are either nonpolar or only vibrationalenergyredistribution(cid:1)IVR(cid:2).SuchIVRisim- weakly polar. Thus at present, there are almost no spe- portant for many physical and chemical processes in cies for which experiment and theory can be compared, molecules, including dissociative attachment (cid:1)Uzer and and so this is a critical area for future research. Miller, 1991; Nesbitt and Field, 1996(cid:2). Presented here is a review of theoretical and experi- The magnitudes of resonant contributions to Z ex- mental results for positron annihilation on molecules in eff hibit a relatively weak dependence on (cid:5) and on the the range of energies below the positronium formation incidentpositronenergy(cid:5).Itisoftheformbg=(cid:4)(cid:5) /(cid:5)and threshold. Emphasis is placed upon the case in which b positrons bind to the target and annihilation proceeds follows from rather general theoretical considerations. via the formation of vibrational Feshbach resonances. Whenthisdependenceisfactoredout,itisfoundexperi- mentallythattheresultingquantityZ /gscalesas(cid:3)N4, Current knowledge of positron-molecule binding ener- eff gies,obtainedfrombothexperimentandtheoreticalcal- where N is the number of atoms in the molecule. This culations, is summarized. These results are related to dependenceonN isthoughttoreflecttherapidincrease studies of positron-induced fragmentation of molecules, inthedensityofthemolecularvibrationalspectrumwith annihilation gamma-ray spectra, annihilation in dense the number of vibrational modes. This dependence is gases where nonlinear effects are observed, and to interpreted as evidence that IVR does indeed play an analogouselectroninteractionswithmoleculesandclus- important role in the annihilation process. ters. Estimates of Z in large molecules, which assume eff that the IVR process is complete and all modes are populatedstatistically,predictZ valuesfarinexcessof II.THEORY eff those that are observed. Such estimates also fail to re- A.Annihilationbasics produce the energy dependence of Z , which is largely eff determined by the mode-based vibrational doorways. The process of electron-positron annihilation is de- Onehypothesis,asyetunconfirmed,isthattheIVRpro- scribedbyquantumelectrodynamics(cid:1)QED(cid:2).Inthenon- cessdoesnotrunto“completion.”Itappearsthatselec- relativisticBornapproximation,thecrosssectionforan- tivecouplingofmultimodevibrationsleavesalargepor- nihilation into two photons averaged over the electron tion of them inactive. The calculation of Zeff then and positron spins is (cid:1)Berestetskii et al., 1982(cid:2) requires a detailed knowledge of the vibrational mode (cid:15)¯2(cid:16)=(cid:8)r02c/v, (cid:1)4(cid:2) 4The heights of resonant peaks in the measured Z spectra wherev istherelativevelocityofthetwoparticles.This eff are related to the energy spread (cid:17)(cid:5) of the incident positron cross section obeys the 1/v threshold law which de- beam. The value of Z (cid:3)103 corresponds to the typical (cid:17)(cid:5) scribes inelastic collisions with fast particles in the final eff (cid:3)40meVusedtodate(cid:1)seeSec.III(cid:2). state (cid:1)Landau and Lifshitz, 1977(cid:2). Rev.Mod.Phys.,Vol.82,No.3,July–September2010 2562 Gribakin,Young,andSurko: Positron-moleculeinteractions:Resonant… The two-photon annihilation described by Eq. (cid:1)4(cid:2) is attracted to the target by a long-range polarization po- allowed only when the total spin S of the electron- tential−(cid:18)/2r4,where(cid:18) isthetargetdipolepolarizabil- d d positronpairiszero.ForS=1thesmallestpossiblenum- ity, which enhances Z . There is also a short-range en- eff ber of annihilation photons is three. The corresponding hancement of Z due to the Coulomb interaction eff spin-averaged cross section is (cid:1)Berestetskii et al., 1982(cid:2) between the annihilating electron and positron, which has the same origin as the expression in Eq. (cid:1)6(cid:2). Finally, (cid:15)¯3(cid:16)= 34(cid:1)(cid:8)2−9(cid:2)(cid:18)r02c/v, (cid:1)5(cid:2) if the target binds the positron, the annihilation can be where (cid:18)=e2/(cid:19)c (cid:1)in cgs units(cid:2) is the fine structure con- enhanced by positron capture into this bound state. The pstoasnitt,ro(cid:18)n(cid:5)a1n/n1i3h7il.aStiionncein(cid:15)¯3m(cid:16)aisny4-0e0letcitmroens ssmysatlelmersthisadno(cid:15)¯m2(cid:16)i-, cprhoostsosne(cid:2)ctiisonsmfoarll,randaimateivlye,c(cid:15)acp(cid:3)tu(cid:18)re3a(cid:1)02i.e(cid:1)B.,ebryesetmetissksiiionetoafl.a, nated by the two-gamma process. 1982(cid:2). In collisions with molecules, the positron can Numerically, the cross section in Eq. (cid:1)4(cid:2) is (cid:15)¯2(cid:16) transfer its energy to vibrations forming a positron- (cid:3)10−8 c/v a.u.5 Hence the annihilation rate is usually moleculecomplex.Thisprocessiseffectiveinenhancing the annihilation rate. It is the principal focus of the much smaller than the rates for other atomic collision processes, even at low positron velocities (cid:1)e.g., thermal, present review. v(cid:3)0.05 a.u.at300 K(cid:2).Whenafastpositron,suchasthat As follows from its definition by Eq. (cid:1)7(cid:2), Zeff is equal emitted in a (cid:20)+ decay, moves through matter, it loses to the electron density at the positron, energy quickly through collisions, first by direct ioniza- (cid:8) tion, positronium formation and electronic excitation, Z (cid:9) and then by vibrational excitation and elastic collisions. Zeff= (cid:17)(cid:1)r−ri(cid:2)(cid:6)(cid:23)k(cid:1)r1,...,rZ,r(cid:2)(cid:6)2dr1¯drZdr, As a result, the positrons are typically slow to thermal i=1 energies (cid:1)i.e., (cid:3)25 meV for T=300 K(cid:2) before annihila- (cid:1)8(cid:2) tion. At small velocities, v(cid:4)1 a.u., Eq. (cid:1)4(cid:2) must be modi- where (cid:23) (cid:1)r ,...,r ,r(cid:2) is the total wave function of the fied to take into account the Coulomb interaction be- k 1 Z system,withelectroncoordinatesr andpositroncoordi- tween the electron and positron. The typical momenta i exchanged in the annihilation process are p(cid:3)mc. The nater.Thiswavefunctiondescribesthescatteringofthe corresponding separation r(cid:3)(cid:19)/mc is small compared to positron with initial momentum k by the atomic or mo- lecular target and is normalized to the positron plane a ,andinthenonrelativisticlimit,theannihilationtakes 0 wave at large separations, place when the electron and positron are at the same point. The cross section in Eq. (cid:1)4(cid:2) must then be multi- plied by the probability density at the origin (cid:1)Landau (cid:23) (cid:1)r ,...,r ,r(cid:2)(cid:7)(cid:24) (cid:1)r ,...,r (cid:2)eik·r, (cid:1)9(cid:2) k 1 Z 0 1 Z and Lifshitz, 1977(cid:2), 2(cid:8) where(cid:24) isthewavefunctionoftheinitial(cid:1)e.g.,ground(cid:2) (cid:6)(cid:21)(cid:1)0(cid:2)(cid:6)2= v(cid:1)1−e−2(cid:8)/v(cid:2), (cid:1)6(cid:2) state of t0he target. For molecules, both (cid:23)k and (cid:24)0 also depend on the nuclear coordinates, which must be inte- wherethewavefunction(cid:21)isnormalizedby(cid:21)(cid:1)r(cid:2)(cid:7)eik·rat grated over in Eq. (cid:1)8(cid:2). r(cid:22)a . This increases the annihilation cross section. Equations (cid:1)7(cid:2) and (cid:1)8(cid:2) determine the annihilation rate 0 The annihilation cross section for many-electron tar- in binary positron-molecule collisions, gets is traditionally written as (cid:1)Pomeranchuk, 1949; Fraser, 1968(cid:2) (cid:7)=(cid:15)vn=(cid:8)r2cZ n, (cid:1)10(cid:2) a 0 eff c (cid:15)a=(cid:15)¯2(cid:16)Zeff=(cid:8)r02vZeff, (cid:1)7(cid:2) where n is the gas number density. To compare with where Z represents the effective number of electrons experiment, this rate is averaged over the positron en- eff that contribute to the annihilation. In the Born approxi- ergy distribution. For thermal positrons this distribution is a Maxwellian, while in beam experiments, it is deter- mation, Z =Z, the total number of target electrons. eff At small positron energies (cid:1)e.g., (cid:5)(cid:4)1 eV(cid:2), however, mined by the parameters of the beam. Empirically Eq. (cid:1)10(cid:2) is also used to describe experiments at high densi- Z can be different from Z. First, there is a strong re- eff ties where Z becomes density dependent (cid:1)see Sec. pulsionbetweenthepositronandtheatomicnuclei.This eff VIII.C(cid:2). preventsthepositronfrompenetratingdeepintotheat- oms so that the annihilation involves predominantly electrons in the valence and near-valence subshells, therebyreducingZ .Ontheotherhand,thepositronis eff B.Gamma-rayspectraandannihilationrates 5We make use of atomic units (cid:1)a.u.(cid:2), in which m=(cid:6)e(cid:6)=(cid:19)=1, In the nonrelativistic limit, the two-photon QED an- c=(cid:18)−1(cid:5)137a.u.,andtheBohrradiusa =(cid:19)2/me2(cid:1)incgsunits(cid:2) nihilation amplitude can be expressed in terms of an 0 alsoequalsunity. effective annihilation operator Rev.Mod.Phys.,Vol.82,No.3,July–September2010 Gribakin,Young,andSurko: Positron-moleculeinteractions:Resonant… 2563 (cid:8) tions of different final states. For example, in partially Oˆ (cid:1)P(cid:2)(cid:10) e−iP·r(cid:21)ˆ(cid:1)r(cid:2)(cid:25)ˆ(cid:1)r(cid:2)dr, (cid:1)11(cid:2) fluorinated alkanes, annihilation with the tightly bound a fluorine 2p electrons results in a broader spectral com- where (cid:21)ˆ(cid:1)r(cid:2) and (cid:25)ˆ(cid:1)r(cid:2) are the electron and positron de- ponent than annihilation with the more diffuse C-H structionoperators6andP isthetotalmomentumofthe bond electrons. This allows one to deduce the relative photons(cid:1)Ferrell,1956;Lee,1957;DunlopandGribakin, fraction of the corresponding annihilation events (cid:1)Iwata 2006(cid:2). The probability distribution of P in an annihila- et al., 1997(cid:2); see Sec. VIII.A. Thetotalannihilationrateinthestatei leadingtothe tion event is given by finalstatefisobtainedbyintegrationoverthemomenta W(cid:1)P(cid:2)=(cid:8)r2c(cid:11)(cid:12)f(cid:6)Oˆ (cid:1)P(cid:2)(cid:6)i(cid:13)(cid:11)2, (cid:1)12(cid:2) (cid:8) f 0 a d3P (cid:7) =(cid:8)r2c (cid:11)(cid:12)f(cid:6)Oˆ (cid:1)P(cid:2)(cid:6)i(cid:13)(cid:11)2 , (cid:1)16(cid:2) where (cid:6)i(cid:13) is the initial state with Z electrons and the f 0 a (cid:1)2(cid:8)(cid:2)3 positron (cid:1)e.g., that with the wave function (cid:23) (cid:2) and (cid:6)f(cid:13) is k and the total annihilation rate in state i is the state of Z−1 electrons after the annihilation. (cid:8) For P=0, the two photons are emitted in opposite di- (cid:9) rections and have equal energies, E(cid:16)1=E(cid:16)2(cid:10)E(cid:16)(cid:5)mc2. (cid:7)= (cid:7)f=(cid:8)r02c (cid:12)i(cid:6)nˆ−(cid:1)r(cid:2)nˆ+(cid:1)r(cid:2)(cid:6)i(cid:13)dr, (cid:1)17(cid:2) For P(cid:3)0 the photon energy is Doppler shifted, e.g., f E(cid:16)1=E(cid:16)+mc(cid:6)V(cid:6)cos(cid:26), (cid:1)13(cid:2) where nˆ−(cid:1)r(cid:2)=(cid:21)ˆ†(cid:1)r(cid:2)(cid:21)ˆ(cid:1)r(cid:2) and nˆ+(cid:1)r(cid:2)=(cid:25)ˆ†(cid:1)r(cid:2)(cid:25)ˆ(cid:1)r(cid:2) are the elec- tron and positron density operators. The annihilation where V=P/2m is the center-of-mass velocity of the rate is thus given by the expectation value of the elec- electron-positron pair and (cid:26)is the angle between V and trondensityatthepositron.Equation(cid:1)17(cid:2)givesthetwo- the direction of the photon. Averaging the distribution photonannihilationrateinasystemofonepositronand of the Doppler shifts (cid:27)=E(cid:16)1−E(cid:16)=(cid:1)Pc/2(cid:2)cos(cid:26), over the one target atom or molecule. For a positron moving direction of emission of the photons, gives the photon through a gas of density n, the annihilation rate takes energy spectrum the form of Eq. (cid:1)10(cid:2). Normalizing the initial state i to (cid:8)(cid:8) 1 (cid:28) PdPd(cid:29) one positron per unit volume, as (cid:23)k in Eq. (cid:1)9(cid:2), one ob- w(cid:1)(cid:27)(cid:2)= W(cid:1)P(cid:2) P. (cid:1)14(cid:2) tains f c f (cid:1)2(cid:8)(cid:2)3 (cid:8) 2(cid:6)(cid:27)(cid:6)/c In Cartesian coordinates, Zeff= (cid:12)i(cid:6)nˆ−(cid:1)r(cid:2)nˆ+(cid:1)r(cid:2)(cid:6)i(cid:13)dr. (cid:1)18(cid:2) (cid:8)(cid:8) w(cid:1)(cid:27)(cid:2)= 2 W(cid:1)P ,P ,2(cid:27)/c(cid:2)dPxdPy. (cid:1)15(cid:2) In the coordinate representation, this yields Eq. (cid:1)8(cid:2). f c f x y (cid:1)2(cid:8)(cid:2)3 In the independent-particle approximation, the elec- tronic parts of the initial and final states are Slater de- This form shows that the energy spectrum is propor- terminants constructed from the electron orbitals (cid:1)e.g., tional to the probability density for a component of P. in the Hartree-Fock scheme(cid:2). The incident positron is This quantity can be measured either by sampling the described by its own wave function (cid:25)(cid:1)r(cid:2), and the anni- Doppler spectrum of the gamma rays or by measuring k theangulardeviationofthetwophotons(cid:1)seeSec.III.F(cid:2). hilation amplitude (cid:12)f(cid:6)Oˆa(cid:1)P(cid:2)(cid:6)i(cid:13) takes the form (cid:8) When a low-energy positron annihilates with a bound electron with energy (cid:5)n, the mean photon energy E(cid:16)is Ank(cid:1)P(cid:2)= e−iP·r(cid:21)n(cid:1)r(cid:2)(cid:25)k(cid:1)r(cid:2)dr, (cid:1)19(cid:2) shiftedby(cid:5) /2relativetomc2.Thisshiftismuchsmaller n thanthetypicalDopplershift(cid:27)duetothemomentumof where (cid:21)(cid:1)r(cid:2) is the orbital of the annihilated electron. In (cid:4) n the bound electron P(cid:3) 2m(cid:6)(cid:5) (cid:6), which corresponds to this approximation (cid:4) n (cid:27)(cid:3)Pc(cid:3) (cid:6)(cid:5) (cid:6)mc2(cid:22)(cid:6)(cid:5) (cid:6).Theresultingwidthandshapeof (cid:8) n n Z the gamma spectrum contain important information Z =(cid:9) (cid:6)(cid:21)(cid:1)r(cid:2)(cid:6)2(cid:6)(cid:25)(cid:1)r(cid:2)(cid:6)2dr, (cid:1)20(cid:2) eff n k about the bound electrons. n=1 Inmostexperiments,theannihilationphotonsarenot i.e., the average product of the electron and positron detected in coincidence with the final state f, and the densities. observed spectrum is the sum over all final states w(cid:1)(cid:27)(cid:2) =(cid:9)w(cid:1)(cid:27)(cid:2). However, this spectrum still reveals contribu- f f C.Positron-moleculewavefunction 6In Eq. (cid:1)11(cid:2) the spin indices in (cid:21)ˆ(cid:1)r(cid:2) and (cid:25)ˆ(cid:1)r(cid:2) are suppressed, Thewavefunction(cid:23) forthepositroncollidingwitha k and summation over them is assumed. This form can be used molecule can be written as (cid:1)Gribakin, 2000, 2001(cid:2) in systems with paired electron spins or when averaging over tthipelipeodsbityrotnhespsipni.nT-ahveemraogdedulQusE-sDqufaarcetdoram(cid:8)rp02lcit.uIdnegiesnthereanl,mounle- (cid:23)k=(cid:23)k(cid:1)0(cid:2)+(cid:9)(cid:11) (cid:5)(cid:23)−(cid:11)(cid:12)(cid:5)(cid:23)(cid:11)(cid:11)+(cid:6)V(cid:1)i(cid:6)/(cid:23)2(cid:2)k(cid:1)0(cid:30)(cid:2)(cid:13)(cid:11). (cid:1)21(cid:2) shouldusethespin-singletcombinationoftheannihilationop- (cid:4) eratorsinEq.(cid:1)11(cid:2),(cid:1)1/ 2(cid:2)(cid:1)(cid:21)ˆ↑(cid:25)ˆ↓−(cid:21)ˆ↓(cid:25)ˆ↑(cid:2),togetherwiththetwo- The first term on the right-hand side describes direct or photonannihilationfactor4(cid:8)r2c. potential scattering of the positron by the target. The 0 Rev.Mod.Phys.,Vol.82,No.3,July–September2010 2564 Gribakin,Young,andSurko: Positron-moleculeinteractions:Resonant… corresponding wave function (cid:23)(cid:1)0(cid:2) is determined by the To calculate Z , the wave function from Eq. (cid:1)21(cid:2) is k eff positron interaction with the charge distribution of the substituted into Eq. (cid:1)8(cid:2), which yields ground-statetargetandelectron-positroncorrelationef- Z fects (cid:1)e.g., target polarization and virtual Ps formation(cid:2). Z =(cid:12)(cid:23) (cid:6)(cid:9)(cid:17)(cid:1)r−r(cid:2)(cid:6)(cid:23) (cid:13) eff k i k ItneglectsthecouplingV betweentheelectron-positron i=1 (cid:14) (cid:15) and nuclear (cid:1)vibrational(cid:2) degrees of freedom. The sec- Z ond term describes positron capture into the vibrational =(cid:12)(cid:23)(cid:1)0(cid:2)(cid:6)(cid:9)(cid:17)(cid:1)r−r(cid:2)(cid:6)(cid:23)(cid:1)0(cid:2)(cid:13)+ interference Feshbachresonances.Itispresentformoleculesthatcan k i k terms i=1 bind the positron. These resonances correspond to vi- cobocramcutiprolnewxa,lhlyeenmexbtcheideteddepdosstiiatntreostnh(cid:23)ee(cid:11)npeoorsfgitytrhoe(cid:5)n=pckoo2sn/itt2rinoiunsu-mmclo.olseTechuetloye + 2(cid:8)2(cid:9) A *(cid:12)(cid:23) (cid:6)(cid:9)i=Z1(cid:17)(cid:1)r−ri(cid:2)(cid:6)(cid:23)(cid:11)(cid:13)A(cid:11) , (cid:1)25(cid:2) (cid:5)(cid:11)=E(cid:11)−(cid:5)b, where (cid:5)b is the positron binding energy and k (cid:11)(cid:1)(cid:5)−(cid:5) − 2i(cid:30) (cid:2)(cid:1)(cid:5)−(cid:5)(cid:11)+ 2i(cid:30)(cid:11)(cid:2) E(cid:11)is the vibrational excitation energy of the positron- where the capture amplitude A(cid:11)is related to the elastic molecule complex. Equation (cid:1)21(cid:2) has the appearance width by (cid:30)(cid:11)e=2(cid:8)(cid:6)A(cid:11)(cid:6)2. The terms on the right-hand side ofastandardperturbation-theoryformula,buttheener- describethecontributionsofdirectandresonantannihi- gies of the positron-molecule quasibound states (cid:23)(cid:11) lation and the interference between the two. We now in the denominator are complex, (cid:5)(cid:11)−(cid:1)i/2(cid:2)(cid:30)(cid:11), where examine the two main contributions in detail. (cid:30)(cid:11)=(cid:30)(cid:11)a+(cid:30)(cid:11)e+(cid:30)(cid:11)i is the total width of the resonance. In The separation of the wave function into the direct atomicunits(cid:30)(cid:11)isequaltothedecayrateoftheresonant and resonant parts in Eq. (cid:1)21(cid:2) is valid because the posi- state. It contains contributions of positron annihilation tron VFRs are narrow. This is a consequence of the and elastic escape (cid:30)(cid:11)a and (cid:30)(cid:11)e, respectively, and possibly weakness of coupling between the positron and the vi- also the inelastic escape rate (cid:30)(cid:11)i. The latter describes brational motion (cid:1)i.e., small capture widths (cid:30)(cid:11)e, see Sec. positron autodetachment accompanied by vibrational II.F(cid:2). In spite of this, the resonant contribution to the transitions to the states other than the initial state. annihilation rate for complex polyatomics exceeds the Molecular rotations are, in general, not expected to direct contributions by orders of magnitude. affect positron annihilation. The rotational motion is slow compared to the motion of the positron or the vi- D.Directannihilation:Virtualandweaklyboundpositron brational motion. Accordingly, direct scattering can be states considered for fixed molecular orientation and the re- sults averaged over the orientations. Positron capture in The potential scattering wave function (cid:23)(cid:1)0(cid:2) satisfies VFRs at low energies is dominated by the s wave or at k the Schrödinger equation most a few lower partial waves. Hence in the capture process,theangularmomentumofthemoleculeremains (cid:1)T+U−E (cid:2)(cid:23)(cid:1)0(cid:2)=(cid:5)(cid:23)(cid:1)0(cid:2), (cid:1)26(cid:2) 0 k k unchanged or changes little. where T is the kinetic energy operator for the electrons The positron capture amplitude (cid:12)(cid:23)(cid:11)(cid:6)V(cid:6)(cid:23)k(cid:1)0(cid:2)(cid:13) deter- and positron, U is the sum of all Coulomb interactions mines the elastic width in state (cid:11), between the particles (cid:1)with the nuclei at their equilib- (cid:8) (cid:30)(cid:11)e=2(cid:8) (cid:11)(cid:12)(cid:23)(cid:11)(cid:6)V(cid:6)(cid:23)k(cid:1)0(cid:2)(cid:13)(cid:11)2k(cid:1)2d(cid:8)(cid:29)(cid:2)3k. (cid:1)22(cid:2) riuFmorpopsoistiitornosn(cid:2),eannedrgEie0sisbtehleowtarthgeetPgsr-ofuonrmd-asttiaotneethnreersghy-. old, annihilation occurs when the positron is within the If the positron interaction with the vibrations cannot be range of the target ground-state electron cloud. At such described by perturbation theory, Eqs. (cid:1)21(cid:2) and (cid:1)22(cid:2) re- distances, the interaction U between the particles is mplaaicnedvablyidthperiorvnidoendpetrhteurabmatpivlietuvdaelsue(cid:12)s(cid:23).(cid:11)(cid:6)V(cid:6)(cid:23)k(cid:1)0(cid:2)(cid:13) are re- m(cid:5)(cid:23)u(cid:1)c0h(cid:2)tgerrematienrEthqa.n(cid:1)2t6h(cid:2)ecpaonsbiteronnegelneecrtgeyd,(cid:5)a.nTdhtehreefsoorleu,titohne k According to Eq. (cid:1)17(cid:2), the annihilation rate of the (cid:23)(cid:1)0(cid:2) at these small separations does not depend on (cid:5), k positron-molecule state (cid:23)(cid:11)is given by except through a normalization factor. When the positron is outside the target, (cid:23)(cid:1)0(cid:2) contains (cid:30)a=(cid:8)r2c(cid:31) , (cid:1)23(cid:2) k (cid:11) 0 ep contributions of the incident and scattered positron where(cid:31) istheaverageelectrondensityatthepositron, waves, (cid:16) (cid:17) ep (cid:8) eikr (cid:31)ep= (cid:9)Z (cid:17)(cid:1)r−ri(cid:2)(cid:6)(cid:23)(cid:11)(cid:1)r1,...,rZ,r(cid:2)(cid:6)2dr1¯drZdr, (cid:23)k(cid:1)0(cid:2)(cid:1)r1,...,rZ,r(cid:2)(cid:7)(cid:24)0(cid:1)r1,...,rZ(cid:2) eik·r+fkk(cid:1) r , i=1 (cid:1)27(cid:2) (cid:1)24(cid:2) where fkk(cid:1) is the scattering amplitude and k(cid:1)=kr/r. In- with the integration extending to the nuclear coordi- side the target, (cid:23)(cid:1)0(cid:2) is determined by matching it with k nates in the wave function (cid:23)(cid:11). The amplitude of the Eq. (cid:1)27(cid:2) at the target boundary r=R, where R is the nuclear motion is small, and (cid:31) is expected to depend characteristic radius of the target. For small positron ep weaklyonthedegreeofvibrationalexcitationinstate(cid:11). momenta kR!1, the scattering is dominated by the s Rev.Mod.Phys.,Vol.82,No.3,July–September2010 Gribakin,Young,andSurko: Positron-moleculeinteractions:Resonant… 2565 wave, and the amplitude fkk(cid:1) can be replaced by the s-waveamplitudef .Asaresult,theintegrandinEq.(cid:1)8(cid:2) 0 for Z is proportional to (cid:6)1+f /R(cid:6)2 (cid:1)Dzuba et al., 1993(cid:2). 1000 eff 0 This gives the following estimate for Z due to direct eff annihilation (cid:1)Gribakin, 2000(cid:2), eff 100 Z(cid:1)dir(cid:2)(cid:7)4(cid:8)(cid:31)(cid:17)R(cid:1)R2+2R Re f +(cid:15) /4(cid:8)(cid:2), (cid:1)28(cid:2) Z eff e 0 el where(cid:31) istheeffectiveelectrondensityintheregionof 10 e annihilation,(cid:17)R istherangeofdistanceswherethepos- itron annihilates, and (cid:15) is the elastic cross section. At el small positron energies, (cid:15) (cid:7)4(cid:8)(cid:6)f (cid:6)2, and in the zero- 1 0.01 0.1 1 el 0 Positronmomentum(a.u.) energylimit(cid:15) =4(cid:8)a2,wherea isthepositronscattering el length, a=−f0 at k=0.7 FIG. 2. (cid:1)Color online(cid:2) Comparison of the Z values calcu- Asimpleestimateofthefactor4(cid:8)(cid:31)e(cid:17)R(cid:10)FinEq.(cid:1)28(cid:2) lated using the SMC method for C2H2 (cid:1)squaefrfes(cid:2) and C2H4 is obtained using the Ps density at the origin, (cid:31)e(cid:3)(cid:31)Ps (cid:1)circles(cid:2) by Varella et al. (cid:1)2002(cid:2) (cid:1)see Sec. II.H.1(cid:2) with the fit =1/8(cid:8), and (cid:17)R(cid:3)1, which yields F(cid:3)0.5. Equation (cid:1)28(cid:2) usingEq.(cid:1)29(cid:2)withaconstantverticaloffset.Parametersofthe tthheengsehoomwestrthicaatltchreomssasgencittiuodneooffZthe(cid:1)deffir(cid:2)taisrgceotm(cid:1)pinaraabtolemtioc ficut:rvCe2(cid:2)H,F2=(cid:1)s0o.l2i3d0c,uarnvde(cid:2)",=F0=.003.27621., and "=0.0041; C2H4 (cid:1)dashed units(cid:2), unless (cid:15) is much greater than R2. el When the scattering cross section is large, the annihi- ofshort-rangecorrelationtermsintheSMCcalculation, lation rate is greatly enhanced. This occurs when the which would enhance the electron density at the posi- positron has a virtual or a bound state close to zero tron (cid:1)see Sec. II.H.1(cid:2). energy (cid:1)Goldanskii and Sayasov, 1964(cid:2). Such states are Positron virtual states explain the large thermal Z characterizedbyasmallparameter"=1/a,(cid:6)"(cid:6)!R−1.Itis eff values observed at room temperature in heavier noble related to the energy of the bound state (cid:5)0=−"2/2 (cid:1)for gases (cid:1)Dzuba et al., 1993, 1996(cid:2). The value of Z =400 "(cid:13)0(cid:2) or virtual state (cid:5)0="2/2 (cid:1)for "(cid:6)0(cid:2). This param- observed for Xe (cid:1)Murphy and Surko, 1990(cid:2) is celfofse to eter determines the low-energy s-wave scattering ampli- the maximum direct annihilation rate for thermal posi- tude f0=−(cid:1)"+ik(cid:2)−1 and cross section (cid:15)el(cid:7)4(cid:8)/(cid:1)"2+k2(cid:2) trons at 300 K. It is estimated from Eq. (cid:1)29(cid:2) to be (cid:1)Landau and Lifshitz, 1977(cid:2). For small ", this cross sec- tion can be much greater than the geometrical size of Z(cid:1)dir(cid:2)(cid:4)103. (cid:1)30(cid:2) the target. The last term in brackets in Eq. (cid:1)28(cid:2) then eff dominates, and Z(cid:1)dir(cid:2) shows a similar enhancement Higher Z values observed in many polyatomics (cid:1)see, eff eff (cid:1)Dzuba et al., 1993; Mitroy and Ivanov, 2002(cid:2)8 e.g., Table I(cid:2) can be understood only by considering positron-molecule binding and resonances. F Z(cid:1)dir(cid:2)(cid:7) . (cid:1)29(cid:2) The annihilation rate for the positron bound to an eff "2+k2 atom or molecule is The applicability of Eq. (cid:1)29(cid:2) is shown in Fig. 2. It (cid:8) Z shows the Z values from the Schwinger multichannel (cid:9) (cid:1)SMC(cid:2) calcuelfaftion for C H and C H (cid:1)Varella et al., (cid:30)a=(cid:8)r02c (cid:17)(cid:1)r−ri(cid:2)(cid:6)(cid:23)0(cid:1)r1,...,rZ,r(cid:2)(cid:6)2dr1¯drZdr, 2 2 2 4 i=1 2002(cid:2), fitted using Eq. (cid:1)29(cid:2) with a small vertical offset to (cid:1)31(cid:2) accountforthenonresonantZ background.According eff to the SMC calculation, both molecules possess virtual where (cid:23) is the wave function of the bound state. For a positron states. This results in the characteristic rise of 0 Z at small positron momenta described by Eq. (cid:1)29(cid:2). weakly bound state (cid:1)e.g., (cid:5)b!1 eV(cid:2) (cid:30)a can be estimated Thefef virtual level in C H (cid:1)fitted value "=0.0041(cid:2) lies in a way similar to that used for Ze(cid:1)dffir(cid:2) above. When the closer to zero energy t2ha2n in C H (cid:1)"=0.0372(cid:2), which positron is outside the target (cid:1)r(cid:13)R(cid:2), (cid:23)0 takes the form 2 4 manifests in the large Z values for acetylene. The fit- eff A ted factor F(cid:5)0.25 for the two molecules is smaller than (cid:23) (cid:1)r ,...,r ,r(cid:2)(cid:7)(cid:24) (cid:1)r ,...,r (cid:2) e−"r, (cid:1)32(cid:2) the estimate obtained from high-quality atomic calcula- 0 1 Z 0 1 Z r tions (cid:1)see below(cid:2). This is likely an indication of the lack where A is the asymptotic normalization constant.9 For weakbinding(cid:1)"!R−1(cid:2)themaincontributiontothenor- 7If the target molecule has a permanent dipole moment , malization integral, the long-range dipole potential (cid:1)·r/r3 dominates the low- energy scattering (cid:1)Fabrikant, 1977(cid:2). This makes (cid:15) infinite, el whileZ remainsfinite,makingEq.(cid:1)28(cid:2)invalid. 9Equation (cid:1)32(cid:2) assumes that the ionization potential of the eff 8The long-range polarization potential −(cid:18)/2r4 modifies the atomic system satisfies E(cid:13)E . For E(cid:6)E the asymptotic d i Ps i Ps near-threshold form of (cid:15) and Z(cid:1)dir(cid:2) (cid:1)Gribakin, 2000; Mitroy, form is that of Ps bound to the positive ion (cid:1)Mitroy et al., el eff 2002(cid:2),butEq.(cid:1)29(cid:2)canstillbeusedasanestimate. 2002(cid:2). Rev.Mod.Phys.,Vol.82,No.3,July–September2010 2566 Gribakin,Young,andSurko: Positron-moleculeinteractions:Resonant… can use this value to evaluate the annihilation rates for LiH positron-molecule bound states from Eq. (cid:1)35(cid:2), provided 1.5 their binding energies are known. 1) -s1.0 90 Mg E.Resonantannihilation (1 Ag Γ Cu The effect of resonances on Z is described by the 0.5 Be Cd eff Zn second and third terms in Eq. (cid:1)25(cid:2). It is dominated by thediagonalpartofthedoublesuminthelastterm.The 0.0 off-diagonalandinterferencetermsvanishuponaverag- 0 0.1 0.2 0.3 κ(a.u.) ing over the positron energy and can usually be ne- glected. The resonant contribution to the annihilation FIG.3. (cid:1)Coloronline(cid:2)Dependenceoftheannihilationrate(cid:30)a (cid:4) cross section is described by the Breit-Wigner formula for positron bound states on the parameter "= 2(cid:5)b: solid (cid:1)Landau and Lifshitz, 1977(cid:2), circles,recentresultsforsixatoms(cid:1)BromleyandMitroy,2002, 2s(cid:1)Mu0l0ti6tsr,of2oy0r1at0nh;deMsReiytarzothoyimkehst,a(cid:1)2Ml0.,0it02r(cid:2)0o;0yd2a,est2h0ae0ld.8,(cid:2)l;2in0oe0p2ei(cid:2)snathcniedrcfilLetisH(cid:30),ae=mar5ol.i3lee"rcur(cid:1)eilne- (cid:15)a= k(cid:8)2(cid:9)(cid:11) (cid:1)(cid:5)−b(cid:5)(cid:11)(cid:11)(cid:30)(cid:2)(cid:11)a2(cid:30)+(cid:11)e41(cid:30)(cid:11)2, (cid:1)37(cid:2) 109s−1(cid:2)whichcorrespondstoF=0.66a.u. where b(cid:11)is the degeneracy of the (cid:11)th resonance. Equa- tions (cid:1)7(cid:2), (cid:1)23(cid:2), and (cid:1)37(cid:2) then give the resonant Z , (cid:8) eff (cid:6)(cid:23)0(cid:1)r1,...,rZ,r(cid:2)(cid:6)2dr1¯drZdr=1, (cid:1)33(cid:2) Ze(cid:1)rfefs(cid:2)= (cid:8)k(cid:31)ep(cid:9)(cid:11) (cid:1)(cid:5)−(cid:5)b(cid:11)(cid:11)(cid:2)(cid:30)2(cid:11)e+ 41(cid:30)(cid:11)2. (cid:1)38(cid:2) comes from large positron separations where Eq. (cid:1)32(cid:2) is Thecontactdensity(cid:31) canbeestimatedfromEq.(cid:1)36(cid:2)if ep valid. This yields thepositronbindingenergyisknown.TocalculateZ(cid:1)res(cid:2), eff (cid:4) one also needs the energies and widths of the reso- A= "/2(cid:8). (cid:1)34(cid:2) nances. The former are determined by the positron bindingenergyandthevibrationalexcitationenergiesof By matching the wave function (cid:23)0 in Eq. (cid:1)31(cid:2) at r=R the positron-molecule complex. The elastic and total with the asymptotic form in Eq. (cid:1)32(cid:2), one obtains rates depend on the strength of coupling between the positron and the vibrational motion and, for overtones " (cid:30)a(cid:7)(cid:8)r2c4(cid:8)(cid:31)(cid:17)R(cid:6)A(cid:6)2=(cid:8)r2cF (cid:1)35(cid:2) and combination excitations, on the strength of anhar- 0 e 0 2(cid:8) monic terms in the vibrational Hamiltonian. This makes an ab initio calculation of resonant Z a multifaceted (cid:1)Gribakin, 2001(cid:2). Hence the electron-positron contact eff problem. density from Eq. (cid:1)24(cid:2) is estimated by (cid:31) (cid:7)(cid:1)F/2(cid:8)(cid:2)". (cid:1)36(cid:2) F.Resonancesduetoinfrared-activemodes ep Equation (cid:1)35(cid:2) shows that (cid:30)a is proportional to " Onecaseinwhichsuchacalculationispossibleisthat (cid:4) = 2(cid:5) (cid:18)i.e.,tothesquarerootofthebindingenergy;see of isolated vibrational resonances of IR-active funda- b Mitroy and Ivanov (cid:1)2002(cid:2) for an alternative mentals (cid:1)Gribakin and Lee, 2006a(cid:2). Consider a small derivation(cid:19).10 This relationship between (cid:30)a and "is con- polyatomic molecule which supports a bound positron firmed by positron-atom bound-state calculations statewithasmallbindingenergy(cid:5) ="2/2!1.Thewave b (cid:1)Mitroyetal.,2002(cid:2).Figure3showsvaluesforsixatoms function of the bound positron is very diffuse. Outside with E (cid:13)E , namely, Be, Mg, Cd, Cu, Zn, and Ag, ob- the molecule it behaves as (cid:25)(cid:1)r(cid:2)=Ar−1e−"r, with A given i Ps 0 tained using high-quality configuration interaction and by Eq. (cid:1)34(cid:2). stochastic variational methods (cid:1)see Sec. II.H.2 for de- Suppose that the vibrational modes in this molecule tails(cid:2). Note that the datum for the LiH molecule also arenotmixedwithovertonesorcombinationvibrations. follows this trend, in spite of its large dipole moment Due to the weakness of the positron binding, the vibra- (cid:18) =5.9 D (cid:1)Lide, 2000(cid:2)(cid:19) and relatively strong binding. A tional excitation energies of the positron-molecule com- linearfitthroughtheatomicdatapointsgivesavaluefor plex are close to the vibrational fundamentals (cid:12)(cid:11)of the the factor F=4(cid:8)(cid:31)e(cid:17)R in Eq. (cid:1)35(cid:2), namely, F(cid:5)0.66 a.u., neutral molecule, E(cid:11)(cid:5)(cid:12)(cid:11).11 In this case the sum in Eq. which is close to the rough estimate given above. One (cid:1)38(cid:2) is over the modes (cid:11), and the resonant energies are 10Equation (cid:1)32(cid:2) is valid if the positron-target interaction is 11There is extensive experimental evidence that E(cid:11)(cid:5)(cid:12)(cid:11)for short range. It must be modified if the molecule has a dipole most resonances observed (cid:1)cf. Secs. IV and V(cid:2). Apparent ex- moment(cid:18)see,e.g.,Fabrikant(cid:1)1977(cid:2)(cid:19).However,Eq.(cid:1)35(cid:2)canbe ceptions,whereshifts(cid:3)10–20meVareobservedaretheC-H used as an estimate if the dipole force does not play a domi- stretch mode of CH F and the O-H stretch in methanol (cid:1)cf. 3 nantroleinthebinding. Sec.IV(cid:2). Rev.Mod.Phys.,Vol.82,No.3,July–September2010

Description:
B. The alkane molecule paradigm. 2586 . lation was strictly due to binary collisions rather than istence of a bound state of the positron and the mol-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.