ebook img

Positron annihilation in a strong magnetic field PDF

37 Pages·2012·1.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Positron annihilation in a strong magnetic field

Positron annihilation in a strong magnetic field Jerzy Dryzek1,2, Sylwia Lewicka2 1)Opole University, Poland 2)Institute of Nuclear Physics PAN, Poland 1/37 Positrons in Astrophysics – March 2012 Strong magnetice field, it means close to the value equal to: c3 m2 B ≡ 0 = 4.414×1013 G 0 e (cid:61) In that field several interesting phenomena occur: - the electron mas is affected by the strong magnetic field, as B increases first it is getting slightly lower than m , 0 then slightly higher. -magneic field distorts atoms into long, thin cylinders and molecules into strong, polymer-like chains. -photons can rapidly split and merge with each other. - vacuume itself is unstable, at extremely large B~1051-1053 G. 2/37 Duncan, arXiv:astro-ph/0002442v1 (2000) Outline 1. Introduction, 2. Cross section for single and two-photon annihilation proceses 3. Positronium atom in strong magnetic field. 4. Summary 3/37 Classical electron gyrating in a magnetic field, satifying (cid:71) the equation: (cid:71) dp e (cid:71) = v × B (cid:71) (cid:71) dt c p = m v where 0 Cyklotron frequency: critical magnetic field straight e B c3 m2 ϖ = (cid:61)ϖ = m c2 ⇒ B = 0 = 4.414×1013 G C C 0 0 c m e (cid:61) 0 radius of gyration: c p a = gyr (cid:61) B 1 e B ⇒ a = 0 = 0.386[pm] gyr m c B b 0 a p (cid:17) (cid:61) gyr B b = B 4/37 0 Pulsars and magnetars: Magnetic field SGR 1806-20 8x1014 G PSR J1846-0258 4.9x1013 G SGR 0418+5729 < 7.5x1012 G SGR 1900+14 7x1014 G Swift J1834.9-0846 1.4x1014 G SGR 0501+4516 1.9x1014 G CXO J164710.2-455216 [Wd 1] <1.5x1014 G 5/37 From McGillSGR/AXP OnlineCatalog& astro-ph.SR0910.4859 Positron annihilation or Positronium in a strong magnetic field have been considered by many authors: -Kroupa and Robl (1954) -Ternov et aL, 1968 -Wunner (1979) -Daugherty and Bussard (1980) -Kaminker et al,1987, 1990 -Herold, Ruder and Wunner (1985) -Leinson and A. Perez (2000)  6/37 The Dirac equation in a magnetic field ⎡−γµ(i∂ + qA ) − m ⎤ψ(±) (xν) = 0, ⎣ ⎦ µ µ 0 (cid:61) = c =1 ( We adopted  in many equations that follow)  (cid:71) Aµ(x) = (0, A) = (0,0, xB,0) Solution for electrons E(+) + m ψ(+)(x) = n 0 exp(−iE(+)t) u↑↓(x) 2E(+) n n n ⎛ I ⎞ ⎛ 0 ⎞ ⎜ n−1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 0 ⎟ ⎜ I(+) ⎟ ⎜ ⎟ ⎜ n ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ p ⎟ ⎜ 2nb m ⎟ u↑(x) = ⎜ I(+) ⎟, u↓(x) = ⎜− 0 I(+)⎟ n ⎜⎜ E(+) +m n−1 ⎟⎟ n ⎜⎜ E(+) +m n−1⎟⎟ ⎜ n 0 ⎟ ⎜ n 0 ⎟ ⎜ ⎟ ⎜⎜⎜⎜−E(2+n) b+mm0 In(+)⎟⎟⎟⎟ ⎜⎜⎜⎜⎜−E(+)p+m In(+)⎟⎟⎟⎟⎟ ⎜⎜ ⎟⎟ ⎝ n 0 ⎠ ⎝ n 0 ⎠ in ⎡ b(x−a)2 ⎤ ⎛ x−a ⎞ ⎛ iayb⎞ I = exp⎢− ⎥ H ⎜ ⎟exp⎜− ⎟exp(ipz) n L(πλ /b)1/4 2nn! ⎣ 2λ2 ⎦ n ⎝ λ ⎠ ⎝ λ2 ⎠ C C C Johonsn and Lippmann, PR, 76 (1949) 828, 7/37 Bhattacharya, arXiv:0705.4275v2 [hep-th] Solution for positrons E(−) + m ψ(−)(x) = n 0 exp(iE(−)t) v↑↓(x) 2E(−) n n n ⎛ −p ⎞ I ⎜ E(−) + m n−1⎟ ⎛⎜ 2nb m ⎞⎟ − 0 I ⎜ n 0 ⎟ ⎜ ⎟ ⎜ E(−) + m n−1⎟ ⎜ ⎟ ⎜ n 0 ⎟ − 2nb m ⎜ ⎟ v↑(x) = ⎜ 0 I ⎟, ⎜ p ⎟ n E(−) + m n v↓(x) = ⎜ I ⎟, ⎜ n 0 ⎟ n ⎜⎜ E(−) + m n ⎟⎟ ⎜ ⎟ ⎜ n 0 ⎟ I ⎜ ⎟ 0 ⎜ n−1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 0 ⎝ ⎠ ⎜ I(−) ⎟ ⎜⎜ ⎟⎟ ⎝ n ⎠ in ⎡ b(x −a)2 ⎤ ⎛ x − a ⎞ ⎛ iayb ⎞ I = exp − H exp − exp(ipz) ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ n L(πλ /b)1/4 2nn! ⎣ 2λ2 ⎦ n ⎝ λ ⎠ ⎝ λ2 ⎠ C C C 8/37 Landau levels The transverse motion of the positron (e+) and  electron (e‐) is quantized, they energy obeys  the relation : E(±) = m2 + ( p(±))2 + 2n b m2 n 0 ± 0 m 1+ 4b 0 n = 0,1, 2,... ± m 1+ 2b 0 ∆E > m is the number of the Landau level,  0 m 0 p - is the longitudinal momentum, along the magnetic field line. In calculations it is sufficient to assume: n=0 9/37 Two-photon annihilation Positron annhilation is related to two photons emission . γ(k ,ε ) γ(k ,ε ) γ(k ,ε ) γ(k ,ε ) 1 1 2 2 1 1 2 2 ee-- (p) (q) e+ e-(p) (q) e+ . 2 cross section ≈α 10/37

Description:
Page 1. /371. Positron annihilation in a strong magnetic field. Jerzy Dryzek1,2, Sylwia Lewicka2. 1)Opole University, Poland. 2)Institute of Nuclear
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.