Positron annihilation in a strong magnetic field Jerzy Dryzek1,2, Sylwia Lewicka2 1)Opole University, Poland 2)Institute of Nuclear Physics PAN, Poland 1/37 Positrons in Astrophysics – March 2012 Strong magnetice field, it means close to the value equal to: c3 m2 B ≡ 0 = 4.414×1013 G 0 e (cid:61) In that field several interesting phenomena occur: - the electron mas is affected by the strong magnetic field, as B increases first it is getting slightly lower than m , 0 then slightly higher. -magneic field distorts atoms into long, thin cylinders and molecules into strong, polymer-like chains. -photons can rapidly split and merge with each other. - vacuume itself is unstable, at extremely large B~1051-1053 G. 2/37 Duncan, arXiv:astro-ph/0002442v1 (2000) Outline 1. Introduction, 2. Cross section for single and two-photon annihilation proceses 3. Positronium atom in strong magnetic field. 4. Summary 3/37 Classical electron gyrating in a magnetic field, satifying (cid:71) the equation: (cid:71) dp e (cid:71) = v × B (cid:71) (cid:71) dt c p = m v where 0 Cyklotron frequency: critical magnetic field straight e B c3 m2 ϖ = (cid:61)ϖ = m c2 ⇒ B = 0 = 4.414×1013 G C C 0 0 c m e (cid:61) 0 radius of gyration: c p a = gyr (cid:61) B 1 e B ⇒ a = 0 = 0.386[pm] gyr m c B b 0 a p (cid:17) (cid:61) gyr B b = B 4/37 0 Pulsars and magnetars: Magnetic field SGR 1806-20 8x1014 G PSR J1846-0258 4.9x1013 G SGR 0418+5729 < 7.5x1012 G SGR 1900+14 7x1014 G Swift J1834.9-0846 1.4x1014 G SGR 0501+4516 1.9x1014 G CXO J164710.2-455216 [Wd 1] <1.5x1014 G 5/37 From McGillSGR/AXP OnlineCatalog& astro-ph.SR0910.4859 Positron annihilation or Positronium in a strong magnetic field have been considered by many authors: -Kroupa and Robl (1954) -Ternov et aL, 1968 -Wunner (1979) -Daugherty and Bussard (1980) -Kaminker et al,1987, 1990 -Herold, Ruder and Wunner (1985) -Leinson and A. Perez (2000) 6/37 The Dirac equation in a magnetic field ⎡−γµ(i∂ + qA ) − m ⎤ψ(±) (xν) = 0, ⎣ ⎦ µ µ 0 (cid:61) = c =1 ( We adopted in many equations that follow) (cid:71) Aµ(x) = (0, A) = (0,0, xB,0) Solution for electrons E(+) + m ψ(+)(x) = n 0 exp(−iE(+)t) u↑↓(x) 2E(+) n n n ⎛ I ⎞ ⎛ 0 ⎞ ⎜ n−1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 0 ⎟ ⎜ I(+) ⎟ ⎜ ⎟ ⎜ n ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ p ⎟ ⎜ 2nb m ⎟ u↑(x) = ⎜ I(+) ⎟, u↓(x) = ⎜− 0 I(+)⎟ n ⎜⎜ E(+) +m n−1 ⎟⎟ n ⎜⎜ E(+) +m n−1⎟⎟ ⎜ n 0 ⎟ ⎜ n 0 ⎟ ⎜ ⎟ ⎜⎜⎜⎜−E(2+n) b+mm0 In(+)⎟⎟⎟⎟ ⎜⎜⎜⎜⎜−E(+)p+m In(+)⎟⎟⎟⎟⎟ ⎜⎜ ⎟⎟ ⎝ n 0 ⎠ ⎝ n 0 ⎠ in ⎡ b(x−a)2 ⎤ ⎛ x−a ⎞ ⎛ iayb⎞ I = exp⎢− ⎥ H ⎜ ⎟exp⎜− ⎟exp(ipz) n L(πλ /b)1/4 2nn! ⎣ 2λ2 ⎦ n ⎝ λ ⎠ ⎝ λ2 ⎠ C C C Johonsn and Lippmann, PR, 76 (1949) 828, 7/37 Bhattacharya, arXiv:0705.4275v2 [hep-th] Solution for positrons E(−) + m ψ(−)(x) = n 0 exp(iE(−)t) v↑↓(x) 2E(−) n n n ⎛ −p ⎞ I ⎜ E(−) + m n−1⎟ ⎛⎜ 2nb m ⎞⎟ − 0 I ⎜ n 0 ⎟ ⎜ ⎟ ⎜ E(−) + m n−1⎟ ⎜ ⎟ ⎜ n 0 ⎟ − 2nb m ⎜ ⎟ v↑(x) = ⎜ 0 I ⎟, ⎜ p ⎟ n E(−) + m n v↓(x) = ⎜ I ⎟, ⎜ n 0 ⎟ n ⎜⎜ E(−) + m n ⎟⎟ ⎜ ⎟ ⎜ n 0 ⎟ I ⎜ ⎟ 0 ⎜ n−1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 0 ⎝ ⎠ ⎜ I(−) ⎟ ⎜⎜ ⎟⎟ ⎝ n ⎠ in ⎡ b(x −a)2 ⎤ ⎛ x − a ⎞ ⎛ iayb ⎞ I = exp − H exp − exp(ipz) ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ n L(πλ /b)1/4 2nn! ⎣ 2λ2 ⎦ n ⎝ λ ⎠ ⎝ λ2 ⎠ C C C 8/37 Landau levels The transverse motion of the positron (e+) and electron (e‐) is quantized, they energy obeys the relation : E(±) = m2 + ( p(±))2 + 2n b m2 n 0 ± 0 m 1+ 4b 0 n = 0,1, 2,... ± m 1+ 2b 0 ∆E > m is the number of the Landau level, 0 m 0 p - is the longitudinal momentum, along the magnetic field line. In calculations it is sufficient to assume: n=0 9/37 Two-photon annihilation Positron annhilation is related to two photons emission . γ(k ,ε ) γ(k ,ε ) γ(k ,ε ) γ(k ,ε ) 1 1 2 2 1 1 2 2 ee-- (p) (q) e+ e-(p) (q) e+ . 2 cross section ≈α 10/37
Description: