ebook img

Positivity-preserving discontinuous Galerkin methods with Lax-Wendroff time discretizations PDF

3.7 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Positivity-preserving discontinuous Galerkin methods with Lax-Wendroff time discretizations

Positivity-preserving discontinuous Galerkin methods with Lax-Wendroff time discretizations ScottA.Moe1,JamesA.Rossmanith2,andDavidC.Seal3 6 1 1UniversityofWashington,DepartmentofAppliedMathematics,Seattle,WA98195,USA([email protected]) 0 2 2IowaStateUniversity,DepartmentofMathematics,396CarverHall,Ames,IA50011,USA ([email protected]) n a 3U.S.NavalAcademy,DepartmentofMathematics,121BlakeRoad,Annapolis,MD21402,USA J ([email protected]) 9 2 ] A Abstract N Thisworkintroducesasingle-stage,single-stepmethodforthecompressibleEulerequationsthatisprovablypositivity- . preserving and can be appliedon both Cartesian and unstructured meshes. Thismethod is the first case of a single- h stage,single-stepmethodthatissimultaneouslyhigh-order,positivity-preserving,andoperatesonunstructuredmeshes. t a Time-steppingisaccomplishedviatheLax-Wendroffapproach,whichisalsosometimescalledtheCauchy-Kovalevskaya m procedure, where temporal derivatives in a Taylor series in time are exchanged for spatial derivatives. The Lax- [ WendroffdiscontinuousGalerkin(LxW-DG)methoddevelopedinthisworkisformulatedsothatitlookslikeafor- wardEulerupdatebutwithahigh-ordertime-extrapolatedflux. Inparticular,thenumericalfluxusedinthisworkisa 1 v linearcombinationofalow-orderpositivity-preservingcontributionandahigh-ordercomponentthatcanbedamped 5 toenforcepositivityofthecellaveragesforthedensityandpressureforeachtimestep. Inadditiontothisfluxlim- 4 iter, a moment limiter is applied that forces positivity of the solution at finitely many quadrature points within each 1 cell. Thecombinationofthefluxlimiterandthemomentlimiterguaranteespositivityofthecellaveragesfromone 8 time-step to the next. Finally, a simple shock capturing limiter that uses the same basic technology as the moment 0 . limiterisintroducedinordertoobtainnon-oscillatoryresults. Theresultingschemecanbeextendedtoarbitraryorder 1 withoutincreasingthesizeoftheeffectivestencil. Wepresentnumericalresultsinoneandtwospacedimensionsthat 0 6 demonstratetherobustnessoftheproposedscheme. 1 : v i X 1 Introduction r a 1.1 Governingequations The purpose of this work is to develop a positivity-preserving version of the Lax-Wendroff discontinuous Galerkin method for the compressible Euler equations on unstructured meshes. The compressible Euler equationsformasystemofhyperbolicconservationlawthatcanbewrittenasfollows:     ρ ρ(cid:126)u  ρ(cid:126)u  +∇x· ρ(cid:107)(cid:126)u(cid:107)2+p =0. (1) E (E+p)(cid:126)u ,t The conserved variables are the mass density, ρ, the momentum density, M(cid:126) =ρ(cid:126)u, and the energy density, E;theprimitivevariablesarethemassdensity,ρ,thefluidvelocity,(cid:126)u,andthepressure, p. TheenergyE is 1 relatedtotheprimitivevariablesthroughtheequationofstate, p 1 E = + ρ(cid:107)(cid:126)u(cid:107)2, (2) γ−1 2 wheretheconstantγistheratioofspecificheats(aka,thegasconstant). ThecompressibleEulerequationsareanimportantmathematicalmodelinthestudyofgasesandplasma. Attemptsatnumericallysolvingthetheseequationshasledtoaplethoraofimportanthistoricaladvancesin thedevelopmentofnumericalanalysisandscientificcomputing(seee.g.,[15,22,28,29,32]). 1.2 DiscontinuousGalerkinspatialdiscretization The focus of this work is on high-order discontinuous Galerkin (DG) methods, which were originally de- velopedforgeneralhyperbolicconservationlawsbyCockburn,Shu,etal. inseriesofpapers[10–14]. The purposeofthissectionistosetthenotationusedthroughoutthepaperandtobrieflydescribetheDGspatial discretization. Let Ω⊂Rd be a polygonal domain with boundary ∂Ω. The domain Ω is discretized via a finite set of non-overlapping elements, Ti, such that Ω=∪Ni=1Ti. Let PMD(cid:0)Rd(cid:1) denote the set of polynomials from Rd toRwithmaximalpolynomialdegreeM . LetWh denotethebrokenfiniteelementspaceonthemesh: D Wh:=(cid:110)wh∈[L∞(Ω)]ME : wh(cid:12)(cid:12)Ti∈(cid:2)PMD(cid:3)ME,∀Ti∈Th(cid:111), (3) wherehisthemeshspacing. Theaboveexpressionmeansthatwh∈WhhasM components,eachofwhich E when restricted to some element T is a polynomial of degree at most M and no continuity is assumed i D acrosselementedges(orfacesin3D). TheapproximatesolutiononeachelementT attimet =tn isoftheform i (cid:12) ML(MD) qh(tn,x(ξξξ))(cid:12) = ∑ Q((cid:96))nϕ((cid:96))(ξξξ), (4) (cid:12) i Ti (cid:96)=1 where M is the number of Legendre polynomials and ϕ((cid:96))(ξξξ) : Rd (cid:55)→ R are the Legendre polynomials L definedonthereferenceelementT intermsofthereferencecoordinatesξξξ∈T . TheLegendrepolynomials 0 0 areorthonormalwithrespecttothefollowinginnerproduct: (cid:40) 1 (cid:90) 1 if k=(cid:96), ϕ(k)(ξξξ)ϕ((cid:96))(ξξξ)dξξξ= (5) |T0| T0 0 if k(cid:54)=(cid:96). We note that independent of h, d, M , and the type of element, the lowest order Legendre polynomial is D alwaysϕ(1)≡1. ThismakesthefirstLegendrecoefficientthecellaverage: 1 (cid:90) (cid:12) Q(1)n= qh(tn,x(ξξξ))(cid:12) ϕ(1)(ξξξ)dξξξ=:qn. (6) i |T0| T0 (cid:12)Ti i 1.3 Timestepping Themostcommonapproachfortime-advancingDGspatialdiscretizationsisviaexplicitRunge-Kuttatime- stepping; the resulting combination of time and space discretization is often referred to as the “RK-DG” method [10]. The primary advantage for this choice of time stepping is that explicit RK methods are easy toimplement,theycanbeconstructedtobelow-storage,andasubclassofthesemethodshavetheso-called 2 strong stability preserving (SSP) property [23], which is important for defining a scheme that is provably positivity-preserving. However, there are no explicit Runge-Kutta methods that are SSP for orders greater thanfour[26,36]. ThemaindifficultywithRunge-Kuttamethodsisthattheytypicallyrequiremanystages;andtherefore, manycommunicationsareneededpertimestep. Onedirectconsequenceofthecommunicationrequiredat each RK stage is that is difficult to combine RK-DG with locally adaptive mesh refinement strategies that simultaneouslyrefineinbothspaceandtime. The key piece of technology required in locally adaptive DG schemes is local time-stepping (see e.g., Dumbser et al. [17]). Local time-stepping is easier to accomplish with a single-stage, single-step (Lax- Wendroff) method than with a multi-stage Runge-Kutta scheme. For these reasons there is interest from discontinuous Galerkin theorists and practitioners in developing single-step time-stepping techniques for DG(seee.g.,[16,18–21,34,42,43]),aswellashybridmultistagemultiderivativealternatives[38]. In this work, we construct a numerical scheme that uses a Lax-Wendroff time discretization that is coupled with the discontinuous Galerkin spatial discretization. In subsequent discussions in this paper we demonstrate the advantages of switching to single-stage and single-stage time-stepping in regards to enforcingpositivityonarbitrarymeshes. 1.4 Positivitypreservation Insimulationsinvolvingstrongshocks,high-orderschemes(i.e. morethanfirst-order)forthecompressible Eulerequationsgenerallycreatenonphysicalundershoots(belowzero)inthedensityand/orpressure. These undershootstypicallycausecatastrophicnumericalinstabilitiesduetoalossofhyperbolicity. Moreover,for manyapplicationsthesepositivityviolationsexistevenwhentheequationsarecoupledwithwell-understood totalvariationdiminishing(TVD)ortotalvariationbounded(TVB)limiters. Thechiefgoalofthelimiting scheme developed in this work is to address positivity violations in density and pressure, and in particular, toaccomplishthistaskwithahigh-orderscheme. In the DG literature, the most widely used strategy to maintain positivity was developed by Zhang and Shuinaseriesofinfluentialpapers[47–49]. ThebasicstrategyofZhangandShuforapositivity-preserving RK-DGmethodcanbesummarizedasfollows: Step0. Writethecurrentsolutionintheform qh(cid:12)(cid:12) =q +θ(cid:16)qh(cid:12)(cid:12) −q(cid:17), (7) Ti i Ti i whereθisyet-to-be-determined. θ=1representstheunlimitedsolution. (cid:12) Step1. Find the largest value of θ, where 0 ≤ θ ≤ 1, such that qh(cid:12) satisfies the appropriate positivity Ti conditionsatsomeappropriatelychosenquadraturepointsandlimitthesolution. Step2. Findthelargeststabletime-stepthatguaranteesthatwithaforwardEulertimethatthecellaverage ofthenewsolutionremainspositive. Step3. Rely on the fact that strong stability-preserving Runge-Kutta methods are convex combinations of forwardEulertimesteps;andtherefore,thefullmethodpreservesthepositivityofcellaverages(under someslightlymodifiedmaximumallowabletime-step). For a Lax-Wendroff time discretization, numerical results indicate that the limiting found in Step 1 is insufficient to retain positivity of the solution, even for simple 1D advection. Therefore, the strategy we pursueinthisworkwillstillcontainanequivalentStep1;however,inplaceofStep2andStep3above,we 3 will make use of a parameterized flux, sometimes also called a flux corrected transport (FCT) scheme, to maintainpositivecellaveragesaftertakingasingletimestep. Indoingso,weavoidintroducingadditional time step restrictions that often appear (e.g., in Step 2. above) when constructing a positivity-preserving schemebasedonRunge-Kuttatimestepping. This idea of computing modified fluxes by combining a stable low-order flux with a less robust high- order flux is relatively old, and perhaps originates with Harten and Zwas and their self adjusting hybrid scheme [25]. The basic idea is the foundation of the related flux corrected transport (FCT) schemes of Boris, Bookandcollaborators[2–5], wherefluxesareadjustedinordertoguaranteethataveragevaluesof theunknownareconstrainedtoliewithinlocallydefinedupperandlowerbounds. Thisfamilyofmethods isusedinanextensivevarietyofapplications,rangingfromseismologytometeorology[27,44,46,50]. A thoroughanalysisofsomeoftheearlymethodsisconductedin[41]. Identicaltomodernmaximumprinciple preserving(MPP)schemes,FCTcanbeformulatedasaglobaloptimizationproblemwherea“worstcase” scenario assumed in order to decouple the previously coupled degrees of freedom [1]. Here we do not attempttouseFCTtoenforceanysortoflocalbounds(inthesenseofdevelopingashock-capturinglimiter), instead we leverage these techniques in order to retain positivity of the density and pressure associated to qh(tn,(cid:126)x); such approaches have recently received renewed interest in the context of weighted essentially non-oscillatory(WENO)methods[6,8,9,30,39,45]. Tosummarize,ourlimitingschemedrawsonideasfromthetwoaforementionedfamiliesoftechniques that are well established in the literature. First, we start with the now well known (high-order) pointwise limiting developed for discontinuous Galerkin methods [47–49], and second, we couple this with the very large family of flux limiters [6, 8, 39]. (developed primarily for finite-difference (FD) and finite-volume (FV)schemes). 1.5 Anoutlineoftheproposedpositivity-preservingmethod ThecompressibleEulerequations(1)canbewrittencompactlyas q +∇·F(q)=0, in Ω⊂Rd, (8) ,t wheretheconservedvariablesareq=(ρ,M,E)andthefluxfunctionis  M(cid:126) ·(cid:126)n  (cid:16) (cid:17) (cid:126)F·(cid:126)n= M(cid:126) ·(cid:126)n (cid:126)u+p(cid:126)n, (9)   (cid:126)u·(cid:126)n(E+p) whereM(cid:126) =ρ(cid:126)uandE = p +1ρ(cid:107)(cid:126)u(cid:107)2. γ−1 2 The basic positivity limiting strategy proposed in this work is summarized below. Some important detailsareomittedhere,butweelaborateonthesedetailsinsubsequentsections. Step0. Oneachelementwewritethesolutionas (cid:12) ML(MD) qh(tn,(cid:126)x((cid:126)ξ))(cid:12) :=qn+θ ∑ Q(k)(t)ϕ(k)((cid:126)x), (10) (cid:12) i i Ti k=2 whereθisyet-to-be-determined. θ=1representstheunlimitedsolution. Step1. Assumethatthissolutionispositiveinthemean. Thatis,weassumeforallithatρ >0and i 1(cid:107)M(cid:107)2 i p :=(γ−1)E − >0. (11) i i 2 ρ i 4 AconsequenceoftheseassumptionsisthatE >0. i Step2. Findthelargestvalueofθ,where0≤θ≤1,suchthatthedensityandpressurearepositiveatsome suitablydefinedquadraturepoints. Thisstepiselaborateduponin§3.2. Step3. Construct time-averaged fluxes through the Lax-Wendroff procedure. That is, we start with the exactdefinitionofthetime-averageflux: 1 (cid:90) tn+1 1 (cid:90) ∆t Fn((cid:126)x):= F(q(t,(cid:126)x))dt = F(q(tn+s,(cid:126)x))ds (12) ∆t tn ∆t 0 andapproximatethisviaaTaylorseriesexpansionarounds=0: Fn((cid:126)x):=F(q(tn,(cid:126)x))+∆t dF(q(tn,(cid:126)x))+∆t2d2F(q(tn,(cid:126)x))=Fn((cid:126)x)+O(∆t3). (13) T 2! dt 3! dt2 Alltimederivativesinthisexpressionarereplacedbyspatialderivativesusingthechainruleandthe governingPDE(8). Theapproximatetime-averagedflux(13)isfirstevaluatedatsomeappropriately chosen set of quadrature points – in fact, the same quadrature points as used in Step 2 – and then, using appropriate quadrature weights, summed together to define a high-order flux, at both interior and boundary quadrature points. Thanks to Step 2, all quantities of interest used to construct this expansionarepositiveateachquadraturepoint. Step4. Timestepthesolutionsothatcellaveragesareguaranteedtobepositive. Thatis,weupdatethecell averagesviaaformulaoftheform ∆t Q(1)n+1=Q(1)n− ∑ (cid:126)Fh∗·(cid:126)n , (14) i i |T| e e i e∈Ti where(cid:126)n isanoutward-pointing(relativetoT)normalvectortoedgeewiththepropertythat(cid:107)(cid:126)n (cid:107)is e i e thelengthofedgee∈T,andthenumericalfluxonedge,(cid:126)Fh∗,isaconvexcombinationofahigh-order i e flux,FH,andalow-orderfluxFL: e e (cid:126)Fh∗:=θFH+(1−θ)FL. (15) e e e Thelow-orderflux,FL,isbasedonthe(approximate)solutiontotheRiemannproblemdefinedbycell e averagesonly,andthe“high-order”flux,FH,isconstructedafterintegratingviaGaussianquadrature e the(approximate)Riemannsolutionsatquadraturepointsalongtheedgee∈T: i M 1 Q FH= ∑ω FH, (16) e 2 k ek k=1 whereω aretheGaussianquadratureweightsforquadraturewithM pointsandFH arethenumer- k Q ek icalfluxesateachoftheM quadraturepoints. Notethatthissumhasonlyasinglesummandinthe Q one-dimensionalcase. Theselectionofθisdescribedinmoredetailin§3.2. Thisstepguaranteesthat thesolutionretainspositivity(inthemean)forasingletimestep. Step5. Applyashock-capturinglimiter. Thepositivity-preservinglimiterisdesignedtopreservepositivity of the solution, but it fails at reducing spurious oscillations, and therefore a shock-capturing limiter needs to be added. There are many choices of limiters available; we use the limiter recently devel- oped in [31] because of its ability to retain genuine high-order accuracy, and its ability to push the polynomialordertoarbitrarydegreewithoutmodifyingtheoverallscheme. 5 Step6. Repeatallofthesestepstoupdatethesolutionforthenexttimestep. Each step of this process is elaborated upon throughout the remainder of this paper. The end result is thatourmethodisthefirstschemetosimultaneouslyobtainallofthefollowingproperties: • High-orderaccuracy. Theproposedmethodisthird-orderinspaceandtime,andcanbeextendedto arbitraryorder. • Positivity-preserving. The proposed limiter is provably positivity-preserving for the density and pressure,atafinitesetofpointvalues,fortheentiresimulation. • Single-stage, single-step. We use a Lax-Wendroff discretization for time stepping the PDE, and thereforeweonlyneedonecommunicationpertimestep. • Unstructuredmeshes. BecauseweusethediscontinuousGalerkinmethodforourspatialdiscretiza- tionandallofourlimitersaresufficientlylocal,weareabletorunsimulationswithDG-FEMonboth Cartesianandunstructuredmeshes. • No additional time-step restrictions. Because we do not rely on a SSP Runge-Kutta scheme, we do not have to introduce additional time-step restrictions to retain positivity of the solution. This differentiatesusfrompopularpositivity-preservinglimitersbasedonRKtimediscretizations[48]. 1.6 Structureofthepaper The remainder of this paper has the following structure. The Lax-Wendroff DG (LxW-DG) method is described in §2, where we view the scheme as a method of modified fluxes. The positivity-preserving limiter is described in §3, where the discussion of the limiter is broken up into two parts: (1) the moment limiter(§3.1)and(2)theparameterizedfluxlimiter(§3.2). In§4wepresentnumericalresultsonseveraltest casesin1D,2DCartesian,and2Dunstructuredmeshes. Finallyweclosewithconclusionsandadiscussion offutureworkin§5. 2 TheLax-WendroffdiscontinuousGalerkinscheme 2.1 Thebasescheme: Amethodofmodifiedfluxes TheLax-WendroffdiscontinuousGalerkin(LxW-DG)method[34]servesasthebaseschemeforthemethod developedinthiswork. ItistheresultofanapplicationoftheCauchy-Kovalevskayaproceduretohyperbolic PDE: we start with a Taylor series in time, then we replace all time derivatives with spatial derivatives via the PDE. Finally, a Galerkin projection discretizes the overall scheme, where a single spatial derivative is reservedforthefluxesinordertoperformintegration-by-parts. We review the Lax-Wendroff DG scheme for the case of a general nonlinear conservation law that is autonomousinspaceandtimeinmultipledimensions[34]. Thecurrentpresentationillustratesthefactthat Lax-Wendroff schemes can be viewed as a method of modified fluxes, wherein higher-order information about the PDE is directly incorporated by simply redefining the fluxes that would typically be used in an “Eulerstep.” Weconsideragenericconservationlawoftheform q +∇·F(q)=0, (17) ,t 6 where the matrix ∂F ·nˆ is diagonalizable for every unit length vector nˆ and q in the domain of interest. ∂q Formalintegrationof(17)overaninterval[tn,tn+1]resultsinanexactupdatethrough q(t+∆t,(cid:126)x)=q(t,(cid:126)x)−∆t∇·F(q(t,(cid:126)x)), (18) wherethetime-averaged flux[7]isdefinedas 1 (cid:90) tn+∆t F(q(t,(cid:126)x)):= F(q(t,(cid:126)x))dt. (19) ∆t tn Moreover,aTaylorexpansionofFandachangeofvariablesyields 1 (cid:90) ∆t(cid:18) 1 (cid:19) F(q)= F(qn)+τF(qn) + τ2F(qn) +··· dτ ,t ,t,t ∆t 2 0 (20) 1 1 =F(qn)+ ∆tF(qn) + ∆t2F(qn) +···, ,t ,t,t 2! 3! which can be inserted into (18). In a numerical discretization of (18), the Taylor series in (20) is truncated afterafinitenumberofterms. Remark1. IfF≈F(q(tn,(cid:126)x)),then(18)reducestoaforwardEulertimediscretizationforhyperboliccon- servationlaw(17). Thisfactwillallowustoincorporatepositivity-preservinglimitersintotheLax-Wendroff fluxconstruction. Thisobservationallowsustoincorporatethepositivity-preservinglimitersthatarepresentedin§3.1and §3.2,becauseweviewtheLxW-DGmethodasamethodofmodifiedfluxes. 2.2 Constructionofthetime-averagedflux Wenowdescribehowtocomputethetemporalderivativeterms: F(qn) , F(qn) , F(qn) , ... (21) ,t ,t,t ,t,t,t that are required to define the time-averaged flux in (20). This discussion is applicable to high-order finite difference methods, finite volume methods (e.g., ADER), as well as discontinuous Galerkin finite element methods. Asingleapplicationofthechainruletocomputethetimederivativeofthefluxfunctionyields ∂F =F(cid:48)(q)·q =−F(cid:48)(q)·(∇·F), (22) ,t ∂t wherethefluxJacobianis ∂F F(cid:48)(q) := i, 1≤i,j≤M. (23) ij ∂q j The matrix-vector products in (22) can be compactly written using the Einstein summation convention (whererepeatedindicesareassumedtobesummedover),whichproducesavectorwhoseith-componentis ∂F ∂F ∂q ∂F i i j i = =− (∇·F) . (24) ∂t ∂q ∂t ∂q j j j 7 Asecondderivativeof(22)yields ∂2F = ∂ (cid:0)−F(cid:48)(q)∇·F(cid:1)=F(cid:48)(cid:48)(q)·(∇·F(q),∇·F(q))+F(cid:48)(q)·∇(cid:0)F(cid:48)(q)(∇·F)(cid:1), (25) ∂t2 ∂t whereF(cid:48)(cid:48)(q)istheHessianwithelementsgivenby ∂2F (cid:18) ∂2f ∂2g (cid:19) i i i F := = , . (26) ijk ∂q ∂q ∂q ∂q ∂q ∂q j k j k j k Equations (22) and (25) are generic formulae; the equalities are appropriate for any two-dimensional hy- perbolic system, and similar identities exist for three dimensions. The first product in the right hand side of (25) is understood as a Hessian-vector product. Scripts that compute these derivatives, as well as the matrix,andHessianvectorproductsthatarenecessarytoimplementathird-orderLax-Wendroffschemefor multidimensionalEulerequationscanbefoundintheopensourcesoftwareFINESS[37]. Finally, these two time derivatives are sufficient to construct a third-order accurate method by defining thetime-averagedfluxthrough 1 1 Fn(q):=F(qn)+ ∆tF(qn) + ∆t2F(qn) , (27) T 2! ,t 3! ,t,t andthenupdatingthesolutionthrough qn+1((cid:126)x)=qn((cid:126)x)−∆t∇·Fn (28) T inplaceof(18). 2.3 Fully-discreteweakformulation The final step is to construct a fully discrete version of (28). The LxW-DG scheme follows the following process[24,38]: Step1. Ateachquadraturepointevaluatethenumericalflux, F(qn), andthenintegratethisnumericalflux againstbasisfunctionstoobtainaGalerkinexpansionofFh insideeachelement. Step2. UsingtheGalerkinexpansionsofqhandFh,evaluateallrequiredspatialderivativestoconstructthe timeexpansionFn in(27)ateachquadraturepoint. T Step3. Multiply (28) by a test function ϕ((cid:96)), integrate over a control element T, and apply the divergence i theoremtoyield (cid:90) (cid:90) (cid:90) (cid:73) qn+1ϕ((cid:96))dx= qnϕ((cid:96))dx−∆t ∇ϕ((cid:96))·F (qn)dx+∆t ϕ((cid:96))F (qn)·nˆds, (29) T T Ti Ti Ti ∂Ti wherenˆ istheoutwardpointingunitnormaltoelementT,whichreducesto i ∆t (cid:90) ∆t (cid:73) Q((cid:96))n+1=Q((cid:96))n− ∇ϕ((cid:96))·Fh dx+ ϕ((cid:96))Fh∗·nˆds (30) i i |T| T |T| T i Ti i ∂Ti (cid:124) (cid:123)(cid:122) (cid:125) (cid:124) (cid:123)(cid:122) (cid:125) Interior Edges byorthogonalityofthebasisϕ. Inpractice, boththeinteriorandedgeintegralsareapproximatedby appropriate numerical quadrature rules. The flux values, Fh∗, in the edge integrals still need to be T defined. 8 ρBC ρb M(cid:126)BC M(cid:126)b EBC Eb −→ ←− ∂Ω Fig.1: Interior,qb,andexterior,qBC,solutionvaluesoneithersideoftheboundary∂Ω. Step4. Along each edge solve Riemann problems at each quadrature point by using the left and right interfacevalues. Inthisworkweusethewell-knownLax-Friedrichsflux: (cid:16) (cid:17) 1(cid:104) (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17) (cid:16) (cid:17)(cid:105) Fh∗ qh,qh ·nˆ = nˆ· F qh +F qh −s qh −qh , (31) T − + 2 T + T − + − where s is an estimate of the maximum global wave speed, qh is the approximate solution evaluated − on the element boundary on the interior side of T, and qh is the approximate solution evaluated on i + theelementboundaryontheexteriorsideofT. i 2.4 Boundaryconditions Inordertoachievehigh-orderaccuracyattheboundariesofthecomputationaldomain, acarefultreatment ofthesolutionineachboundaryelementisrequired. Inparticular,allsimulationsinthisworkrequireeither reflective(hardsurface)ortransparent(outflow)boundaryconditions. Supposethesolutiontakesonthevalue qb=(cid:0)ρb,M(cid:126)b,Eb(cid:1) (32) at a quadrature point xb on the boundary ∂Ω, and we wish to define a boundary value, qBC, on the exterior side of the boundary ∂Ω that yields a flux with one of two desired boundary conditions. This is depicted in Figure 1. Let ˆt and nˆ be the unit tangent and unit normal vectors to the boundary at the boundary point xb, respectively. In both the reflective and transparent boundary conditions, we enforce continuity of the tangentialcomponents: M(cid:126)BC·ˆt=M(cid:126)b·ˆt. (33) The only difference between the two types of boundary conditions we consider lie in the normal direction. Weset M(cid:126)BC·nˆ =∓M(cid:126)b·nˆ, (34) wheretheminussigncorrespondstothereflectiveboundaryconditionandtheplussigncorrespondstothe transparentboundarycondition. FromthiswecaneasilywriteoutthefullboundaryconditionsatthepointxBC: ρBC  ρb  (cid:16) (cid:17) (cid:16) (cid:17) M(cid:126)BC= M(cid:126)b·ˆt ˆt∓ M(cid:126)b·nˆ nˆ, (35)   EBC Eb whereagaintheminussigncorrespondstothereflectiveboundaryconditionandtheplussigncorresponds tothetransparentboundarycondition. 9 In order to achieve high-order time accuracy we need apply the above boundary conditions to the time derivativesontheboundary: ρB,tC (cid:16) (cid:17) ρb,t(cid:16) (cid:17)  ρB,t,Ct  (cid:16) (cid:17) ρb,t,(cid:16)t (cid:17)  M(cid:126),BtC= M(cid:126),bt·ˆt ˆt∓ M(cid:126),bt·nˆ nˆ, M(cid:126),Bt,Ct= M(cid:126),bt,t·ˆt ˆt∓ M(cid:126),bt,t·nˆ nˆ, (36) E,BtC E,bt E,Bt,Ct E,bt,t wherealltimederivativesmustbereplacedbyspatialderivativesusingthePDE. 3 Positivitypreservation The temporal evolution described in the previous section fails to retain positivity of the solution, even in the simple case of linear advection with smooth solutions that are near zero. In fact, in extreme cases the projection of the initial conditions can fail to retain positivity of the solution due to the Gibbs phenomena. Thepositivity-preservinglimiterwepresentfollowsatwostepprocedure: Step1. Limitthemomentsintheexpansionsothatthesolutionispositiveateachquadraturepoint. Step2. Limitthefluxessothatthecellaveragesretainpositivityafterasingletimestep. Wenowdescribethefirstofthesetwosteps. 3.1 Positivityatinteriorquadraturepointsviamomentlimiters Thissectiondescribesaprocedurethatimplementsthefollowing: ifthecellaveragesarepositive,thenthe solution is forced to be positive at a preselected and finite collection of quadrature points. We select only thequadraturepointsthatareactuallyusedinthenumericalupdate;thisincludesinternalGaussquadrature pointsaswellasface/edgeGaussquadraturepoints. Unlikeotherpositivitylimitingschemes[47,49]inthe SSP Runge-Kutta framework, this step is not strictly necessary to guarantee positivity of the cell average atthenexttime-step;however,themainreasonforapplyingthelimiteratquadraturepointsistoguarantee thateachtermintheupdateisphysical,whichwillreducethetotalamountofadditionallimitingofthecell average updated needed in Section 3.2. The process to maintain positivity at quadrature points is carried out in a series of three simple steps. Because this part of the limiter is entirely local, we focus on a single elementT ,andthereforedropthesubscriptforeaseofnotation. k 3.1.1 Step0: Assumepositivityofthecellaverages. We assume that the cell averages for the density satisfies ρn ≥ε , where ε >0 is a cutoff parameter that 0 0 guarantees hyperbolicity of the system. In this work, we set ε =10−12 in all simulations. Furthermore, 0 weassumethatthecellaverageforthepressuresatisfies pn>0,wherethe(average)pressure pn isdefined throughtheaveragesoftheotherconservedquantitiesin(11). Notethatthesetwoconditionsaresufficient n toimplythattheaverageenergyE ispositive. 3.1.2 Step1: Enforcepositivityofthedensity. In this step, we enforce positivity of the density at each quadrature point x ∈T . Because ρn ≥ε , there m k 0 existsa(maximal)valueθρ∈[0,1]suchthat ML(MD) ρθ :=ρn+θ ∑ ρ((cid:96))nϕ((cid:96))(x )≥ε (37) m m 0 (cid:96)=2 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.