ebook img

Positivity PDF

282 Pages·2007·1.843 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Positivity

Trends in Mathematics Trends in Mathematics is a series devoted to the publication of volumes arising from conferences and lecture series focusing on a particular topic from any area of mathematics. Its aim is to make current developments available to the community as rapidly as possible without compromise to quality and to archive these for reference. Proposals for volumes can be sent to the Mathematics Editor at either Birkhäuser Verlag P.O. Box 133 CH-4010 Basel Switzerland or Birkhäuser Boston Inc. 675 Massachusetts Avenue Cambridge, MA 02139 USA Material submitted for publication must be screened and prepared as follows: All contributions should undergo a reviewing process similar to that carried out by journals and be checked for correct use of language which, as a rule, is English. Articles without (cid:83)(cid:85)(cid:82)(cid:82)(cid:73)(cid:86)(cid:15)(cid:3)(cid:82)(cid:85)(cid:3)(cid:90)(cid:75)(cid:76)(cid:70)(cid:75)(cid:3)(cid:71)(cid:82)(cid:3)(cid:81)(cid:82)(cid:87)(cid:3)(cid:70)(cid:82)(cid:81)(cid:87)(cid:68)(cid:76)(cid:81)(cid:3)(cid:68)(cid:81)(cid:92)(cid:3)(cid:86)(cid:76)(cid:74)(cid:81)(cid:76)(cid:189)(cid:70)(cid:68)(cid:81)(cid:87)(cid:79)(cid:92)(cid:3)(cid:81)(cid:72)(cid:90)(cid:3)(cid:85)(cid:72)(cid:86)(cid:88)(cid:79)(cid:87)(cid:86)(cid:15)(cid:3)(cid:86)(cid:75)(cid:82)(cid:88)(cid:79)(cid:71)(cid:3)(cid:69)(cid:72)(cid:3)(cid:85)(cid:72)(cid:77)(cid:72)(cid:70)(cid:87)(cid:72)(cid:71)(cid:17)(cid:3)(cid:43)(cid:76)(cid:74)(cid:75)(cid:3) quality survey papers, however, are welcome. We expect the organizers to deliver manuscripts in a form that is essentially ready for (cid:71)(cid:76)(cid:85)(cid:72)(cid:70)(cid:87)(cid:3)(cid:85)(cid:72)(cid:83)(cid:85)(cid:82)(cid:71)(cid:88)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:17)(cid:3)(cid:36)(cid:81)(cid:92)(cid:3)(cid:89)(cid:72)(cid:85)(cid:86)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:73)(cid:3)(cid:55)(cid:72)(cid:59)(cid:3)(cid:76)(cid:86)(cid:3)(cid:68)(cid:70)(cid:70)(cid:72)(cid:83)(cid:87)(cid:68)(cid:69)(cid:79)(cid:72)(cid:15)(cid:3)(cid:69)(cid:88)(cid:87)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:72)(cid:81)(cid:87)(cid:76)(cid:85)(cid:72)(cid:3)(cid:70)(cid:82)(cid:79)(cid:79)(cid:72)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:73)(cid:3)(cid:189)(cid:79)(cid:72)(cid:86)(cid:3)(cid:80)(cid:88)(cid:86)(cid:87)(cid:3) (cid:69)(cid:72)(cid:3)(cid:76)(cid:81)(cid:3)(cid:82)(cid:81)(cid:72)(cid:3)(cid:83)(cid:68)(cid:85)(cid:87)(cid:76)(cid:70)(cid:88)(cid:79)(cid:68)(cid:85)(cid:3)(cid:71)(cid:76)(cid:68)(cid:79)(cid:72)(cid:70)(cid:87)(cid:3)(cid:82)(cid:73)(cid:3)(cid:55)(cid:72)(cid:59)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:88)(cid:81)(cid:76)(cid:189)(cid:72)(cid:71)(cid:3)(cid:68)(cid:70)(cid:70)(cid:82)(cid:85)(cid:71)(cid:76)(cid:81)(cid:74)(cid:3)(cid:87)(cid:82)(cid:3)(cid:86)(cid:76)(cid:80)(cid:83)(cid:79)(cid:72)(cid:3)(cid:76)(cid:81)(cid:86)(cid:87)(cid:85)(cid:88)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:86)(cid:3)(cid:68)(cid:89)(cid:68)(cid:76)(cid:79)(cid:68)(cid:69)(cid:79)(cid:72)(cid:3) from Birkhäuser. Furthermore, in order to guarantee the timely appearance of the proceedings it is essential (cid:87)(cid:75)(cid:68)(cid:87)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:189)(cid:81)(cid:68)(cid:79)(cid:3)(cid:89)(cid:72)(cid:85)(cid:86)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:72)(cid:81)(cid:87)(cid:76)(cid:85)(cid:72)(cid:3)(cid:80)(cid:68)(cid:87)(cid:72)(cid:85)(cid:76)(cid:68)(cid:79)(cid:3)(cid:69)(cid:72)(cid:3)(cid:86)(cid:88)(cid:69)(cid:80)(cid:76)(cid:87)(cid:87)(cid:72)(cid:71)(cid:3)(cid:81)(cid:82)(cid:3)(cid:79)(cid:68)(cid:87)(cid:72)(cid:85)(cid:3)(cid:87)(cid:75)(cid:68)(cid:81)(cid:3)(cid:82)(cid:81)(cid:72)(cid:3)(cid:92)(cid:72)(cid:68)(cid:85)(cid:3)(cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3) (cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:17)(cid:3)(cid:55)(cid:75)(cid:72)(cid:3)(cid:87)(cid:82)(cid:87)(cid:68)(cid:79)(cid:3)(cid:81)(cid:88)(cid:80)(cid:69)(cid:72)(cid:85)(cid:3)(cid:82)(cid:73)(cid:3)(cid:83)(cid:68)(cid:74)(cid:72)(cid:86)(cid:3)(cid:86)(cid:75)(cid:82)(cid:88)(cid:79)(cid:71)(cid:3)(cid:81)(cid:82)(cid:87)(cid:3)(cid:72)(cid:91)(cid:70)(cid:72)(cid:72)(cid:71)(cid:3)(cid:22)(cid:24)(cid:19)(cid:17)(cid:3)(cid:55)(cid:75)(cid:72)(cid:3)(cid:189)(cid:85)(cid:86)(cid:87)(cid:16)(cid:80)(cid:72)(cid:81)(cid:87)(cid:76)(cid:82)(cid:81)(cid:72)(cid:71)(cid:3)(cid:68)(cid:88)(cid:87)(cid:75)(cid:82)(cid:85)(cid:3) of each article will receive 25 free offprints. To the participants of the congress the book will be offered at a special rate. Positivity Karim Boulabiar Gerard Buskes Abdelmajid Triki Editors Birkhäuser Basel · Boston · Berlin Editors: Karim Boulabiar Gerard Buskes (cid:44)(cid:81)(cid:86)(cid:87)(cid:76)(cid:87)(cid:88)(cid:87)(cid:3)(cid:51)(cid:85)(cid:112)(cid:83)(cid:68)(cid:85)(cid:68)(cid:87)(cid:82)(cid:76)(cid:85)(cid:72)(cid:3)(cid:68)(cid:88)(cid:91)(cid:3)(cid:3) (cid:3) (cid:3) (cid:39)(cid:72)(cid:83)(cid:68)(cid:85)(cid:87)(cid:80)(cid:72)(cid:81)(cid:87)(cid:3)(cid:82)(cid:73)(cid:3)(cid:48)(cid:68)(cid:87)(cid:75)(cid:72)(cid:80)(cid:68)(cid:87)(cid:76)(cid:70)(cid:86) (cid:40)(cid:87)(cid:88)(cid:71)(cid:72)(cid:86)(cid:3)(cid:54)(cid:70)(cid:76)(cid:72)(cid:81)(cid:87)(cid:76)(cid:189)(cid:84)(cid:88)(cid:72)(cid:86)(cid:3)(cid:72)(cid:87)(cid:3)(cid:55)(cid:72)(cid:70)(cid:75)(cid:81)(cid:76)(cid:84)(cid:88)(cid:72)(cid:86)(cid:3) (cid:3) (cid:56)(cid:81)(cid:76)(cid:89)(cid:72)(cid:85)(cid:86)(cid:76)(cid:87)(cid:92)(cid:3)(cid:82)(cid:73)(cid:3)(cid:48)(cid:76)(cid:86)(cid:86)(cid:76)(cid:86)(cid:86)(cid:76)(cid:83)(cid:83)(cid:76) Université de Carthage Hume Hall 305 (cid:37)(cid:17)(cid:51)(cid:17)(cid:3)(cid:24)(cid:20)(cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:51)(cid:17)(cid:3)(cid:50)(cid:17)(cid:3)(cid:37)(cid:82)(cid:91)(cid:3)(cid:20)(cid:27)(cid:23)(cid:27) (cid:21)(cid:19)(cid:26)(cid:19)(cid:3)(cid:47)(cid:68)(cid:3)(cid:48)(cid:68)(cid:85)(cid:86)(cid:68)(cid:3) (cid:3) (cid:3) (cid:3) (cid:56)(cid:81)(cid:76)(cid:89)(cid:72)(cid:85)(cid:86)(cid:76)(cid:87)(cid:92)(cid:15)(cid:3)(cid:48)(cid:54)(cid:3)(cid:3)(cid:22)(cid:27)(cid:25)(cid:26)(cid:26)(cid:16)(cid:20)(cid:27)(cid:23)(cid:27) Tunisia USA e-mail: [email protected] e-mail: [email protected] Abdelmajid Triki (cid:39)(cid:112)(cid:83)(cid:68)(cid:85)(cid:87)(cid:72)(cid:80)(cid:72)(cid:81)(cid:87)(cid:3)(cid:71)(cid:72)(cid:3)(cid:48)(cid:68)(cid:87)(cid:75)(cid:112)(cid:80)(cid:68)(cid:87)(cid:76)(cid:84)(cid:88)(cid:72)(cid:86) Faculté des Sciences de Tunis Campus Universitaire 1060 Tunis Tunisia e-mail: [email protected] (cid:21)(cid:19)(cid:19)(cid:19)(cid:3)(cid:48)(cid:68)(cid:87)(cid:75)(cid:72)(cid:80)(cid:68)(cid:87)(cid:76)(cid:70)(cid:68)(cid:79)(cid:3)(cid:54)(cid:88)(cid:69)(cid:77)(cid:72)(cid:70)(cid:87)(cid:3)(cid:38)(cid:79)(cid:68)(cid:86)(cid:86)(cid:76)(cid:189)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:19)(cid:25)(cid:36)(cid:26)(cid:19)(cid:15)(cid:3)(cid:19)(cid:25)(cid:39)(cid:21)(cid:21)(cid:15)(cid:3)(cid:19)(cid:25)(cid:41)(cid:20)(cid:24)(cid:15)(cid:3)(cid:21)(cid:27)(cid:37)(cid:19)(cid:24)(cid:15)(cid:3)(cid:23)(cid:25)(cid:36)(cid:20)(cid:26)(cid:15)(cid:3)(cid:23)(cid:25)(cid:36)(cid:23)(cid:19)(cid:15)(cid:3)(cid:23)(cid:25)(cid:37)(cid:21)(cid:21)(cid:15)(cid:3) (cid:23)(cid:25)(cid:40)(cid:22)(cid:19)(cid:15)(cid:3)(cid:23)(cid:25)(cid:47)(cid:19)(cid:24)(cid:15)(cid:3)(cid:23)(cid:25)(cid:47)(cid:24)(cid:19)(cid:15)(cid:3)(cid:23)(cid:25)(cid:47)(cid:24)(cid:21)(cid:15)(cid:3)(cid:23)(cid:26)(cid:37)(cid:22)(cid:23)(cid:15)(cid:3)(cid:23)(cid:26)(cid:37)(cid:23)(cid:19)(cid:15)(cid:3)(cid:23)(cid:26)(cid:37)(cid:25)(cid:24)(cid:15)(cid:3)(cid:23)(cid:26)(cid:39)(cid:23)(cid:19)(cid:15)(cid:3)(cid:23)(cid:26)(cid:42)(cid:20)(cid:19)(cid:15)(cid:3)(cid:23)(cid:26)(cid:47)(cid:19)(cid:26)(cid:15)(cid:3)(cid:23)(cid:25)(cid:47)(cid:20)(cid:19)(cid:15)(cid:3)(cid:23)(cid:25)(cid:48)(cid:19)(cid:24)(cid:15)(cid:3)(cid:24)(cid:23)(cid:38)(cid:23)(cid:19)(cid:15)(cid:3) 54G05, 54H10 Library of Congress Control Number: 2007933653 (cid:37)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:74)(cid:85)(cid:68)(cid:83)(cid:75)(cid:76)(cid:70)(cid:3)(cid:76)(cid:81)(cid:73)(cid:82)(cid:85)(cid:80)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:83)(cid:88)(cid:69)(cid:79)(cid:76)(cid:86)(cid:75)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:39)(cid:76)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:37)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:87)(cid:75)(cid:72)(cid:78)(cid:17)(cid:3)(cid:39)(cid:76)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:37)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:87)(cid:75)(cid:72)(cid:78)(cid:3)(cid:79)(cid:76)(cid:86)(cid:87)(cid:86)(cid:3) (cid:87)(cid:75)(cid:76)(cid:86)(cid:3)(cid:83)(cid:88)(cid:69)(cid:79)(cid:76)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:76)(cid:81)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:49)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:69)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:74)(cid:85)(cid:68)(cid:189)(cid:72)(cid:30)(cid:3)(cid:71)(cid:72)(cid:87)(cid:68)(cid:76)(cid:79)(cid:72)(cid:71)(cid:3)(cid:69)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:74)(cid:85)(cid:68)(cid:83)(cid:75)(cid:76)(cid:70)(cid:3)(cid:71)(cid:68)(cid:87)(cid:68)(cid:3)(cid:76)(cid:86)(cid:3)(cid:68)(cid:89)(cid:68)(cid:76)(cid:79)(cid:68)(cid:69)(cid:79)(cid:72)(cid:3)(cid:76)(cid:81)(cid:3) the Internet at http://dnb.ddb.de ISBN(cid:3)(cid:28)(cid:26)(cid:27)(cid:16)(cid:22)(cid:16)(cid:26)(cid:25)(cid:23)(cid:22)(cid:16)(cid:27)(cid:23)(cid:26)(cid:26)(cid:16)(cid:26) Birkhäuser Verlag AG, Basel - Boston - Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the materi- (cid:68)(cid:79)(cid:3)(cid:76)(cid:86)(cid:3)(cid:70)(cid:82)(cid:81)(cid:70)(cid:72)(cid:85)(cid:81)(cid:72)(cid:71)(cid:15)(cid:3)(cid:86)(cid:83)(cid:72)(cid:70)(cid:76)(cid:189)(cid:70)(cid:68)(cid:79)(cid:79)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:85)(cid:76)(cid:74)(cid:75)(cid:87)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:85)(cid:68)(cid:81)(cid:86)(cid:79)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:15)(cid:3)(cid:85)(cid:72)(cid:83)(cid:85)(cid:76)(cid:81)(cid:87)(cid:76)(cid:81)(cid:74)(cid:15)(cid:3)(cid:85)(cid:72)(cid:16)(cid:88)(cid:86)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:76)(cid:79)(cid:79)(cid:88)(cid:86)(cid:87)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:86)(cid:15)(cid:3)(cid:85)(cid:72)(cid:70)(cid:76)(cid:87)(cid:68)- (cid:87)(cid:76)(cid:82)(cid:81)(cid:15)(cid:3)(cid:69)(cid:85)(cid:82)(cid:68)(cid:71)(cid:70)(cid:68)(cid:86)(cid:87)(cid:76)(cid:81)(cid:74)(cid:15)(cid:3)(cid:85)(cid:72)(cid:83)(cid:85)(cid:82)(cid:71)(cid:88)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:81)(cid:3)(cid:80)(cid:76)(cid:70)(cid:85)(cid:82)(cid:189)(cid:79)(cid:80)(cid:86)(cid:3)(cid:82)(cid:85)(cid:3)(cid:76)(cid:81)(cid:3)(cid:82)(cid:87)(cid:75)(cid:72)(cid:85)(cid:3)(cid:90)(cid:68)(cid:92)(cid:86)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:86)(cid:87)(cid:82)(cid:85)(cid:68)(cid:74)(cid:72)(cid:3)(cid:76)(cid:81)(cid:3)(cid:71)(cid:68)(cid:87)(cid:68)(cid:3)(cid:69)(cid:68)(cid:81)(cid:78)(cid:86)(cid:17)(cid:3)(cid:41)(cid:82)(cid:85)(cid:3) any kind of use permission of the copyright owner must be obtained. © 2007 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced from chlorine-free pulp. TCF (cid:146) Printed in Germany ISBN(cid:28)(cid:26)(cid:27)(cid:16)(cid:22)(cid:16)(cid:26)(cid:25)(cid:23)(cid:22)(cid:16)(cid:27)(cid:23)(cid:26)(cid:26)(cid:16)(cid:26) e-ISBN(cid:28)(cid:26)(cid:27)(cid:16)(cid:22)(cid:16)(cid:26)(cid:25)(cid:23)(cid:22)(cid:16)(cid:27)(cid:23)(cid:26)(cid:27)(cid:16)(cid:23) (cid:28)(cid:3)(cid:27)(cid:3)(cid:26)(cid:3)(cid:25)(cid:3)(cid:24)(cid:3)(cid:23)(cid:3)(cid:22)(cid:3)(cid:21)(cid:3)(cid:20)(cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:90)(cid:90)(cid:90)(cid:17)(cid:69)(cid:76)(cid:85)(cid:78)(cid:75)(cid:68)(cid:88)(cid:86)(cid:72)(cid:85)(cid:17)(cid:70)(cid:75) Contents Preface ................................................................... vii B. Banerjee and M. Henriksen Ways in which C(X) mod a Prime Ideal Can be a Valuation Domain; Something Old and Something New ............ 1 D.P. Blecher Positivity in Operator Algebras and Operator Spaces ................ 27 K. Boulabiar, G. Buskes, and A. Triki Results in f-algebras ................................................ 73 Q. Bu, G. Buskes, and A.G. Kusraev Bilinear Maps on Products of Vector Lattices: A Survey ............. 97 G.P. Curbera and W.J. Ricker Vector Measures, Integration and Applications ....................... 127 J. Mart´ınez The Role of Frames in the Development of Lattice-ordered Groups: A PersonalAccount ......................................... 161 B. de Pagter Non-commutative Banach Function Spaces ........................... 197 A.R. Schep Positive Operators on Lp-spaces ..................................... 229 A.W. Wickstead Regular Operators between Banach Lattices ......................... 255 Preface This collection of surveys is an outflow from the 2006 conference Carthapos06 in Tunis (Tunisia). Apart from regular conference talks, five survey talks formed the core of a workshop in Positivity, supported by the National Science Founda- tion.Theconferenceorganizers(KarimBoulabiar,GerardBuskes,andAbdelmajid Triki) decided to expand on the idea of core surveys and the nine surveys in this book are the harvest from that idea. Positivity derives from an order relation. Order relations are the mathemat- ical tool for comparison. It is no surprise that seen in such very general light, the historyofPositivityisancient.Archimedes,certainly,hadtheveryessenceofposi- tivityinmindwhenhediscoveredthelawofthelever.Hismethodofexhaustionto calculate areas uses a principle that nowadays carries his name, the Archimedean property. The surveys in this book are slanted into the direction that Archimedes took.Functionalanalysisisheavilyrepresented.Butthereismore.Latticeordered groupsappearinthearticlebyMartinezinthemodernjacketofframes.Henriksen and Banerjee write their survey on rings of continuous functions. Blecher and de Pagterineachoftheirpaperssurveypartsofnon-commutativefunctionalanalysis. Positiveoperatorsarethemaintopicinthe papersbyCurberaandRicker,Schep, and Wickstead. And positive bilinear maps are the protagonists in the survey by Bu, Buskes, and Kusraev. The conference organizers (and editors of this volume) write about f-algebras. Carthapos06 was more than just a conference and workshop in Africa. It brought together researchers in Positivity from many directions of Positivity and form many corners of the world. This book can be seen as a culmination of their paths meeting in Tunisia, Africa. June 5, 2007 G. Buskes Oxford, U.S.A. Positivity TrendsinMathematics,1–25 (cid:1)c 2007Birkh¨auserVerlagBasel/Switzerland C(X) Ways in which mod a Prime Ideal Can be a Valuation Domain; Something Old and Something New Bikram Banerjee (Bandyopadhyay) and Melvin Henriksen Abstract. C(X) denotes the ring of continuous real-valued functions on a Tychonoff space X and P a prime ideal of C(X). We summarize a lot of what is known about the reside class domains C(X)/P and add many new resultsaboutthissubjectwithanemphasisondeterminingwhentheordered C(X)/P is a valuation domain (i.e., when given two nonzero elements, one of them must divide the other). The interaction between the space X and the prime ideal P is of great importance in this study. We summarize first what is known when P is a maximal ideal, and then what happens when C(X)/P is a valuation domain for every prime ideal P (in which case X is called an SV-space and C(X) an SV-ring). Two new generalizations are introduced and studied. The first is that of an almost SV-spaces in which each maximalideal containsaminimalprimeideal P suchthatC(X)/P isa valuationdomain.Inthesecond,weassumethateachrealmaximalidealthat fails tobe minimal contains a nonmaximal prime ideal P such that C(X)/P is a valuation domain. Some of ourresults dependon whetheror not βω \ω contains a P-point.Some concluding remarks include unsolved problems. 1. Introduction Throughout, C(X) will denote the ring of real-valued continuous functions on a TychonoffspaceX withtheusualpointwiseringandlatticeoperationsandC∗(X) willdenote its subringofboundedfunctions,andalltopologicalspacesconsidered areassumedtobeTychonoffspacesunlessthecontraryisstatedexplicitly.(Recall that X is called a Tychonoff space if it is a subspace of a compact (Hausdorff) space.EquivalentlyifX isaT spaceandwheneverK isaclosedsubspaceofX not 1 containing a point x, there is an f ∈ C(X) such that f(x) = 0 and f[K]= {1}.) An element of C(X) is nonnegative in the usual pointwise sense if and only if it a square. So algebraic operations automatically preserve order. This makes the 2 B. Banerjee and M. Henriksen notionofpositivityessentialforstudyingC(X).This simpleobservationwasused with great ingenuity by M.H. Stone in 1937 to make the first thorough study of C(X)asaring.ItwasrestrictedtothecasewhenX iscompact.Amongthemany interesting results in this seminal paper is that C(X) determines X. That is, if X andY arecompactspacesand C(X)andC(Y)arealgebraicallyisomorphic,then X and Y are homeomorphic. This study was broadened to include unbounded functions in [Hew48] by Stone’sstudentE.Hewitt.Whilethispapercontainsanumberofseriouserrors,it setthetoneforalotofthe researchthatledtothe book[GJ76].(Itwaspublished originally in 1960 by Van Nostrand). For more background and history of this subject,see [Wa74],[We75],[Hen97],and[Hen02].Ourgeneralsourcesforgeneral topology are [E89] and [PW88]. Sections2and3surveysomeofwhathasbeendoneinthepastaboutintegral domainsthatarehomomorphicimagesofa C(X)andtheprimeidealsP thatare kernels of such homomorphisms. We concentrate especially on the cases when C(X)/P is a valuation domain. In Section 2, we review some of what is known when P is maximal; i.e., when C(X)/P is a field. Section 3 recalls what is known aboutspacesX suchthatatC(X)/P isavaluationdomainwheneverP isaprime ideal of C(X). They are called SV-spaces.The remainder of the paper focuses on new research beginning with the study in Section 4 of almost SV-spaces; that is, spacesX andringsC(X)inwhicheverymaximalidealofC(X)containsaminimal prime ideal P such that C(X)/P is a valuation domain. Section 5 is devoted to the study of products of almost SV-spaces and logical considerations concerning thevalidityofsomeresults.Theone-pointcompactificationofacountablediscrete space is not an SV-space, but the consequences of the assumption that it is an almost SV-space are studied in Section 6. Spaces X and rings C(X) in which every real maximal ideal of C(X) contains a prime ideal such that C(X)/P is a valuation domain are examined in Section 7. In the final Section 8, two related papers and the contents of a book are discussed briefly, some sufficient conditions are given to say more about valuation domains that are homomorphic images of a ring C(X), and some unsolved problems are posed. 2. What happens when the valuation domains are fields? A commutative ring A such that whenever a and b are nonzero elements of A, it followsthatoneofthemdividestheother,iscalledavaluation ring.Below,weare interested only in the case when A is also an integral domain, in which case such a ring A is called a valuation domain. We begin with the case when the valuation domain is a field, and recall that the kernel of a homomorphism onto a field is a maximal ideal. Let M(A) denote the set of maximal ideals of A. This set is nonempty as long as A has an identity element RecallthatafieldF issaidtobereal-closed ifitssmallestalgebraicextension is algebraicallyclosed. Equivalently, F is real-closedif it is totally ordered, its set Ways in which C(X) mod a Prime Ideal Can be a Valuation Domain 3 F+ of nonnegative elements is exactly the set of all squares of elements of F, and each polynomial of odd degree with coefficients in F vanishes at some point of F. As is shown in Chapter 13 of [GJ76], if M ∈ M(C(X)), then C(X)/M is a real-closed field. We continue to quote facts from [GJ76]. If f ∈ C(X), then Z(f) denotes {x ∈ X : f(x) = 0}, and we let coz(f) = X\Z(f). If S ⊂ C(X), we let Z[S] = {Z(f) : f ∈ S}. Thus Z[C(X)] (which we abbreviate by Z[X]) is the family of all zerosets of functions in C(X). A subfam- ily F of Z[X] that is closed under finite intersection, contains Z(g) whenever if contains some Z(f) ∈ F, and does not contain the empty set is called a z-filter. Note that an element f is in some proper ideal if and only if Z(f)(cid:3)=∅. It follows that if I is a proper ideal of C(X), Then Z[I] is a z-filter. AnidealI isfixed orfree accordingas∩{Z(f):f ∈I}isnonemptyorempty. A maximal ideal M is fixed if and only if Z[M] = {x} for some x ∈ X, in which case M is denoted by M . Clearly, C(X)/M always contains a copy of R. The x maximalidealM iscalledhyper-real ifC(X)/M containsR properlyandiscalled real otherwise.Every fixed maximal ideal is real, but the converse fails to hold. If every real maximal ideal of C(X) is fixed, then X is called a realcompact space. Subsequent to the appearance of [GJ76], hyper-real fields are also called H-fields. Recall that the continuum hypothesis CH is the assumption that the least uncountable cardinal ω is equal to the cardinality 2ω of the continuum. 1 2.1 Definition. Suppose that an ordered set L satisfies: If A and B are countable subsets of L such that a < b whenever a ∈ A and b ∈ B, then there is an x ∈ L such that a < x < b whenever a ∈ A and b ∈ B (Symbolically we write this conclusion as A<x<B.) Then L is called an η -set. 1 Much of what is known about H-fields of cardinality no larger than 2ω is summarized next. 2.2 Theorem (a) Every H-field is both real-closedand an η -set. 1 (b) All real-closed fields that are η -sets of cardinality ω are (algebraically) 1 1 isomorphic. (c) Every η -set has cardinality at least 2ω. 1 (d) All H-fields of cardinality 2ω are isomorphic if and only if CH holds. Allbutpartof(d)areshowninChapter13of[GJ76].Thatthereisonlyone H-field (in the sense of isomorphism) of cardinality 2ω implies CH is due to A. Dow in [D84]. Some more detail about what may happen if CH fails: see [R82]. There are a large number of results concerning H-fields of large cardinal- ity in [ACCH81] that depend on various set-theoretic hypotheses and use proof techniques involvingcombinatorialsettheory.Mostofits contentsarebeyondthe scope of this article.(Some errorsin [ACCH81] are pointed out by A. Blass in his review in Math. Sci. Net. None of them affect what is written above.)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.