ThePlantCell,Vol.23:4368–4381,December2011,www.plantcell.orgã2011AmericanSocietyofPlantBiologists.Allrightsreserved. KNOX Positive Autoregulation of a Gene Is Essential for Shoot Apical Meristem Maintenance in Rice W OA KatsutoshiTsuda,aYukihiroIto,bYutakaSato,candNoriKurataa,d,1 aPlant Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan bGraduateSchoolofAgriculturalScience,TohokuUniversity,Aoba-ku,Sendai981-8555,Japan cGraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Chikusa,Nagoya464-8601,Japan dDepartment of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Self-maintenance of the shoot apical meristem (SAM), from which aerial organs are formed throughout the life cycle, is crucial in plant development. Class I Knotted1-like homeobox (KNOX) genes restrict cell differentiation and play an indispensableroleinmaintainingtheSAM.However,themechanismthatpositivelyregulatestheirexpressionisunknown. Here,weshowthatexpressionofarice(Oryzasativa)KNOXgene,Oryzasativahomeobox1(OSH1),ispositivelyregulated by direct autoregulation. Interestingly, loss-of-function mutants of OSH1 lose the SAM just after germination but can be rescuedtogrowuntilreproductivedevelopmentwhentheyareregeneratedfromcallus.Doublemutantsofosh1andd6,a loss-of-functionmutantofOSH15,failtoestablishtheSAMbothinembryogenesisandregeneration.Expressionanalysesin thesemutantsrevealthatKNOXgeneexpressionispositivelyregulatedbythephytohormonecytokininandbyKNOXgenes themselves.WedemonstratethatOSH1directlybindstofiveKNOXloci,includingOSH1andOSH15,throughevolutionarily conserved cis-elements and that the positive autoregulation of OSH1 is indispensable for its own expression and SAM maintenance.Thus,themaintenanceoftheindeterminatestatemediatedbypositiveautoregulationofaKNOXgeneisan indispensablemechanismofself-maintenanceoftheSAM. INTRODUCTION ISTEMLESS in Arabidopsis thaliana, lack the SAM, indicating thatKNOXgenesareessentialfortheformationand/ormainte- One of the more remarkable differences between animals and nance of the SAM (Long et al., 1996; Vollbrecht et al., 2000). plantsisthebodyplan.Whileanimalscompletetheirorganogen- KNOX genesnegatively regulatebiosynthesisofthephytohor- esisduringembryogenesis,plantsformasimplestructurecon- mone gibberellin (GA), which acts in differentiated organs to sisting of two distinctive regions at opposite poles. One is the promote cell elongation and morphogenesis. In maize, KN1 shoot apical meristem (SAM) and the other is the root apical directlyactivatesGA2oxidase1(GA2ox1),thegenecodingfora meristem.Bothmeristemsareorganizedgroupsofundifferenti- GA inactivation enzyme (Bolduc and Hake, 2009). A tobacco ated cells responsible for postembryogenic organ formation (Nicotiana tabacum)KNOX protein Nicotiana tabacum homeo- (SteevesandSussex,1989).TheSAMisadome-shapedtissue box15alsonegativelyregulatesGAproductionintheSAMby locatedatthegrowingtipofashoot.Afterembryogenesis,lateral directrepressionofaGAbiosyntheticenzymegene,GA20ox1 organs,suchasleavesandflowers,arecontinuouslyformedfrom (Sakamotoetal.,2001).Anotherhormonalpathwayregulatedby theflankoftheSAM.Branchesandstemsarealsoderivedfrom KNOXiscytokinin(CK).CKfunctionstoactivatecelldivisionand theSAM.Thus,theSAMisanultimatesourceofallaboveground shootformation. InArabidopsis andrice (Oryzasativa),KNOX organsandthereforemustbemaintainedthroughoutthelifecycle. proteinspositivelyregulateCKproductionthroughinductionof TheelucidationofthemechanisminvolvedinSAMmaintenanceis theCKbiosynthesisenzyme,adenosinephosphateisopentenyl- afundamentalissueindevelopmentalbiology. transferase (IPT) (Jasinski et al., 2005; Yanai et al., 2005; ClassIKnotted1-likehomeobox(KNOX)genes,whichencode Sakamoto et al., 2006). Thus, KNOX genes are considered to homeodomain (HD) transcription factors, play indispensable inhibitcelldifferentiationintheSAMbydecreasingandincreas- roles in the SAM. Loss-of-function mutants of KNOX genes, ingtheamountofGAandCK,respectively. suchasknotted1(kn1)inmaize(Zeamays)andSHOOTMER- KNOXgenesareexpressedintheshootapexspecificallyand areexcludedfromdifferentiated organs(Jacksonetal.,1994). SeveralgenesrequiredforrepressionofKNOXgeneexpression [email protected]. The author responsible for distribution of materials integral to the inleaveshavebeenidentified.Amongthem,theMYBtranscrip- findingspresentedinthisarticleinaccordancewiththepolicydescribed tion factor ROUGH SHEATH2 (RS2) in maize, its Arabidopsis in the Instructions for Authors (www.plantcell.org) is: Nori Kurata putativeorthologASYMMETRICLEAVES1(AS1),andtheplant- ([email protected]). specificLOBfamilyproteinAS2havebeenwellstudied.Intheir WOnlineversioncontainsWeb-onlydata. OAOpenAccessarticlescanbeviewedonlinewithoutasubscription. loss-of-function mutants, KNOX genes are ectopically ex- www.plantcell.org/cgi/doi/10.1105/tpc.111.090050 pressedinleaves(Timmermansetal.,1999;Tsiantisetal.,1999; PositiveAutoregulationofaKNOXGene 4369 Byrneetal.,2000;Orietal.,2000;Semiartietal.,2001;Iwakawa sized transcript was detected, but the expression level was etal.,2002).AS1andAS2arethoughttoformacomplexthat reduced compared with that of the wild type (Figure 1C). To directlyrepressestranscriptionoftheKNOTTED-likegenesfrom examineOSH1proteinaccumulation,weperformedimmunoblot Arabidopsis thaliana 1 (KNAT1)/BREVIPEDICELLUS (BP) and analysis using an anti-OSH1 antibody that specifically recog- KNAT2(Guoetal.,2008).RS2andAS1wereshowntointeract nizestheNterminusofOSH1.Theprematurestopcodoninthe with a chromatin remodeling protein, HIRA (Phelps-Durr et al., thirdexonpredictsatruncatedformofOSH1tobe17kD.Inthe 2005).Therefore,theseproteinsmayestablishand/ormaintain young panicle and shoot apex from wild-type plants, normal- therepressedstateofKNOX lociviachromatin remodeling.In sizedOSH1wasdetectedataround40kD.Ontheotherhand, addition to this, proper activities of the phytohormone auxin, neither a normal-sized nor a truncated form of OSH1 was YABBYgenes,andPolycombgenesarealsorequiredtorepress detectedinthemutantshootapex(Figure1D).OSH1wasnot KNOX gene expression in leaves (Kumaran et al., 2002; Katz detectedinwild-typeleavesaspreviouslydetermined(Jackson etal.,2004;Hayetal.,2006). et al., 1994; Sentoku et al., 1999).Thus, these results indicate Despite the critical function of KNOX genes in SAM mainte- thattheosh1-1alleleisanull. nance, little is known of the mechanisms that activate KNOX gene expression. In this study, we isolated a loss-of-function OSH1IsEssentialforShootMeristemMaintenanceduring mutantofoneofthericeKNOXgenes,Oryzasativahomeobox1 theVegetativePhase (OSH1). Genetic studies using osh1 in combination with d6 , a loss-of-function mutant of another rice KNOX gene, OSH15, TostudythefunctionofOSH1inSAMformationandmaintenance, revealedtheindispensableroleofKNOXgenesinSAMformation thephenotypeofosh1plantsatvariousstagesofdevelopment andmaintenanceinrice.ExpressionlevelsofKNOXgeneswere wasobserved.Duringembryogenesis,allembryosfromhetero- found to depend not only on CK but also on KNOX genes zygousosh1plantsinitiatedanormal-appearingSAMandthree themselves. Furthermore, we demonstrated that OSH1 posi- embryonicleavesasinwild-typeplants(n=30).Thedefectwas tivelyregulatestheexpressionofallfiveKNOXgenestestedina firstobservedinthematureembryoat0DAG(Figure1E),inwhich direct manner through evolutionarily conserved cis-elements osh1hadaslightlysmallerSAMthanthewildtype.At1to3DAG, andthatthepositiveautoregulationofOSH1isessentialforthe thedomeshapeoftheosh1mutantSAMgraduallydisappeared expressionofitselfandSAMmaintenance.Takentogether,we withthegrowthofthethirdleafprimordia.At4DAG,osh1hada proposethatthepositiveautoregulationofaKNOXgeneisoneof remnant bulge at the former SAM region, and after that, no theindispensablemechanismsofself-maintenanceoftheSAM. additionalleaveswereformed.At10DAG,>90%ofosh1mutants terminatedtheir growthwithonlythree leavesproducedduring embryogenesis, compared with the wild type that continued to RESULTS produce leaves (Figure 1B). However, a low frequency of osh1 plantsproducedfourto six leaves (2.5%)orone to two leaves IsolationofaLoss-of-FunctionMutantofOSH1 (3.9%) (see Supplemental Table 1 online). In very rare cases (<1%),osh1mutantsformedmorethansixleavesandcontinued Inthericegenome,therearefivefunctionalclassIKNOXgenes, togrowforaboutamonth,althoughsuchplantsalsolosttheSAM OSH1,OSH6,OSH15,OSH43,andOSH71(Sentokuetal.,1999; and terminated leaf formation eventually. Similar variability was Sato et al., 2001). Among them, OSH15 has been studied by documented with the maize kn1 loss-of-function mutants, al- loss-of-function analysis and was revealed to be essential for thoughthepenetranceoftheshootlessphenotypewasmuchless internodeelongationduringthereproductivephase,butnotfor (Vollbrechtetal.,2000).Thus,theseresultsindicatethatOSH1is SAMmaintenance(Satoetal.,1999).Toprovidefurtherinsight essentialforSAMmaintenanceaftergerminationbutnotforSAM intothefunctionofKNOXgenes,weisolatedaloss-of-function formationduringembryogenesisinrice. mutant of OSH1, an ortholog of maize kn1, using the Target- InducedLocalLesionInGenomes(TILLING)systemofricethat OSH1andOSH15AreRedundantlyRequiredforSAM we developed previously (Suzuki et al., 2008). From screening FormationduringEmbryogenesis 1456N-methyl-N-nitrosourea(MNU)-mutagenizedM2lines,we foundonelinethathadanucleotidesubstitutionfromGtoTat To examine the contribution of other KNOX genes to SAM thefirstnucleotideofthethirdexon,resultinginaprematurestop formation,weobservedembryogenesisoftheosh1d6double codon(Figure1A).Thismutantosh1allele(osh1-1)ispredictedto mutants.OSH15isexpressedinthemeristem,andd6,aloss-of- encode a protein that lacks the HD essential for DNAbinding. functionmutantofOSH15,hasadwarfphenotype(Satoetal., Homozygousosh1mutantplantsterminatedgrowthsoonafter 1999;Sentokuetal.,1999).Inthewildtype,thezygotecontinued germination(Figure1B).Weperformedacomplementationtest cell division to form a globular embryo by 3 d after pollination ofosh1andconfirmedthatnormalmorphologywasrecovered (DAP).At4DAP,theSAMandcoleoptileprimordiumappeared byintroducingacopyofthewild-typeOSH1(seeSupplemental asaprotrusionontheventralsideoftheembryo(Figure2A).The Figure1online).Therefore,theosh1-1alleleislikelytobealoss- firstleafprimordiumdevelopedfromtheflankoftheSAMat5 of-functionmutantofOSH1andwasusedinfurtheranalyses. DAP(Figure2B),andthesecondandthirdleafprimordiasucces- To investigate the effect of this mutation on OSH1 mRNA sivelyformedwithinanother3to4d(Figure2C).Subsequently,the accumulation,weexaminedtranscriptexpressionbyRT-PCR.In embryomatured and entered dormancy(Itoh etal., 2005). Em- themutantshootapexat10daftergermination(DAG),anormal- bryosfromplantsheterozygousforosh1andhomozygousford6 4370 ThePlantCell Figure1. Loss-of-FunctionMutantofOSH1DoesNotMaintaintheSAMafterGermination. (A)OSH1structureandthemutationinosh1.Graylinesindicateintronsand59and39regions.Boxesindicateexons.ConserveddomainsofOSH1are labeledincolorasshownbelowthegenestructure. (B)Phenotypesofwild-type(wt)(left)andosh1(right)seedlingsat10DAG.Arrowheadsindicatethepositionofeachleaf. (C)RT-PCRanalysisforOSH1andActin(loadingcontrol)inleavesandshootapicesofwild-typeandosh1plantsat10DAG.Thisexperimentwas performedtwotimesindependently. (D)ImmunoblottinganalysisofOSH1proteininthewildtypeandosh1.Totalnuclearproteinextractsfrom5-mmyoungpanicles,shootapices,and youngleafprimordiaat10DAGwereloadedineachlane.Coomassiebluestainingofmembraneafterimmunoblottingshownatabottomindicatesthat sampleswereloadedequally.SA,shootapex;YP,youngpanicle. (E)Shootapexsectionsofthewildtypeandosh1duringgermination.TheSAMbeforegerminationisindicatedwithablackline. Bars=2cmin(D)and50mmin(E). hadnovisibleabnormalitiesat3DAP(n=30).However,inabout arecoordinatelyexpressedduringshootregeneration(Gordon one-fourthofexaminedembryosat4DAP,thecoleoptileprimor- etal.,2007).ToexaminetheimportanceofKNOXgenefunction diumwasformednormally,buttheregionwhereSAMformation duringdenovoformationoftheSAM,weobservedthepheno- would occur was hollow and protrusion of the SAM was not typeofshootsregeneratedfromthewildtype,osh1,d6,andtheir observed (n = 7 out of 30 embryos; Figure 2D). Although the doublemutants. coleoptiledevelopedasinnormalembryos,noleafprimordiawere In the wild type and d6 single mutant, normal shoots were initiated(Figure2E).Evenafterembryomaturation,noorganswere regenerated,andnoabnormalitywasobservedatlaterstages, observedinosh1d6embryosexceptacoleoptileandaremnant exceptforthedwarfphenotypeofd6(Satoetal.,1999).Inthe bulgeintheformerSAMposition(Figures2Fto2H).Thus,osh1d6 case of osh1 single mutants, normal shoots were regenerated double mutant embryos failed to form the SAM, indicating that fromcallus. Theseplants could maintain the SAM andformed redundantfunctionsofOSH1andOSH15wereessentialforthe morethanthreeleaves,unlikegerminatedosh1mutants(Figures initiationoftheSAM. 3Ato3C).Thephenotypeofregeneratedosh1varieddepending on their growth conditions. When they were grown in field ShootRegenerationfromosh1andosh1d6MutantCallus conditions,theylosttheSAMandterminatedtheirgrowthpriorto flowering(n=56).However,almostallregeneratedosh1mutants InArabidopsis,ithasbeenreportedthatkeytranscriptionfactors could grow until reproductive phase in light- and temperature- fortheSAMformationandmaintenance,includingKNOXgenes, controlledgrowthchambers(n=43outof49regeneratedosh1 PositiveAutoregulationofaKNOXGene 4371 Figure2. OSH1andOSH15AreRedundantlyRequiredforSAMFormation. (A)to(C)Sectionsofwild-type(wt)embryosat4DAP(A),5DAP(B),and10DAP(C).BlackarrowheadsindicatethepositionoftheSAM. (D)to(F)Sectionsofosh1d6doublemutantembryosat4DAP(D),5DAP(E),and10DAP(F).WhitearrowheadsindicatethepositionwhereSAM formationshouldbeobservedinthewildtype. (G)Anosh1d6doublemutantat10DAG(cf.toFigure1D). (H)Topviewof(G). Bars=100mmin(A)to(F)and5mmin(G)and(H). mutants).Regeneratedosh1mutantplantshadareducednumber OSH43wereexpressedconstantlyinallstagesexamined,whereas ofspikeletswithabnormallyfusedanthers(Figures3Dto3F)and expressionofOSH6,OSH15,andOSH71waslowatthemature werecompletelysterile.Thus,regeneratedosh1mutantsshowed embryostageandincreasedjustaftergermination(Figure4A).In moderatephenotypescomparedwithgerminatedosh1mutants. theosh1mutant,OSH1andOSH43weresignificantlyreducedatall Whenwetriedtoregenerateplantsfromosh1d6doublemutant stages, while expression of OSH6, OSH15, and OSH71 was callus,onlyleaf-likestructureswereformedandnoshootformation inducedaftergermination,asnormal.Therefore,expressionofall wasobservedateven3monthsaftertheinductionofregeneration fiveKNOXgenesislowinthematureembryoofosh1.Thisimplies (Figure 3H). Therefore, as is the case for SAM formation during that the mutant shoot meristem temporally undergoes a state in embryogenesis,OSH1andOSH15areredundantlyrequiredforde whichKNOXgenetranscriptsaccumulatetoverylowlevels. novoshootformationincallus.Previously,ithasbeenreportedthat Next,weperformedexpressionanalysisduringembryogene- Arabidopsisstmmutantscanberescuedtogrowuntilreproductive sis(Figure4B).AttheSAMformationstage,fourKNOXgenes developmentwhentheyweretreatedwithCK(Yanaietal.,2005). exceptOSH15wereexpressedatanormallevelind6mutants.In Because the medium for shoot regeneration contains a high osh1,asweobservedduringgermination,theexpressionlevelof concentrationofCK,itispossiblethatCKenabledtheregenerated OSH43wasseverelyreduced,andOSH6andOSH15showed osh1mutanttomaintaintheSAMintheabsenceofOSH1function. only slightly reduced expression, whereas OSH71 expression However,thefailureoftheosh1d6doublemutantcallustoform wascomparabletothatofthewildtype.Ontheotherhand,in shootsontheregenerationmediumindicatesthat,evenwithahigh osh1d6doublemutantembryos,theexpressionofallfiveKNOX concentrationofCK,thefunctionofKNOXgenesisessentialfor geneswasreducedtoone-thirdorlessofwild-typevalues.Insitu SAMformationand/ormaintenance. hybridizationalsoconfirmedthereductionofOSH6andOSH71 expressionintheosh1d6embryo(Figure4C).Thus,KNOXgene ReducedExpressionofKNOXGenesinosh1andosh1d6 transcriptsbarelyaccumulatedinosh1d6embryos,whichcould leadtothefailureoftheSAMestablishment. Thephenotypicobservationsofosh1mutantssuggestthatthe We further performed expression analysis during de novo contributionsofindividualriceKNOXgenestoSAMmaintenance shootformationfromcallus.Fromourpreviousstudies,wefound varies depending on timing and environmental conditions. To thatKNOXgeneexpressionwasinducedincallusbytreatment investigatethispossibility,weperformedexpressionanalysesof with CK (Ito et al., 2001). Consistent with this, CK treatment KNOXgenes.Duringgerminationofwild-typeplants,OSH1and inducedtheexpressionofOSH1,OSH6,OSH15,andOSH71in 4372 ThePlantCell Figure3. OSH1andOSH15AreRedundantlyRequiredforSAMFormationandMaintenanceduringdeNovoShootRegenerationfromCallus. (A)Regenerated(left)andgerminated(right)seedlingsofosh1.Whitearrowheadsindicatethepositionofeachleaf. (B)and(C)Sectionsofshootapicesoftheregeneratedwild-type(B)andosh1plants(C).ArrowheadsindicatetheSAM. (D)Paniclesofregeneratedplantsofthewildtype(wt)(left)andosh1(right). (E)and(F)Spikeletsformedonregeneratedplantsofthewildtype(E)andosh1(F).a,anther;p,pistil;asterisk,abnormalshortantherofosh1. (G)and(H)Regeneratingshootfromthewildtype(G)andosh1d6(H).Arrowsindicateleaf-likestructuresformedfromosh1d6callus. Bars=2cmin(A),50mmin(B)and(C),5cmin(D),and2mmin(E)to(H). wild-type callus, and OSH1, OSH6, and OSH71 were also using primer pairs designed at 1-kb intervals along the OSH1 inducedtowild-typelevelsind6callus.Inosh1mutantcallus, locus as indicated in Figure 5A. A ChIP assay followed by OSH6,OSH15,andOSH71werealsoinducedbyCK,although quantitativePCR(qPCR)revealedthatsequencesimmediately the expression level of OSH6 was lower than in the wild type upstreamofthetranscriptionstartsiteandinthe59halfofthe (Figure4D).ThesedatasuggestthatCKtreatmentbypassedthe thirdintronwerestronglyenrichedintheOSH1-boundchromatin stateoflowKNOXgeneexpressioninosh1shootapicesduring fragments.Inaddition,strongenrichmentwasobtainedinsev- de novo shoot formation and could explain the phenotype eralregionsoffourotherKNOXloci(Figures5Bto5E).Enrich- differencebetweengerminationandregeneration. mentintheselociwasalsofoundintheir59upstreamregionsand Intheosh1d6doublemutantcallus,notonlywasexpression thethirdintrons.TheseresultsindicatethatOSH1bindstoallfive ofOSH1,OSH6,andOSH43reducedbutalsothatofOSH15and KNOXlociinvivointheinflorescencemeristem. OSH71,evenafterCKtreatment(Figure4D).Thus,inductionof ToexamineifOSH1directlybindstoKNOXlociinvegetative KNOXgenesbyCKwasimpaired,whichmayberesponsiblefor shoot meristems, we tested the enrichment in ChIP samples of thefailureofdenovoshootformationfromcallusintheosh1d6 vegetativetissuesat1DAG.Inallhighlyenrichedregionsobserved doublemutant. inyoungpanicles,amodestenrichmentwasalsodetectedwhen weusedwild-typeshootapexasthesamplebutnotinthecaseof OSH1DirectlyBindstoFiveKNOXLocithrough osh1 shoot apex and young leaves (Figure 5F). These results EvolutionarilyConservedcis-Elements confirmedthespecificityofourChIPassayandthatOSH1bindsto KNOXlociinvivoinallOSH1-expressingtissuesexamined. Our observation that expression of the other KNOX genes, OSH6, OSH43, and OSH71, was dependent on functional OSH1BindingSitesAreEvolutionarilyConserved OSH1andOSH15inadditiontoCKsuggestedthatKNOXgenes mightbepositivelyautoregulated.Consistentwiththishypoth- Previously, it has been shown that KNOX proteins directly esis, we observed increased expression of KNOX genes in activate the expression of GA2ox1 through evolutionarily con- leaves of the 35S:OSH1 transgenic plants (see Supplemental servedTGACcoresequences(BolducandHake,2009).There- Figure 2 online). To examine whether or not this regulation is fore,weconsideredthatifdirectbindingofOSH1isimportantfor mediatedbyKNOXproteinsinadirectmanner,weperformed transcriptionalregulationofKNOXgenes,theTGACsequences chromatin immunoprecipitation (ChIP) assays using an anti- should be conserved. To this end, we performed sequence OSH1antibodythatspecificallyrecognizesOSH1.Usingyoung comparisonanalysisbetweenriceKNOXgenesandtheirputa- panicles in which OSH1 expression is broad and strong, we tiveorthologsinPoaceaeandsearchedforTGACsequencesin tested the enrichment of OSH1-bound DNA in ChIP samples conserved regions. We found conserved TGAC sequences in PositiveAutoregulationofaKNOXGene 4373 Figure4. ExpressionLevelsofKNOXGenesWereReducedinoshMutants. (A)ExpressionofKNOXgenesingerminatingembryos.Relativeexpressionlevelwascalculatedastheratiototheexpressionlevelat2DAGinthewild type(wt)foreachgene. (B)ExpressionofKNOXgenesintheSAMformationstageoftheembryoat5DAP.Relativeexpressionlevelwascalculatedastheratiotothe expressionlevelinthewildtypeforeachgene. (C)InsituhybridizationofOSH6andOSH71inwild-typeandosh1d6embryosataroundthestageofSAMformation.Bars=100mm. (D)ExpressionofKNOXgenesincallusbeforeand1weekafterCKtreatment.Relativeexpressionlevelwascalculatedastheratiototheexpression levelbeforeCKtreatmentinthewildtypeforeachgene. In (A) to (C), the expression level of ubiquitin (ubq) was used as an internal control for normalization. The data represent the average of three independentbiologicalreplicates.ErrorbarsrepresenttheSD.AsterisksindicatesignificantreductionatP<0.05comparedwiththeexpressionlevelin thewildtype. eachKNOXgenelocus(magentabarsinFigure5;seeSupple- TheseresultsindicatethatOSH1directlybindstothefiveKNOX mentalFigure3online).TheOSH1locushadasingleconserved genes we examined, including OSH1 itself, via evolutionarily sequenceinthepromoterregionandseveninthe59halfofthe conserved cis-elements and suggest that transcriptional regu- third intron. To test whether OSH1 directly binds to these cis- lationofKNOXgenesthroughthesecis-elementshasanimpor- elements, we performed electrophoretic mobility shift assays tantfunction. (EMSAs)usingarecombinantproteinoftheOSH1HDfusedto glutathioneS-transferase(GST;Figure6).Inthecaseofbinding PositiveAutoregulationofOSH1IsEssentialforIts site1 (BS-1) in the promoter region of OSH1, GST-OSH1HD ExpressionandSAMMaintenance boundtowild-typeprobesbuthardlyboundtomutantprobes.In thecompetitionassays,wild-typeBS-1coldDNAcompetedwith Our results presented so far reveal the presence of positive radiolabeledBS-1probeforGST-OSH1HDbinding,butmutant autoregulationof OSH1. Toinvestigatetheimportance ofthe BS-1fragmentsdidnot,confirmingthatGST-OSH1HDspecif- autoregulationfortranscriptionalregulationofOSH1,weper- ically binds to BS-1. Similarly, GST-OSH1HD also specifically formedareporterassay.Among28transgenicplantscarryinga bound to the other seven BS sequences in the third intron of reportergene,GFP-OSH1,inwhichgreenfluorescentprotein OSH1.Thus,theseresultsindicatethatOSH1directlybindsto was inserted into the N terminus of an OSH1 genomic DNA theseeightsequencesinvitro. fragment, 22 lines showed GFP fluorescence in the shoot Several conserved TGAC sequences were also found in the meristem,afindingthatisinagreementwiththeendogenous otherKNOXloci(seeSupplementalFigure3online).AsinOSH1, OSH1expressionpatternpreviouslyreported(Figures7Aand theywerepreferentiallylocatedin59upstreamregionsandthe 7B; Sentoku et al., 1999). Whereas no clear difference was third intron. Importantly, the distribution of these cis-elements observedwhenanOSH1bindingsitelocatedinthepromoter coincided with that of highly enriched regions in ChIP assays. regionalonewasmutated(seeSupplementalFigure4online), 4374 ThePlantCell Figure5. OSH1ProteinBindstoFiveKNOXLociinVivo. ChIPassayusinganti-OSH1antibodyfollowedbyqPCRanalysisoftheOSH1(A),OSH6(B),OSH15(C),OSH43(D),andOSH71(E)locus.Gene structuresareindicatedbelowthegraphs.PrimersusedinqPCRwerenamedaftertheirpositionrelativetothetranscriptionstartsiteofeachgeneand areshownasblackbarsonthegenestructures.MagentabarsaboveandbelowthegenestructurerepresentconservedTGACsequencesintheplus andminusstrands,respectively.ThepercentageofenrichmentrepresentstheamountofimmunoprecipitatedDNArelativetoinputDNA.Eachdata pointistheaverageofthreeindependentbiologicalreplicates.ErrorbarsrepresenttheSD. (A)to(E)ChIPassayfrom5-mmyoungpaniclesofthewildtype.Foranegativecontrol,controlrabbitIgGwasused. (F)ChIPassayfromvegetativetissues.Foranegativecontrol,osh1shootapexandwild-type(wt)youngleafprimordiawereused. PositiveAutoregulationofaKNOXGene 4375 Figure6. OSH1DirectlyBindstoConservedcis-ElementsontheOSH1LocusinVitro. (A)OSH1bindingsites(BS)ontheOSH1locus.Graylinesindicateintronsandthe59and39regions.Boxesindicateexons.Asterisksaboveandbelow thegenestructurerepresenteachBS,whichcontainsaconservedTGACsequence,intheplusandminusstrands,respectively. (B)EMSAusingGST-OSH1HD.Formutantprobes(m1-m8),evolutionarilyconservedTGACsequencesweresubstitutedwithTCTC.Arrowheadsrepresent thepositionsofshiftedprobes.GSTalonewasusedasnegativecontrol,and“comp.”representsthecompetitionassayusingwild-type(WT)coldprobes. noneof26independenttransgeniclinesshowedGFPfluores- double mutant callus. We observed the recovery of de novo cence, and the reporter gene expression was almost com- shootformationfromosh1d6doublemutantcallusbythewild- pletely abolished when all OSH1 binding sites were mutated typeGFP-OSH1gene(sevenoutof58independenttransgenic (GFP-mOSH1;Figures7Aand7C).Theseresultsindicatethat osh1 d6 calli; Figure 7D) but not by GFP-mOSH1 (none of 53 the positive autoregulation of OSH1 through evolutionarily independent transgenic osh1d6 calli; Figure 7E). The osh1d6 conserved OSH1 binding sites is essential for its proper ex- plantsrescuedbywild-typeGFP-OSH1wereabletogrowuntil pression. the reproductive phase (Figure 7F). Thus, it was revealed that Finally, we examined the biological importance of this auto- direct positive autoregulation of OSH1 was essential for SAM regulation by rescue experiments using transgenic osh1 d6 formationand/ormaintenance. 4376 ThePlantCell Figure7. PositiveAutoregulationofOSH1IsEssentialforItsExpressionandSAMMaintenance. (A)Reportergenestructures.Graylinesindicateintronsand59and39regions.WhiteandgreenboxesindicateexonsandGFP,respectively.Inthecase ofGFP-mOSH1,OSH1bindingsequencesweresubstitutedfromTGACtoTCTC. (B)GFP-OSH1expressionintheshootapex. (C)GFP-mOSH1expressionintheshootapex. (D)Regeneratingshootsfromosh1d6calluscarryingGFP-OSH1onregenerationmedium. (E)osh1d6calluscarryingGFP-mOSH1onregenerationmedium.Forregeneration,transgenicosh1d6calliwereculturedonregenerationmediumfor4to5weeks. (F)Arescuedosh1d6plantcarryingGFP-OSH1grewuntilthereproductivephase. (G)d6andwild-type(wt)plantsduringthereproductivephase. Bars=100mmin(B)and(C),5mmin(D)and(E),and10cmin(F)and(G). DISCUSSION is essential for its own expression and also for SAM mainte- nance.Weproposethatmaintenanceoftheindeterminatestate Here,weshowthatOSH1playsanindispensableroleincoop- mediatedbypositiveautoregulationofaKNOXgeneisamech- erationwithitsparalog,OSH15,intheestablishmentandmain- anismforself-maintenanceoftheSAMthatensurestheunique tenance of the SAM. Expression of KNOX genes is positively bodyplanoffloweringplants(Figure8). regulated by the phytohormone CK and directly regulated by Regulation of cell population size and maintenance of an OSH1 through evolutionarily conserved cis-elements. Further- indeterminate state are fundamental aspects of SAM function. more,wedemonstratethatthepositiveautoregulationofOSH1 ContinuouscelldivisionofstemcellsatthecenteroftheSAM PositiveAutoregulationofaKNOXGene 4377 andtheirdaughtercellsinsurroundingregionsreplenishesthe KNOXgenefamilyhaveredundantfunctionsinSAMmaintenance; cellpopulation.Ontheotherhand,lateralorganinitiationfrom hence,itisplausiblethatnotonlyOSH1butalsoothermembersof theflankoftheSAMconsumesthiscellpopulation.Studiesin theKNOXproteinfamilyparticipateinthisautoregulation. Arabidopsishaveshownthatafeedbackloopbetweenamem- InArabidopsis,strongstmallelescompletelyfailtoestablish ber of another class of homeobox genes, WUSCHEL, and the the SAMduringembryogenesis.Bycontrast,weak stmalleles CLAVATA genes, which encode components of a signaling haveasmallerSAMthanthewildtypebutcontinueorganogen- pathway,isessentialforhomeostasisofthestemcellpopulation esisuntilreproductivedevelopment(Clarketal.,1996;Endrizzi (Schoofetal.,2000).Thisregulatoryfeedbackloopmaintainsthe et al., 1996). Mutations in other members of the KNOX gene sizeofthestemcellpopulationandhasuntilnowbeentheonly family, such as KNAT1/BP and KNAT6, enhance the weak describedmechanismforself-regulationintheSAM. phenotype of stm-2, although stm-2 knat6-1 shows additional In our model, the stem cell population provides a source of abnormalitiesincotyledonseparation(Byrneetal.,2002;Belles- cellsforlateralorganinitiation.AllcellsintheSAMaccumulate Boixetal.,2006).Thus,membersofArabidopsisclassIKNOX KNOX proteins to maintain their indeterminate state (Jackson genes also have redundant functions in the SAM. It is an et al., 1994; Sentoku et al., 1999), and KNOX proteins bind intriguingquestiontoaskwhetherKNOXgenesarealsoautor- directlytoevolutionarilyconservedcis-elementsonKNOXlocito egulated in dicots. Given the conserved functions and similar activate and/or maintain their expression. This autoregulation expression patterns of KNOX genes between monocots and mayproviderobustnesstomaintainindeterminacyoftheSAM,in dicots,itispossiblethattheautoregulationisalsoconserved. whichacomplexnetworkoftranscriptionfactorsandphytohor- Previously, rice class I KNOX genes have been categorized mones balances stem cell activity and organogenesis (Zhao into twogroups based on theirexpression pattern in the SAM etal.,2010).Atadefinedlocationinthemeristem,thisautoreg- (Sentokuetal.,1999).OSH1andOSH43areinthefirstgroup, ulationisdiminishedandKNOXgenesaredownregulated. andtheyareexpressedintheentireSAMexcepttheepidermal In our observations, mutations in both OSH15 and OSH1 layer.Ontheotherhand,expressionofasecondgroupgenes, caused a severe reduction in the expression of other KNOX OSH6,OSH15,andOSH71,islocalizedtothebaseoftheSAM genes and resulted in the failure of SAM establishment, which andboundariesbetweentheSAMandincipientleafprimordia. was not the case for each single mutant. Members of KNOX Interestingly, we found that their expression profiles during genesareexpressedinoverlappingregionsintheshootmeri- germinationalsosplitintothesetwogroups(Figure4A).Genes stems (Jackson et al., 1994; Sentoku et al., 1999), and over- in the first group are expressed constantly before and after expressorsofeachmembershowsimilarphenotypestothoseof germination. By contrast, the second group genes are greatly OSH1 and OSH15 (Ito et al., 2001). In addition, it has been upregulated after germination. Therefore, these two KNOX reported that not only KN1, but also other members of KNOX groups might also be under the control of different regulatory protein, such as Gnarley1 and Liguleless3, directly bind to cis- mechanisms,althoughbotharepositivelyregulatedbyOSH1. elements in the intron of GA2ox1 in maize (Bolduc and Hake, SevenOSH1bindingsitesidentifiedinthisstudyarelocatedin 2009). Considering these facts, it is likely that members of the the59halfofthethirdintronofOSH1.Thisregionalsocontainsa clusterofsequencesthatarehighlyconservedbetweenriceand maize (Inada et al., 2003). These conserved noncoding se- quences (CNSs) are considered to have an important function intherepressionofKNOXgeneexpressionbecausetransposon insertionsanda305-bptandemduplicationintheseCNSscause ectopic expression of KNOX genes in maize and barley (Hordeum vulgare), respectively (Greene et al., 1994; Mu¨ller et al., 1995). Our data reveal that these CNSs also contain important cis-elements for positive autoregulation of OSH1. Whetherornottherearecausalconnectionsbetweenthemu- tationsandKNOXautoregulation,thesefactsindicatethatthis clusterofCNSscontainsbothenhancerandsilencerelements. In addition, there might be many unidentified cis-elements in theseCNSs;therefore,moredetailedcis-elementanalysesare necessarytounderstandfullythemechanismsinvolvedintran- scriptionalregulationofKNOXgenes. Sofar,ithasbeendebatedwhetherornotCKactsupstreamof KNOX genes. In Arabidopsis, CK treatment enhances the ex- pressionoftheProKNAT2:b-glucuronidasereporterintheSAM Figure8. TheModelofaKNOXAutoregulatoryLoopforSAMMainte- (Hamant et al., 2002). By contrast, the induction of the CK nance. biosyntheticgeneIPTinArabidopsisleavesoryoungseedlings does not increase the expression of KNOX genes (Craft et al., Inthismodel,OSH1expressionispositivelyregulatedviaautoregulation. OSH1proteindirectlyandpositivelyregulatesitsownexpressionand 2005). In this study, we observed a clear induction of KNOX otherKNOXgenesintheSAM.KNOXgenesandCKmutuallyactivate genesbyCKduringshootregenerationfromcallus.Thisresult eachother,creatinganotherpositiveautoregulatoryloop. stronglysuggeststhatKNOXgenesarepositivelyregulatedby
Description: