remote sensing Article Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data WeiTu1,2,3 ID,ZhongwenHu2,4,*,LefeiLi5,JinzhouCao5 ID,JinchengJiang1,2,QiupingLi6 andQingquanLi2,5 1 ShenzhenKeyLaboratoryofSpatialInformationSmartSensingandServices&ResearchInstitutefor SmartCities,SchoolofArchitectureandUrbanPlanning,ShenzhenUniversity,Shenzhen518060,China; [email protected](W.T.);[email protected](J.J.) 2 KeyLaboratoryforGeo-EnvironmentalMonitoringofCoastalZoneoftheNationalAdministrationof Surveying,MappingandGeoinformation,ShenzhenUniversity,Shenzhen518060,China;[email protected] 3 KeyLaboratoryofUrbanLandResourcesMonitoringandSimulation,MinistryofLandandResources, Shenzhen518034,China 4 CollegeofLifeScienceandOceanography,ShenzhenUniversity,Shenzhen518060,China 5 StateKeyLaboratoryofInformationEngineeringinSurveying,Mapping,andRemoteSensing, WuhanUniversity,Wuhan430079,China;[email protected](L.L.);[email protected](J.C.) 6 CenterofIntegratedGeographicInformationAnalysis,SchoolofGeographyandPlanning, SunYat-senUniversity,Guangzhou510275,China;[email protected] * Correspondence:[email protected];Tel.:+86-755-2674-1693 Received:15December2017;Accepted:16January2018;Published:18January2018 Abstract: Portrayingurbanfunctionalzonesprovidesusefulinsightsintounderstandingcomplex urbansystemsandestablishingrationalurbanplanning. Althoughseveralstudieshaveconfirmed theefficacyofremotesensingimageryinurbanstudies,couplingremotesensingandnewhuman sensing data like mobile phone positioning data to identify urban functional zones has still not beeninvestigated. Inthisstudy,anewframeworkintegratingremotesensingimageryandmobile phonepositioningdatawasdevelopedtoanalyzeurbanfunctionalzoneswithlandscapeandhuman activitymetrics.Landscapesmetricswerecalculatedbasedonlandcoverfromremotesensingimages. Humanactivitieswereextractedfrommassivemobilephonepositioningdata. Byintegratingthem, urbanfunctionalzones(urbancenter,sub-center,suburbs,urbanbuffer,transitregionandecological area)wereidentifiedbyahierarchicalclustering. Finally,gradientanalysisinthreetypicaltransects wasconductedtoinvestigatethepatternoflandscapesandhumanactivities.TakingShenzhen,China, asanexample,theconductedexperimentshowsthatthepatternoflandscapesandhumanactivities intheurbanfunctionalzonesinShenzhendoesnottotallyconformtotheclassicalurbantheories. Itdemonstratesthatthefusionofremotesensingimageryandhumansensingdatacancharacterize thecomplexurbanspatialstructureinShenzhenwell. Urbanfunctionalzoneshavethepotentialto actasbridgesbetweentheurbanstructure,humanactivityandurbanplanningpolicy,providing scientificsupportforrationalurbanplanningandsustainableurbandevelopmentpolicymaking. Keywords: urbanfunctions;humanactivity;datafusion;mobilephone;SPOT-5;Shenzhen 1. Introduction Citiesarehumansettlementswherepeopleengageindifferentactivitiesandinteractwiththe man-madespaceandnaturalenvironment. Globalurbanareaoccupieslessthan2%oftheEarth’sland surface,butconsistsofmorethan50percentoftheworld’spopulation[1]. InChina,theurbanization rate has increased from 26.4 percent in the year 1992 to 57.4 percent in 2016 as 400 million people havemitigatedtocities[2]. Fromaglobalview,itisestimatedthattotalurbanpopulationwillrise RemoteSens.2018,10,141;doi:10.3390/rs10010141 www.mdpi.com/journal/remotesensing RemoteSens.2018,10,141 2of20 to five billion in the year 2030. This transition has enormous economic, social and environmental consequences[3,4]. Targetingtheaimofsustainablecities,remotesensinghasbeenwidelyusedto monitorthespatialstructure,economyandenvironmentofcities[5–10]. Manystudieshavebeenconductedonurbanmorphologytoportrayurbanspatialstructure[11–15]. Severalsignificanttheorieshavebeendeveloped,suchastheconcentriczonetheory,thesectortheory, themultiplenucleitheoryandthepolycentrictheory.Theseadvancedtheoriescapturetheurbanization processandbenefitassociatedlandmanagementandurbanplanning.Onestandofurbanmorphology studyistoinvestigatethefunctionprovidedbyurbanspace.Urbanfunctionalzoneisamixtureofurban functionsandcharacterizedbytheroleofurbanspaceinthewholecity,likeurbancenter,sub-center, suburbs,ecologicalarea,etc.[16,17].Theidentificationofurbanfunctionalzonesprovidesusefulinsights forurbanplannerstocapturetheurbangrowthandmakesustainabledevelopmentpolicy. Urbanfunctionalzoneanalysistraditionallyreliesonlanduseandlandcover(LULC),which can be acquired by labor- and cost-intensive land survey. Remote sensing is another fast and efficientapproachtocapturelandcoverandlandusedatatofacilitaterelatedstudies. Forexample, AubrechtandLeónTorres[15]classifiedmixedorresidentialareasfromnighttimelight(NTL)images. YangandLo[18]usedtimeseriesLandsatTMimagestoextractlanduse/coverchangedataofthe Atlanta,Georgia,metropolitanareaintheUnitedStates. Thelandscapegradientfromtheurbancenter totheruralareahasbeenobservedtoillustrateurbangrowth[19–25]. Usingseverallandscapemetrics, Linetal.[17]extractedlandusefromPleiadesimagestoinvestigatetheurbanfunctionallandscape patterninXiamen,China. YuandNg[24]classifiedlandusefromLandsatTMimagesandperformed gradientanalysistoanalyzespatialandtemporalurbansprawldynamicsinthiscity. Thesestudies focusonthespatialfeaturesinthecity,butignoretheeffectofhumanactivity. However,inthehighly urbanizedcitiesinAsia,suchasSingapore,HongKong,BeijingandShenzhen,mostlandparcelsare coveredbyman-madeinfrastructuresthatareamixbetweenresidential,businessesandworkfunction. Suchcomplexurbanenvironmentsraiseagreatchallengeinunderstandingurbanstructureusingonly remotesensingimagery. Acityisacomplexsystemthatincludeshumanbeingsandthenaturalenvironment. Human activityhasasignificantimpactonurbanmorphologybecauseoftheinteractionofurbanspaceand humanbeings. Humanbeingsareun-ignorablecomponentsofthecity. Soarethehumanisticaspects involved[4,26–29]. However,humanactivitieshavenotbeenwellintegratedwithremotesensing,due tothelackofmassivehumanactivitiesdata. Ubiquitouslocationawarenesstechnologiessuchasthe GlobalNavigationSatelliteSystem(GNSS),mobilephonepositioningandWi-Fipositioningallow humanstoactassensorstoperceivethesurroundingenvironment[30,31]. Massivehumansensing dataareavailable,suchasvehicleGPSdata[32–34],mobilephonerecords[35–40]andsocialmedia data [41–44]. These large-volume human sensing data record the time and the position of people; therefore,theyprovidemuchusefulinformationabouthumanactivitiesinthecity[35,39]. Human sensing data provide us with unprecedented opportunities to reveal human activity distributionandtheimpliedurbanfunction.Theyenableustoimagethecityinalternativeapproaches. Ratti et al. [35] mapped the cell phone usage at different times of the day. Their results provided a graphic representation of city-wide human activities and the evolution through space and time. Considering the relationship between human activities and land use, Pei et al. [37] developed a clustering approach to classify land use with time series aggregated mobile phone data. Using NTLimagesastheproxyofhumanactivity,Chenetal.[36]identifiedtheurbancenterorsub-center and the surface slope to indicate the urban land use intensity gradient by considering human activities implicitly. Recently, Cai et al. [44] fused NTL images and social media check-in data to identifythepolycentricstructureinmegacities,includingBeijing,ChongqingandShanghai,China. Thesepioneeringstudiessupportthepotentialofhumansensingdatainurbanstudies. However, human sensing data have still not been integrated with remote sensing imagery to portray urban functionalzones[45]. RemoteSens.2018,10,141 3of20 In this study, we present a novel data fusion framework integrating remote sensing imagery and the highly penetrating mobile phone positioning data to analyze urban functional zones comprehensively.LandscapemetricswerecalculatedbasedonlandcoverfromSPOT5images.Human activitiesdatawereextractedfrommobilephonepositioningdata. Bycouplingthemwithurbancells, urbanfunctionalzoneswereidentifiedusinghierarchicalclustering. Gradientanalysis[17–20,46]in threetypicaltransectswasappliedtoportraythelandscapeandhumanactivitypatternfromurban centertourbanborder. AnexperimentinShenzhen,China,wasconductedtovalidatetheproposed framework. Theresultswereexploredtoaddressthefollowingquestions: (1)Whatarethegeneral patternsoflandscapesindifferenturbanfunctionzones(takingShenzhenasacase)? (2)Whatare thegeneralpatternsofhumanactivityindifferenturbanfunctionzones(takingShenzhenasacase)? (3)Whatisthecompositeeffectofremotesensingimageryandhumansensingdatainportraying urbanfunctionalzones? Theanswerstothesequestionswilldemonstratethespatialdynamicsofboth landscapeandhumanactivityinthecity. Theydeepentheunderstandingofthecitygrowthandhelp urbanplannersmakesustainabledevelopmentpolicies. 2. StudyAreaandDataset 2.1. StudyArea Shenzhen is a coastal city in the south of China, located at the east of the Pearl River Delta, withanareaof1996km2 (Figure1). AsthefirstSpecialEconomicZone(SEC)ofChina,Shenzhen has experienced rapid urbanization since 1983 [47]. Shenzhen has expanded from a small village with 0.6 million people to a megacity with a population of 16 million in 2015 [48]. It consists of 10administrativedistricts,withtheurbancenter(includingFutianandLuohu)insouthernShenzhen, whereShenzhencitybegan. Inrecentyears,theurbanizedareaofShenzhengraduallyexpandedfrom theurbancentertothewest(NanshanandBaoan),thenorth(LonghuaandGuangming)andtheeast (Yantian,Longgang,PingshanandDapeng). Figure1.ThestudyareainChina. 2.2. Dataset 2.2.1. RemoteSensingImages ThemultispectralandthepanchromaticSPOT-5imagescollectedon30November2013wereused tomapthelandcoversofShenzheninthisstudy. Thesemultispectralimagesandthepanchromatic imageswerefusedusingapansharpeningmethodembeddedinPCIGeomaticaandthenmosaicked using the ENVI software. The obtained image has 37,368 × 19,440 pixels, 4 spectral channels and RemoteSens.2018,10,141 4of20 2.5 m/pixel. The final images were obtained by cropping the mosaicked image using the vector coveringShenzhencityasshowninFigure2. ItimpliesthatmostofShenzheniscoveredbybuilt-up areasandgreenland. Mostofthebuilt-upareasareaggregatedatthesouth,west,northandincentral Shenzhen. East Shenzhen, which is reserved as a natural park, has many forests, mountains and beaches. WeusedtheseremotesensingimagestoextractlandcoverinShenzhen. Figure2.TheSPOT-5images. 2.2.2. MobilePhonePositioningData Themobilephonepositioningdatausedwereprovidedbyadominantmobilecommunication companyinShenzhen.Theywererecordedbythe5349celltowersofthiscompany,coveringthewhole city. Thisdatasetcontainstimeseriespositionsof9.2millionmobilephoneusersduringoneworkday inMarch2012. Thepositionsofmobilephoneuserswererecordedatahalf-hourinterval;thus,there are48recordsforeachuseriftheuser’smobilephonedoesnotturnoff. Forauser,eachpositioning record has four fields, including a user ID (i), a time stamp (t), longitude (x ) and latitude (y ). it it Thespatialresolutionoflocationisrestrictedatthecelltowerlevel,whichisapproximately100–500m. Intotal,thereare245millionrecordsinthisdataset. Figure3displaysthespatialdistributionofcell towersandmobilephonepositioningdata. Itdemonstratesthatmanycelltowersaredistributedin theurbanizedarea. AfewcelltowersarelocatedintheforestalongroadsineastShenzhen. Italso indicatesthatmoremobilephonepositioningdataareaggregatedattheurbancenterinthesouth, butlessinthenorth,whichimpliesthedifferenceofhumanactivityintensity. Usingthisusefuldata, dailyhumanactivities(in-home,workingandsocialactivity)ofmobilephoneuserswereextractedto portrayurbanfunctionzoneswithlandcoverdatafromremotesensingimagery. Itshouldbenoted herethathumanactivitiesarehaveregularity;therefore,itisreasonabletofusetheseone-daymobile phonepositioningdatawithremotesensingimagery. Figure3. Spatialdistributionofmobilephonepositioningdata: (a)5349celltowersinShenzhen; (b)245millionmobilephonepositioningrecords. RemoteSens.2018,10,141 5of20 3. Methodology Adatafusionframeworkcouplingremotesensingimageryandhumansensingdataispresented to portray urban functional zones. The workflow is illustrated in Figure 4. Urban landscapes are extracted from remote sensing imagery; city-wide human activities are recognized from massive mobilephonepositioningdata. Couplinglandscapesandhumanactivitymetricsintheurbancell, a hierarchal clustering method is used to identify urban functional zones. Finally, the pattern of landscapesandhumanactivitiesindifferenturbanfunctionalzonesandtypicaltransectsisanalyzed. Figure4.Theworkflowofthepresentedframework. 3.1. Landscapes 3.1.1. ImageSegmentation Anobject-basedimageanalysis(OBIA)approachwasusedtoquantifythelandscapesfromSPOT 5images. TheOBIAapproachisusuallyusedforclassifyinghighspatialresolutionremotesensing images,becauseofthehighaccuracybyemployingspectral,textural,spatialandcontextualfeatures. Inthisapproach,theSPOT-5imagewasfirstpartitionedintonon-overlappingregions,whichwere usedasbasicunitsforclassification,insteadofindividualpixels. Manyimagesegmentationmethods couldbeusedforthistask,suchaswatershedtransformation[49]andthegraph-basedmethod[50]. However,themostpopularmethodusedinremotesensingapplicationsisthemulti-resolution/scale imagesegmentationmethod[51],becauseitcanproducemulti-resolutionandhigh-qualityresults. Inthisstudy,theregionmerging-basedmulti-scaleimagesegmentationmethodwasused[52],and the multi-scale regions were recorded using the bi-level scale-sets model (BSM) [53]. The BSM recordsthehierarchicalregionsusingascale-indexedtreestructureandisveryefficienttoretrievethe segmentationresultsofdifferentscalesandtoestimateanoptimalscaleparameter. IntheimplementationoftheBSM,thecriterionproposedbyBaatzandSchäpe[54]wasused, whichwasthemostwidely-usedcriterioninmulti-resolutionimagesegmentation. Therearetwokey parametersthatcontrolthequalityofthesegmentationresults: theweightofcolorfeaturesw and color theweightofcompactnessw . Ahighw willresultinasegmentationresultwithhighspectral compt color homogeneity, however, with irregular shapes. A high w will make the regions more compact. compt Fromanumberofexperiments,twoempiricalparametersw =0.3,w =0.5wereset. color compt AnotherkeyparameterforanOBIAapproachisthescaleparameteraforthemulti-scaleimage segmentation. IntheBSMwork,segmentationresultsofdifferentscalescouldberetrievedefficiently, andtheoptimalonecouldbechosenusingsomeunsupervisedmethods,suchastheestimationofscale parameter(ESP)method[55],theglobalscore(GS)method[56]andtheoverallgoodnessF-measure (OGF)[57]. Inthisstudy,differentsegmentationresultsfromtheminimumscaletothemaximum scalewereretrieved,withanintervalof1. Then,theOGFmethodwasusedtoestimatetheoptimal scaleparameter,whichwasusedtocontrolthefinenessofthefinalresult. Alargerawillresultin a finer result. To avoid the irreparable negative impact of under-segmentation from a number of RemoteSens.2018,10,141 6of20 experiments, weusedalargeparametera=3, wherethefinalresultwasslightlyover-segmented. Then,thissegmentationresultwasusedforfeatureextractionandclassification. 3.1.2. Object-BasedImageClassification Theclassificationisusedtoenrichthelandcoverinformationforsegmentedobjects. Landcover isrecognizedwithasupervisedclassificationmethod. Foreverysegmentedobject,spectral,shapeand texturalfeaturesareextractedfortheclassification. The minimum, maximum, mean value, the standard deviation of the original four spectral channelsandthemeanofnormalizeddifferencevegetationindex(NDVI)wereusedasthespectral features. Theareaindexandtheperimetershapeindex[58]wereusedastheshapefeature. Sincethe focusofthisstudyistoanalyzethestructureofthecity,aspecifictextureindexnamedPANTEX[59] wasused.ThePANTEXprocedureemploysgrey-levelco-occurrencematrix(GLCM)contrastmeasures tocalculatearotation-invariantisotropictextureindex.Itissensitivetodenseresidentialbuildings[60]. Thus,itisusuallyusedtoextractbuilt-upareasfromhighspatialresolutionremotesensingimages inahigh-densitycitylikeShenzhen. Inthisstudy,themaximum,minimumandmeanvalueofthe PANTEXindexofeachsegmentwereusedasthetexturefeatures. Basedonthesefeatures,allthe segmentedobjectswereclassifiedusingthesupport-vector-machine(SVM)classifier[61]. Sixhundred andtwenty-nineobjectsdistributedaroundthecitywereselectedasthesamplestotraintheSVM classifier,andthentheclassifierwasappliedtolabeltheclassforeachsegmentedobject. Finally,all segmentedobjectswereclassifiedintofivetypelandcovers,includingbuilt-uparea,road,greenland, wateranddevelopingareas. Taking600samplesrandomlydistributedinthecity,theaccuracyofland coverwasevaluated. Ourresultsindicatethatthelandcoverresultsachievedanoverallaccuracy 95.33%andaKappacoefficient0.9433. Figure5displaystheobtainedlandcovermap. Itsuggested thatShenzhenhasbeenhighlyurbanizedasmanyareasarecoveredbybuilt-upareaorgreenland. Figure5.LandcoverfromSPOT-5images. 3.1.3. LandscapeMetrics Landscape metrics quantify the specific spatial characteristics of LULC. A suite of landscape metrics has been developed for landscape analysis, such as class area (CA), patch density (PD), thenumberofpatches(NP),patchshapeindex(PSI)andShannon’sdiversityindex(SHDI)[61–63]. Table1liststhelandscapemetricsusedinthisstudy. Theclass-levelmetricscontaintotalclassarea (CA)andthepatchdensity(PD).Thelandscape-levelmetricsincludeNPandSHDI.Thisiscalculated byEquation(1): ∑m SHDI = − p ln(p ), (1) i=1 i i wherep istheproportionofthelandscapeoccupiedbypatchtypesiandmisthenumberoftypes. i RemoteSens.2018,10,141 7of20 Table1.Spatiallandscapemetricsselectedinthisstudy. Name Description Totalclassarea(CA) Totalareaofoneclasslandscape Patchdensity(PD) Patchcountpersquarekmofoneclasslandscape Numberofpatches(NP) Totalnumberofpatches Equalsminusthesum,acrossallpatchtypes,oftheproportional Shannon’sdiversityindex(SHDI) abundanceofeachpatchtypemultipliedbythatproportion ThevectordataofthelandscapeswereconvertedtoarasterformatatapixelsizeusingArcGIS 10.2. Landscapemetricswerethencalculatedattheclassandlandscapelevelsusingtherasterversion oftheFRAGSTATSprogram(Version4.2)[64]. 3.2. HumanActivity 3.2.1. ActivityDetection Therawmobilephonepositioningdatalackactivitysemanticinformationsuchas“in-home”, “working” or “social activity”. Because of the natural rhythm of human beings, human activities displayregularityinbothspaceandtime[65]. Therefore,itisreasonabletorecognizehumanactivities fromsequentialmobilephonepositioningdata. Itshouldbenotedherethatdailyhumanactivities refertoin-home,workingandsocialactivity(i.e.,shopping,education,sports,etc.) thattakemore thanonehour. City-widedailyhumanactivitieswereextractedfrommassivemobilephonepositioningdata. Potential human activities without type information were first detected. A user’s mobile phone recordsweresortedbytimeandconnectedasaspatial-temporaltrajectory(Figure6a). Then,iftwo consecutive records are at the same location, in other words, the user does not move, a potential activityisidentified,suchasp –p ,p –p ,p –p inFigure6b;suchthat,thetrajectorywassplitinto 1 2 5 6 7 8 twotypesofsegments: theverticalsegmentsrepresentinghumanactivitiesatfixedplacesandthe slopesegmentsindicatingamovebetweenplaces. Figure6.Humanactivitydetectionfrommobilephonerecords.(a)Thetrajectoryofamobilephone user;(b)trajectorysegmentation. Verticalsegmentsdenotehumanactivitiesatfixedplaces. Slope segmentsdenotemovesbetweenplaces. Itshouldbenotedthatthepositioningjumpbetweenneighbortowersexistsbecauseofsignal noises,i.e.,thepointp . Toovercomethisissue,followingTuetal.[39],adistancethresholddwas 3 usedtofilterfalsemoves: ifthedistancefromapointtothenextpointislessthand,themovecan beomitted,andthispointcanbemergedintocurrentpointsofapotentialactivity. Consideringthe RemoteSens.2018,10,141 8of20 positioningerrorofmobilephonesensingdata,wesetdto500m. Afterprocessingallmobilephone positioningdatapersonbyperson,city-widehumanactivitieswithouttypeinformationwereobtained. 3.2.2. Rule-BasedActivityLabeling Dailyhumanactivitieshaveanaturalregularitybecauseoftherhythmofhumanbeings[60]. Regardingmobilephonepositioningdata,thespatial-temporalcharacteristicsoftrajectoryindicate the information about the home and workplace of a user [38]. Considering the diurnal rhythm of humanbeings[33],thepotentialhumanactivitieswerelabeledwith“in-home”,“working”and“social activity”accordingtotimewindows. Thetimewindowforin-homeactivitywassetas[0:00,6:00], while the time window for working activity was set as [9:00, 17:00]. The semantic information of potentialhumanactivitieswasenrichedasfollows: • In-homeactivitylabeling: Forauser,ifthetotaldurationinafixedplaceismorethanhalfof theearlymorningperiod[0:00–6:00],thisplacewillbedefinedashome. Allpotentialactivities locatedatthehomeofthispersonarerecognizedasin-homeactivities. • Workingactivitylabeling: Ifthetotaldurationinaplaceismorethanhalfofthedailyworking period[9:00–12:00]and[14:00–17:00],thisplacewillbedefinedastheworkplace. Considering the living style, the time [12:00, 14:00] for lunch is eliminated from working time to avoid biases. Finally, all potential activities located in the workplace of this user are defined as the workingactivities. • Social activity labeling: The remaining non-in-home or non-working activities are labeled as socialactivities. Finally, 31,669,042 activities were obtained for the 9.2 million users. Table 2 reports the summary of human activities. Among these, 14,470,460 potential human activities were labeled as in-home, 10,459,657asworkingand6,738,925associalactivities. Figure7displaysthedistributionofhuman activities. ItindicatesthatthreetypesofhumanactivitiescovermostoftheareaofShenzhen,inline withthebuilt-upareainFigure5generally. However, veryfewhumanactivitiesarefoundinthe lakes, mountains and forests. To verify the accuracy of the results, they were compared with the household travel investigation of 2010 in Table 2. This suggests that they are matched well as the biggestgapis2.9%,appearingforin-homeactivities. Therefore,theyareacceptablefortheintegration withlandscapesfromremotesensingimagery. Table2.Comparisonofhumanactivitiesfromhumansensingdatawithhouseholdtravelinvestigation. Name In-Home Working SocialActivities Count 14,470,460 10,459,657 6,738,925 Ratio 45.7% 33.0% 21.3% Ratiointhehouseholdtravelinvestigation2010dataset 42.8% 34.3% 22.9% Figure7.Humanactivityfrommobilephonerecords.(a)Densityofin-home;(b)densityofworking; (c)densityofsocialactivity. RemoteSens.2018,10,141 9of20 3.2.3. HumanActivityMetrics Asetofmetricssummarizingin-home,workingandsocialactivitiesisusedtoquantifyhuman activities, including the mean µ , the standard variation σ and the ratio r of each type of activity j j j (j=in-home,workingandsocialactivity),thenumberofcelltowers,theaverageareaofcelltower areaandthedensityofhumanactivity. 3.3. HierarchicalClusterAnalysis The whole city was split into a grid with a resolution of 2000 m, following the approach of Linetal.[17].Landscapemetricsandhumanactivitymetricswereintegratedinspatialcells.Therefore, eachgridcellwasdescribedbyavectorv = {v , v }combiningbothlandscapemetricsv andhuman s a s activitymetricsv . Thelandscapemetricsv containsCA andPD (i=built-uparea,road,greenland, a s i i wateranddevelopingarea)attheclasslevelandNPandSHDIatthelandscapelevel. Thehuman activitymetricsincludesthemeanµ ,thestandardvariationσ andtheratior ofeachtypeactivity j j j (j=in-home,workingandsocialactivity),thenumberofcelltowers(NCT),theaverageareaofthecell towerservicearea(ACTSA)andthedensityofhumanactivities,d. Thehierarchicalclusteranalysis[66]wasusedtogroupgridcellsfromthebottomtothetop.Before theclustering,bothlandscapeandhumanactivitymetricswerenormalized.Wardclustering[67,68]for minimizingtheincreaseddistanceofwithin-clusterdistancewasused. Thewithin-clusterdistanceis definedasEquation(2). D = ∑m (cid:107)i−m (cid:107)2 (2) A i∈A A whereiisanelementinClusterA,m isthecenterofClusterAandmisthenumberofelements. A TheincreaseddistancemergingtwoclustersisdefinedasEquation(3): m+n m n ∆DAB = ∑ (cid:107)i−mA∪B (cid:107)2− ∑ (cid:107)i−mA (cid:107)2− ∑ (cid:107)i−mB (cid:107)2 (3) i∈A∪B i∈A i∈B whereiisanelementinClusterAorClusterB,m andm arethecentersofclustersandmandnare A B thenumberofelementsinClusterAandB. Finally,gridcellsinthedifferentclusterswereidentifiedastheproperurbanfunctionalzones withexpertknowledge. Gradientanalysisinthreetypicaltransectswasconductedtoinvestigatethe patternoflandscapesandhumanactivities. 4. Results 4.1. UrbanFunctionalZones Allurbancellsaredividedintosixcategoriesthatrepresenttypicalurbanfunctionzones: urban center, sub-center, suburbs, transit region, urban buffer and the ecological area. The dendrogram generatedbythehierarchalclusteranalysis(Figure8a)suggeststhesimilarityofgridcellswiththe sameurbanfunctions. Thespatialdistributionofurbancellswithdifferentfunctionsisdisplayedin Figure8b. Theurbancentercontains42cells,mostofwhichareinNanshan,FutianandLuohudistrict. Thesub-centerhas108cells,appearingatthewestandthenorthofShenzhen,andonlytwoappearin eastShenzhen. Thesuburbhas78gridcells,mostgatheringatnortheastShenzhen. Theurbanbuffer contains40cells,attheboundaryoftheurbanizedareaortheecologicalarea. Theecologicalarea has119cellstoprovideecologicalserviceforthepublic. Thetransitregionhas89cells,connecting differentfunctionalareas. RemoteSens.2018,10,141 10of20 Figure8.Urbanfunctionalzones.(a)Thedendrogram.(b)Clusteringresult(withsixclusters). Table 3 reports the composition of landscapes and human activities in urban functional zones. It indicates that built-up area and green land are two main landscapes in Shenzhen city. Fromacity-wideview,therankingoflandscapesis: greenland>built-uparea>developingarea> water>road. Regardingurbanfunctionalzones,thecompositionsoflandscapesaredifferent. Urban center,sub-centerandsuburbshaveasimilarranking: built-uparea>greenland>road,developing areaorwater. However,sub-centerratherthanurbancenterhasthemostbuilt-uparea,whichdefies commonsense. Thisimpliesthatthelandcoverisnotsufficienttoidentifyurbancenterandsub-center inShenzhen. Transitregionshavethemostdevelopingareaat57.3haperurbancell. Urbanbuffer nearlakeshaslessbuilt-uparea(46.2percell),butmorewater(77.6percell). Theremainingecological areaisdominatedbygreenland,about330.9hapercell. Theseresultscharacterizedthestatusofthe landscapeindifferenturbanfunctionalzones. Table3.Compositionoflandscapeandhumanactivity. LandscapeComposition(ha/cell) HumanActivity(n/ha) Name No.ofCells Area(km2) Built-Up Developing Social Water GreenLand Road In-Home Working Area Area Activity Global 476 1845 148.6 17.8 186.3 14.0 24.3 78.4 56.7 36.5 nal Urbancenter 42 164.2 206.7 15.0 146.1 12.7 10.4 322 260.7 195.2 Urbanfunctio zones ETUcrSoaruSlbnoubasgb-nitciucebrarneublgtfsaeiforreerna 118740198089 433142404652812.....88543 2125260268896.....28889 111780737.....64616 11137839368160.....27869 112211309....3.3134 511297427.....73898 11226238801.5.4 4181855.82..342 2573141..18.8.15 These results also suggest that human activities are differentiated in the six urban functional zones. Therankingofthreekindsofhumanactivitiesinallfunctionalzonesis: in-home>working >socialactivity. Althoughurbancenterandsuburbssharesimilarlandscapes,urbancenterhasthe mostin-home(332perha),working(260.7perha)andsocialactivity(195.2perha). Sub-centerhasthe secondmostin-home(128.4perha),working(82perha)andsocialactivity(51.5perha),whichareless thanthatinurbancenter. Thesuburbshavemedianin-home(60perha),working(45.4perha)and socialactivity(24.1perha). Theecologicalareahastheleastin-home(13.5perha),working(8.3perha) andsocialactivity(3.8perha). Consideringtheintensityofhumanactivities,therankingis: urban center>sub-center>suburbs>transitregion>urbanbuffer>ecologicalarea. Thesevariationsof humanactivitiessuggestthedifferentiationoffunctions. ThedendrograminFigure8afurtherdemonstratestheclusteringhierarchy,whichsuggeststhe compositeeffectofbothlandscapeandhumanactivity. Itcanbeseenthat,iftheclusternumberis reduced,thegroupofecologicalareaandurbanbufferwillbefirstlymergedbecauseofthesimilar landscapeandhumanactivity. Thespatialdistributionofthecorrespondingcellsalsosuggeststhat theysharespatialboundaries.Iftheclusternumberfurtherreduces,suburbsandtransitregionswillbe merged. Afterthat,thethirdmergingwillappearatthesub-centerandurbancenter. Suchahierarchy validatesthecompositeeffectoflandscapeandhumanactivityonrevealingtheurbanfunctionalzones.
Description: