ebook img

Population synthesis of triple systems in the context of mergers of carbon-oxygen white dwarfs PDF

0.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Population synthesis of triple systems in the context of mergers of carbon-oxygen white dwarfs

Mon.Not.R.Astron.Soc.000,000–000(0000) PrintedDecember11,2013 (MNLATEXstylefilev2.2) Population synthesis of triple systems in the context of mergers of carbon-oxygen white dwarfs 3 A.S. Hamers1⋆, O.R. Pols2, J.S.W. Claeys2 and G. Nelemans2,3 1 1LeidenObservatory,LeidenUniversity,POBox9513,NL-2300RALeiden,TheNetherlands 0 2DepartmentofAstrophysics/IMAPP,RadboudUniversityNijmegen,POBox9010,NL-6500GLNijmegen,TheNetherlands 2 3InstituteforAstronomy,KULeuven,Celestijnenlaan200D,3001Leuven,Belgium n a J AcceptedforpublicationinMNRAS2013January7.Received2013January7;inoriginalform2012November21 8 ] ABSTRACT R Hierarchical triple systems are common among field stars yet their long-term evolution is S poorlyunderstoodtheoretically.InsuchsystemsKozaicyclescanbeinducedintheinnerbi- h. narysystemduringwhichtheinnerorbiteccentricityandtheinclinationbetweenbothbinary p orbits vary periodically. These cycles, combined with tidal friction and gravitational wave - emission,cansignificantlyaffecttheinnerbinaryevolution.Toinvestigatetheseeffectsquan- o titativelyweperformapopulationsynthesisstudyoftriplesystemsandfocusonevolutionary r t pathsthatleadto mergersofcarbon-oxygen(CO)whitedwarfs(WDs), whichconstitutean s important candidate progenitor channel for type Ia supernovae (SNe Ia). We approach this a [ problem by Monte Carlo sampling from observation-based distributions of systems within the primary mass range 1.0−6.5M⊙ and inner orbit semi-major axes a1 and eccentricities 1 e satisfyinga 1−e2 >12AU,i.e.non-interactingintheabsenceofatertiarycomponent. v 1 1 1 9 Weevolvethese(cid:16)system(cid:17)sbymeansofanewlydevelopedalgorithmthatcouplesseculartriple 6 dynamicswithanexistingbinarypopulationsynthesiscode.Wefindthatthetertiarysignifi- 4 cantlyalterstheinnerbinaryevolutioninabout24%ofallsampledsystems.Inparticular,we 1 findseveralchannelsleadingtoCOWDmergers.Amongsttheseisanovelchannelinwhich . a collision occurs in wide inner binary systems as a result of extremely high eccentricities 1 0 inducedbyKozaicycles.WithassumptionsonwhichCOWDmergersleadtoaSNIaexplo- 3 sion we estimate the SNe Ia delay time distribution resultingfrom triples and compareto a 1 binarypopulationsynthesisstudyandtoobservations.Althoughwefindthatourtriplerateis : low,we havedetermineda lowerlimitofthetriple-inducedSNeIa rateandfurtherstudyis v neededthatincludestripleswithinitiallytighterinnerorbits. i X Keywords: binaries:general–celestialmechanics–methods:statistical–whitedwarfs r a 1 INTRODUCTION Kisseleva-Eggleton&Eggleton 2010; Fabrycky&Tremaine 2007). In particular, Fabrycky&Tremaine (2007) have shown Coeval stellar hierarchical triple systems, henceforth triple sys- thatKCTFisresponsible forproducing closeMSbinary systems tems, are known to be quite common among stellar systems in with periods P ∼ 3d, which is consistent with the observation the field (e.g. Tokovininetal. 2006; Raghavanetal. 2010). Such 1 that such systems are very likely (96%) orbited by a tertiary systems consist of an inner binary pair orbited by a distant star, (Tokovininetal. 2006). It remains to be seen, however, whether the tertiary. Due to secular gravitational effects high-amplitude KCTF is still effective in higher-mass triples (individual masses eccentricity oscillations, known as Kozai or Kozai-Lidov cycles m & 1.2M ). This is because their constituents have radiative (Kozai1962;Lidov1962),canbeinducedintheinnerbinarysys- ⊙ envelopes and are thus much less effective at dissipating tidal tem.Theseoscillationsoccurontimescalesthataretypicallymuch energythantheirlower-masscounterparts,whichhaveconvective longer than the orbital periods of both inner and outer binaries. envelopes (Zahn 1977). On the other hand, as such higher-mass One possible consequence of these eccentricity cycles is strong stars greatly increase in size and develop convective envelopes tidalfrictionandsubsequent orbitalshrinkage,aprocesswhichis duringtheir redgiant branch(RGB)and asymptoticgiant branch knownasKozaicycleswithtidalfriction(KCTF).KCTFhasbeen (AGB) phases tidal friction is expected to become much more studied in the context of (solar-mass) main sequence (MS) stars effective.ThusitispossiblethatKCTFiseffectiveatsignificantly (Mazeh&Shaham 1979; Eggleton&Kiseleva-Eggleton 2001; shrinking the inner binary system during the RGB/AGB phases, whereasthiswasnotthecaseduringtheMS. ⋆ E-mail:[email protected] Anotherpossibleconsequenceofhigh-amplitudeeccentricity 2 A.S. Hamers,O.R.Pols,J.S.W.Claeys and G. Nelemans cyclesinduced in(close)inner binarysystemsbyatertiaryisthe initial values of i , e and g , where g denotes the argument of tot 1 1 j enhancementoftheemissionofgravitationalwaves(GWs),apro- periastron.Otherquantitiesthatvaryperiodicallyareg (i.e.orbital j cess which is strongly dependent on the orbital eccentricity (e.g. precession,alsoknownasapsidalmotion)andthelongitudesofthe Peters 1964). Thompson (2011) has suggested that this mecha- ascendingnodesh . j nismcansignificantlyreducetheGWmergertimeinclosecarbon- In systems with large a /a the eccentric Kozai mech- 1 2 oxygen (CO) white dwarf (WD) binaries if they are orbited by a anism may apply in some cases (Lithwick&Naoz 2011, tertiarywiththeappropriateorbitalparameters.Thisscenarioim- Shappee&Thompson 2012). This mechanism is associated with pliesanincreaseintheexpectednumberofcloseCOWDsystems orbital“flips”(changeoforbitalinclinationfromretrogradetopro- thatmergewithinaHubbletime,whichisrelevantforbinarypop- gradeandviceversa)withpotentiallyveryhighinnerorbiteccen- ulation synthesis studiesinwhich theCO WD merger channel is tricities.A quantity that measures theimportance of thiseffect is considered asanimportant candidate progenitor channel for type the“octupoleparameter”ǫ definedby: oct Iasupernovae(SNeIa)(e.g.Ruiteretal.2009;Toonenetal.2012; m −m a e Claeysetal.inprep.). ǫoct = m1+m2a1 1−2e2, (2) In this work we investigate both scenarios of KCTF during 1 2 2 2 stellarevolutionandthemergingofCOWDsundertheinfluenceof where typically log10(|ǫoct|) & −2 indicates that the eccen- atertiarycompanionbymeansofapopulationsynthesisoftriples. tric Kozai mechanism could be important (Naozetal. 2011; Wetakeintoaccountlong-termdynamical,stellarandbinaryevo- Shappee&Thompson2012). lutionbymeansofanewlydeveloped algorithminwhichacode Inphysicallyrealisticsituationsthereexistsourcesofpreces- modelingtheseculardynamicalevolutionoftriplesiscoupledwith sion in the inner orbit other than those due to secular three-body thebinary population synthesis code Binary c(seeSect. 2.3for dynamicsalone(inourstudysucheffectsintheouterorbitareneg- details)tomodeltheinnerbinaryevolution.Werestrictourselves ligiblebecausea2isalwayssufficientlylarge).Wetakeintoaccount to intermediate mass triples with wide inner binary systems that thefollowingadditionalcontributionstoprecession:duetogeneral wouldnotinteractintheabsenceofatertiarycomponent.Forthese relativisticeffects(g˙1,GR),duetotidalbulgesinducedinphysically triplesweshowinthispaperthatthepresenceofthetertiarycom- extendedstarsinrelativecloseproximity(g˙1,tide)andduetointrin- ponentintroducestotheinnerbinarysystemvariousnovelevolu- sicspinrotation(g˙1,rotate).Thefactthatg˙1,GR,g˙1,tide andg˙1,rotate are tionaryscenarios. Inparticular, wefindanalternativepathway to all positive impliesthat the associated sources of precession pro- SNeIaasaresultofcollisionsofWDsinwideinnerbinarysys- moteprecessioninoneparticulardirectionandthereforesuppress temsinwhichtheeccentricityreachesextremelyhighvaluesasa the resonance between g1 and e1 during Kozai cycles. This phe- resultofKozaicycles. nomenonhasbeeninvestigatedindetailbyBlaesetal.(2002). Theorganizationofthispaperisasfollows.InSect.2wede- Furthermore,wheneverthedistancesbetweenthecomponents scribethetripleevolutionalgorithmdevelopedinthisworkandin intriplesystemsbecomecomparabletotheirradiitidaleffectsmay Sect.3weprovidedetailsoftwoexamplesystemsthatleadtoCO becomeimportant.Inourstudysucheffectsintheouterorbitcan WDmergersviatwo distincttriplechannels. Withthisalgorithm beneglected.However,intheinnerbinarysystemtidaleffectsmay weperformapopulationsynthesisstudyofwhichwediscussour become important even forlargesemi-major axeswithrespect to methodsinSect.4andpresenttheresultsinSect.5.Forthevarious theradii,a1/Ri(whereRidenotestheinnerbinarystellarradius),if COWDmergerchannelswefindweestimatetheexpectedtriple- theinnerorbitaleccentricityissufficientlyhigh.Inthiscaseatidal induced SNeIaratesand compare these tothebinary population torqueisinduced, eitherduetotheequilibriumtideordynamical synthesisstudyofClaeysetal.(inprep.)andtoratesinferredfrom tide(Zahn1977),thatallowsfortheexchangebetweenangularmo- observationsinSect.6.InSect.7werelateourresultstotheprevi- mentaofthespinandorbitintheinnerbinarysystem.Thisprocess ousworkofThompson(2011)anddiscusstheuncertaintiesofour continuesuntilcoplanarity,synchronizationandcircularizationare treatmentoftripleevolution.WeconcludeinSect.8. achieved(Hut1980).Itisdescribedquantitativelyintermsoforbit- averagedequationsfortheorbitalparametertimederivatives,a˙ , 1,TF e˙ andΩ˙ ,whereΩ isthespinfrequencyofinnerorbitstari 1,TF i,TF i andTFdenotestidalfriction. 2 HIERARCHICALTRIPLEEVOLUTIONALGORITHM Another effect we take into account isGW emission, which 2.1 Secularhierarchicaltripledynamics wemodelfortheinnerbinaryonly.Asaconsequenceoftheemis- sionofGWstheinnerbinaryiscircularizedandshrinks,whichis During Kozai cycles the mutual torque exerted by the inner and describedquantitativelybyorbit-averagedequationsfore˙ and outerbinaryorbitscausesanexchange ofangularmomentumbe- 1,GW a˙ . tweentheorbitswhiletheorbitalenergies,andthusthesemi-major 1,GW axes a , are conserved (e.g. Mardling&Aarseth 2001). Here we j useindex j = 1,2todenotequantitiespertainingtotheinnerand 2.2 Systemoffirst-orderdifferentialequations outer orbits respectively. As a result of the exchange of angular momentumtheorbitaleccentricitiese andthetotalmutual incli- We describe the secular Kozai cycles quantitatively in terms of j nationanglebetweenbothorbitsitotvaryperiodicallyontimescales coupled equations for g˙j,STD and e˙j,STD (where STD denotes sec- P ≫P ,whereP denotesorbitalperiod.Tolowestorderina /a ular three-body dynamics), that follow after orbital averaging of K 2 j 1 2 P isgivenby(Kinoshita&Nakai1999): thethree-body Hamiltonianexpressed inDelaunay’s action-angle K variables,applyingHamilton’sequationsofmotionandeliminating P =αP22m1+m2+m3 1−e2 3/2, (1) thelongitudesoftheascendingnodes(Harrington1968;Fordetal. K P m 2 1 3 (cid:16) (cid:17) 2000;Naozetal.2011).Weemployequationsforthesefourquan- where m and m denote the inner binary primary and secondary titiesaccuratetooctupoleorder,i.e.uptoandincludingthirdorder 1 2 mass respectively and m denotes the tertiary mass. The dimen- in a /a . In addition, an equation that expresses conservation of 3 1 2 sionless quantity α is of order unity and depends weakly on the totalangularmomentumdescribesthechangeofi . tot Triplepopulationsynthesisandwhitedwarfmergers 3 WethencombineallthephysicaleffectsdiscussedinSect.2.1 theinnerbinarysystemsuchthatitdoesnotfillitsRoche-lobein toformasystemofeightfirst-orderordinarydifferentialequations itsorbitaroundtheinnerbinarysystem,noritisinvolvedinaCE (ODEs)thatreads: phasewiththeinnerbinarysystem,ascenariowhichhasbeenex- ploredinearlierstudies(e.g.Iben&Tutukov1999).Thereforethe g˙ =g˙ +g˙ +g˙ +g˙ ; 1 1,STD 1,GR 1,tide 1,rotate latterprocessesarenotmodeledinthetriplealgorithm.  g˙2 =g˙2,STD;  aee˙˙˙θ˙121 ====eae˙˙˙121−,,,SST1TTFDD+;G+˙a˙e˙1(,1GG,TWF;++Ge˙1,GθW);+G˙ (G +G θ) ; (3) Eaolfqg.oE3rqIint.ihs3tmhs,oe.wlIvOnheDidocErhfdoseriosrtlhvtqoeeureidtrnueosruuasttrtiiienoffenpritonhofepneesaraytcscuhtoreentm,ivmeworefgesedtunieffscpeeeoroeafnnftthtiOhaeelDBesiEqonulausaottriilyoovnnecssr where θ≡ΩΩ˙˙21cos==(itoΩΩG˙˙t)121G,,aTT2FFnh,;d G1 j d1enote2s the o2rbit2al ang1ulair momen- ts1nip9ooe9tnc6cioo)fif.ucWtpahlleeelydhsaadwmveiesetihcghhntiheeecerdkaBrteocidhnitinahctreaelygrterrcasiutpaellltegsstsooiyffrfistttOhhememDOsEbDsaysE(cCsostomuohdlpveiuenedtri&nriongHuFttihionnerdedemwveaothrlaesulnh-. tum.Forexpressionsfortheprecessionquantitiesg˙1,GR,g˙1,tide and (2000),Blaesetal.(2002)andNaozetal.(2011)andfindverysim- g˙1,rotate werefertoBlaesetal.(2002),Smeyers&Willems(2001) ilarresultsfore1,itotanda1(whereapplicable)asfunctionoftime. and Fabrycky&Tremaine (2007) respectively; for the tidal evo- Wehavealsofoundnearexactagreementofthetimeevolutionof lution quantities e˙1,TF, a˙1,TF and Ω˙i,TF we refer to Hut (1981) and e1 and itot when comparing to analytical solutions which exist in fortheGWevolutionquantitiese˙1,GWanda˙1,GW werefertoPeters thequadrupoleorderapproximationandwiththefurtherrestriction (1964).ThemainassumptioninEq.3isthatallphysicalprocesses thatG ≫ G (Kinoshita&Nakai 1999).During each Binary c 2 1 that are described are independent such that the individual time timestepquantitiesnotincludedinthelefthandsideofEq.3such derivative termscanbe added linearly.Inaddition, intheexpres- as the inner binary masses and radii are assumed to be constant. sions for g˙1,tide, g˙1,rotate, e˙1,TF, a˙1,TF, Ω˙i,TF and θ˙ we assume copla- BecausetheBinary calgorithmusesadaptivetimestepstomatch narity of spin and orbit at all times, even though Kozai cycles in the rate of stellar and binary evolution it is always ensured that principleaffecttherelativeorientationsbetweenthespinandorbit thesequantitiesdonotchangesignificantlyduringeachiterationof angularmomentumvectorsandinturnamisalignmentofthesevec- thetripleevolutionalgorithm.Inaddition,ifneededthetriplealgo- torsaffectstheKozai cyclesthemselves(e.g.Correiaetal.2011). rithmdecreasestheBinary ctimestepsuchthattheinnerorbital Wejustifythisassumption bynotingthatforthemajorityofsys- angular momentumG does not change by more than 2%. Thus, 1 temsthatwestudytheorbitalangularmomentaofbothinnerand changestotheinnerorbitsemi-majoraxisandeccentricitydueto outerorbitsgreatlyexceedthespinangularmomentainmagnitude, secular three-body dynamics coupled with tidal friction and GW thereforethestellarspinscannotgreatlyaffecttheexchangeofan- emission are communicated tothe Binary calgorithm at appro- gularmomentumbetweenbothorbits. priatetimes. The expression for θ˙ in Eq. 3 is derived by differentiating TheversionofBinary cusedinthisworkenforcescircular- the relation that expresses conservation of total angular momen- izationattheonset of Roche-lobeoverflow (RLOF)andCEevo- tum, G2 = G2 +G2 +2G G θ, with respect to time and solv- tot 1 2 1 2 lution.Althoughthisassumptionisgenerallyjustifiedforisolated ing for θ˙ in terms of G and G˙ . Note that GW emission acts to j j binaries(Hurleyetal.2002),intriplesystemshigh-amplitude ec- change a and e and therefore affects the magnitude of G but 1 1 1 centricitycyclescouldbeinducedduringtheformerphase,inpar- not its direction. Although in principle tidal friction can also af- ticularifthetimescaleofthesecyclesiscomparabletoorsmaller fectthedirectionofG ifthestellarspinsandorbitarenotcopla- 1 thanthetimescaleof masstransferdrivenby RLOF.Anaccurate nar, with our assumption of coplanarity this is not the case. This treatmentof masstransfer ineccentricorbitsisbeyond thescope implies that, withGj = Lj 1−e2j, where Lj = Lj(aj,mi) isthe ofthiswork(seee.g.Sepinskyetal.2007)andwethereforechoose q orbital angular momentum in case of a circular orbit and which to disable the ODE solver routine whenever mass transfer driven is constant with regard to STD, the quantities G˙j are given by byRLOForCEevolutionensues.WhenevertheODEsolverrou- G˙ =− e / 1−e2 ·G ·e˙ . tineisactiveitisensuredthattidalevolutionandGWemissionin j j j j j,STD h (cid:16) (cid:17)i theinnerbinarysystemascalculatedbyBinary cdonotchange theinnerorbitalparameters.Thisisnecessarybecauseinthiscase 2.3 Couplingtobinaryalgorithm theseprocessesaretakenintoaccount bytheODEsolver routine throughtheequationsfore˙ anda˙ inEq.3.Inthismannerthecou- Thehierarchicaltripleevolutionalgorithmdevelopedinthiswork 1 1 plingofeccentricitycycleswithtidalfrictionandGWemissionin couples the system of differential equations Eq. 3 to the existing theinnerorbitiscalculatedconsistently. rapid binary population synthesis algorithm Binary c based on Hurleyetal. (2000, 2002) with updates described in Izzardetal. Iftheratioβ ≡ a /a islargetheeffectsofSTDarelikelyto 2 1 (2004, 2006, 2009) and Claeys et al. (in prep.). This binary star bequenched bydifferent processes intheinner binarysystem, in algorithmincludesstellarevolutionandavarietyofbinaryinterac- particularduetogeneral relativisticprecessioninverytightinner tionprocessessuchasmasslossduetostellarwinds,masstrans- binarysystems,asdiscussedinSect.2.1.Insuchsituationsitisnot ferandcommonenvelope(CE)evolution.WerefertoHurleyetal. necessarytosolveEq.3becausetheSTD-relatedtermsarenegligi- (2002)forfurtherdetailsofthisbinarypopulationsynthesisalgo- bleandtheinnerbinaryevolutioncanthereforebefullyhandledby rithm. The novel aspect of our approach is that the evolution of Binary c.Wethereforeintroduceacriterionthattemporarilydis- theinnerbinarysystemistakenintoaccountthroughthecoupling ablestheODEsolverroutineandleavestheinnerbinaryevolution to Binary c. We also take into account the evolution of the ter- toBinary cinsuchcases. Specifically, theroutineisdisabled if tiary,whichistreatedasbeingisolatedsuchthatitsmassmaybe β>10β ,whereβ isthevalueofβsuchthattheperiods crit,GR crit,GR computed from single stellar evolution. In thiswork weconsider associatedwithprecessionduetoSTD(Eq.1)andgeneralrelativity systemsinwhichatalltimesthetertiaryissufficientlydistantfrom (approximately givenbythereciprocal ofg˙ )areequal, which 1,GR 4 A.S. Hamers,O.R.Pols,J.S.W.Claeys and G. Nelemans wefindisgivenby(omittingnumericalfactorsoforderunity): quantities k /T and r2 are therefore calculated from precisely am,i i g,i thesameprescriptionasinBinary c,whichisrequiredforacon- 1/3 βcrit,GR≈ Gc2N!1/3a11/3 (m1m+3m2)2!1/3 (cid:16)11−−ee221(cid:17)1/2 sistenTthtreeactlmasesnict.al apsidal motion constant kam,i (i.e. not the ra- 2 tiok /T), which is required for evaluation of g˙ and g˙ (cid:16) (cid:17) am,i i 1,tide 1,rotate ≈5·102 a1 1/3 m3/M⊙ 1/3 (cid:16)1−e21(cid:17)1/3, (pSumteedyaesrsa&fuWnciltlieomnsof20m0a1s;sFaanbdrytcimkye&relTarteivmeationeth2e00Z7A),MiSs cforomm- (cid:18)AU(cid:19) (m1/M⊙+m2/M⊙)2! 1−e2 1/2 detailedstellarmodelsformetallicityZ=0.02calculatedbyClaret 2 (cid:16) (cid:17) (4) (2004).Therunofk withtimeisdeterminedbymeansoflinear am,i relations scaled to the time spent during each evolutionary stage wherecdenotesthespeedoflightandG denotesthegravitational N for all tabulated masses in Claret (2004). Subsequently, k is constant. am,i calculatedfor arbitrarymassby meansof linearinterpolation be- Outer orbital expansion due to mass loss in either inner or tweenadjacent massvalues. Furthermore, forlow-mass stars,i.e. outerbinarysystemsistakenintoaccountwiththeassumptionof m < 0.7M , theclassical apsidal motion constant istaken tobe fast,isotropicwinds(i.e.Jeansmode)suchthata (m +m +m ) i ⊙ 2 1 2 3 k = 0.14 corresponding ton = 3/2 polytropes as an estimate and e remain constant (Huang 1956, 1963). With this relation a am,i 2 forthese(nearly)fullyconvectivestars.Forhelium(He)MSstars new value of a iscomputed fromthechanges of m ,m andm 2 1 2 3 and WDs k is calculated as function of mass by means of in- duringeachtimestepofBinary c. am,i terpolationsoftabulateddatafromVila(1977).Lastly,forneutron Lastly,ateachBinary ctimestepthetriplesystemischecked starsk iscalculatedasfunctionofmassandradiusfromtheex- for dynamical stability by means of the stability criterion formu- am,i pressiongiveninHinderer(2008)andforblackholesk = 0as latedbyMardling&Aarseth(2001),includingtheadhocinclina- am,i appropriatefornon-spinningblackholes. tionfactor f =1−(0.3/π)i (withi expressedinradians).When- tot tot everβ≤β ,whereβ isgivenbythisstabilitycriterion,theSTD crit crit equations arenolonger strictlyvalidwedonot model thesubse- quentevolution.Thephaseofdynamicalinstabilitywouldneedto 3 TRIPLEEVOLUTIONEXAMPLES be computed with a three-body integrator code, which is beyond TodemonstratethetriplealgorithmpresentedinSect.2wedescribe thescopeofthiswork(seePerets&Kratter2012forarecentstudy indetailtheevolutionoftwotriplesystemsinwhichaninnerbi- oftriplesystemsthatbecomedynamicallyunstable). naryCOWDmergeroccursineitheratightcircularorbitorawide andhighlyeccentricorbit.Theinitialconditionsforthesetwosys- temsareselectedfromourfirsttriplepopulationsynthesissample 2.4 Fixedbinaryparametersandevaluationofvarious (TSM1,cf.Sect.4.2). physicalquantities Wedetailsomeofthefixedbinaryevolutionparametersusedinthis 3.1 Mergerinatightcircularorbit work.Wechoosequasi-solarmetallicity,i.e.Z = 0.02.Theinitial spin periods of the inner orbit components are computed from a Weconsideratriplesystemwithinitialparametersm =3.95M , 1 ⊙ formulagivenbyHurleyetal.(2000),whichisfittedfromdataof m = 3.03M , m = 2.73M , a = 19.7AU, a = 636.1AU, 2 ⊙ 3 ⊙ 1 2 therotationalspeedofMSstarsofLang(1992).TheCEparame- e = 0.23,e = 0.82,i = 116.0◦,g = 28.5◦ andg = 249.6◦. 1 2 tot 1 2 terαCE describestheefficiencyoftheconversionoforbitalenergy Fig.1showsa1,e1,β ≡ a2/a1,thetidalstrengthquantitykam,i/Ti intobinding energy withwhichtoshed theenvelope and itisset (Hut 1981; Hurleyetal. 2002) and i as a function of time. The tot tothecanonicalvalueofαCE = 1.InthisCEdescriptionanaddi- evolution is shown with both the triple algorithm enabled (triple tionalparameterλCEisrequired,whichisadimensionlessmeasure case; solid line) and disabled (binary case; dashed line), leaving of the relative density distribution within the envelope; here it is all inner binary evolution to Binary c. The latter binary case is determinedbymeansoffunctionalfitsasdetailedinClaeysetal. equivalenttothesituationinwhichnotertiaryispresent. (inprep.).AllotherparametersintrinsictotheBinary calgorithm Inthebinarycasethesemi-majoraxisincreasesatthetwomo- arealsosettoidenticalvaluesasinClaeysetal.(inprep.). mentswhenthebinarystarsevolvefromAGBstarstoCOWDs(at Inaddition,variousphysicalquantitiesarerequiredtoevalu- t ≈ 0.2Gyrandt ≈ 0.5Gyrrespectively)asaconsequenceofthe atetheright-handsidesinEq.3andintheremainderofthissec- associated wind mass loss. Here (i.e. in Binary c) it is assumed tionwedescribehowthesequantitiesareobtainedinourtripleal- thatthewindmasslossisfastandisotropicsuchthata (m +m ) 1 1 2 gorithm. The tidal evolution equations (i.e. expressions for a˙1,TF, remainsapproximately constant.Wheneitherstarintheinnerbi- e˙1,TF andΩ˙i,TF)containaparameterthatcapturestheefficiencyof narysystem enterstheRGBor AGBphase it develops aconvec- tidalfrictionanddepends onthestructureofthestar(Hut1981). tiveenvelopeanditsradiusincreasessignificantly.Thechangeof Thisparameteristheratiokam,i/Ti,wherekam,i istheclassicalap- theenvelope structureisreflectedbyasubstantial increaseofthe sidal motion constant of inner orbit star i and Ti a tidal friction tidal strength quantities kam,i/Ti as is shown in Fig. 1 (primary timescale.Wecomputekam,i/Tiaccordingtothesameprescription AGBphase). However, despitethelargekam,1/T1 andprimaryra- thatisused inBinary c(Hurleyetal.2002).Inthisprescription diusthere isno significant tidal frictionduring the primaryAGB adistinctionismadebetweenconvective,radiativeanddegenerate phasebecauseofthelargea andsmall(andconstant)e .Conse- 1 1 envelopesandkam,i/Ti forthesethreecasesiscomputedbasedon quently, in the binary case the CO WDs end their evolution in a resultsofRasioetal.(1996),Zahn(1977)andCampbell(1984)re- wideandnon-interactingbinarywitha ≈84AU. 1 spectively.Furthermore,thegyrationradiir2 arerequiredforthe Inthetriplecasehigh-amplitudeKozaicyclesareinduceddur- g,i evaluationofΩ˙ andarecomputedwithaprescriptioninwhich ingtheMSintheinnerorbitbythetertiarywithmaximaofe ≈ i,TF 1,max thestarsaresplitintotwoparts,consistingofthecoreandtheenve- 0.9.Octupoleordertermsareimportantbecause|ǫ |≈10−2.Nev- oct lope,detailedinHurleyetal.(2000)andHurleyetal.(2002).The ertheless,duringtheMStheeccentricityisnothighenoughtodrive Triplepopulationsynthesisandwhitedwarfmergers 5 20 100 binarycase 10 15 triplecase U 1 binarycase AU A (cid:144) 10 (cid:144)1 triplecase a1 a 0.1 5 0.01 0.001 0 0.2 0.5 1.0 2.0 5.0 10.0 220.0 220.5 221.0 221.5 222.0 222.5 223.0 t(cid:144)Gyr t(cid:144)Myr 0.0 106 -0.2 105 L -0.4 1 104 -e 1 Β H0 -0.6 1 1000 og l -0.8 binarycase 100 triplecase -1.0 10 0.2 0.5 1.0 2.0 5.0 10.0 220.0 220.5 221.0 221.5 222.0 222.5 223.0 t(cid:144)Gyr t(cid:144)Myr -8 -0.4 -10 primary H(cid:144)LLs -12 secondary -0.5 Ti L (cid:144) ot Hkam,i -14 Hcosit -0.6 10 -16 g o -0.7 l -18 -20 -0.8 220.0 220.5 221.0 221.5 222.0 222.5 223.0 220.0 220.5 221.0 221.5 222.0 222.5 223.0 t(cid:144)Myr t(cid:144)Myr Figure1.Severalquantitiesofinterestintheevolutionofthefirstexamplesystem(Sect.3.1).Shownasafunctionoftimearea1,e1,β ≡ a2/a1,kam,i/Ti anditot.Intheplotsinthefirstcolumnofthefirsttworowstheentireevolutionisshown;theotherplotscorrespondtotheendoftheprimarycorehelium burningphase,theprimaryAGBphaseandstartoftheprimaryCOWDphase.Solidline:triplecase;dashedline:binarycase(whereapplicable).Intheplot ofkam,i/Ti onlythetriplecaseisshown(thebinarycaseisverysimilar);inthisplotthesolidlineappliestotheprimary(i=1)andthedashedlinetothe secondary(i = 2).Notethattheevolutionisnotfullysampledinallplots,causingseveralkinks(inparticularintheplotsfore1 anditot)–moredetailed calculationsareperformedinternallyintheODEsolverroutinebutarenotshownhere(cf.Sect.2.3). significanttidalfrictionbecausethetidalstrengthquantityisvery increaseintheeffectivenessof orbitalshrinkage isduetotheex- small (k /T ∼ 10−18s−1) as aconsequence of theradiative en- pansionoftheprimaryfromaradiusofR ≈49R toR ≈497R am,i i 1 ⊙ 1 ⊙ velopes in the MS stars. During the primary RGB phase the pri- between t = 220Myr andt = 222.5Myr. Consequently a isre- 1 mary possesses a convective envelope (k /T ∼ 10−8s−1) but ducedtoa ≈ 7AUandtheorbitiscompletelycircularized.Note am,1 1 1 e isnothighenoughtotriggersignificanttidalfriction.However, thatforcompletecircularizationtooccurthedurationofthephase 1 tidalfrictiondoesbecomeeffectiveduringtheprimaryAGBphase inwhichk /T issubstantialmustbesufficientlylongcompared am,1 1 starting at t ≈ 220.6Myr and circularizes the inner orbit during totheKozaiperiodP (Eq.1),whichisthecaseforthisexample K thetimespanoffiveKozaicycles,wheresignificantorbitalshrink- system.Inothercasesoftriplesystems,however,P canbemuch K ageoccursateccentricitymaxima.Notethatduringthisphasethe 6 A.S. Hamers,O.R.Pols,J.S.W.Claeys and G. Nelemans 0 3000 binarycase -2 2000 triplecase L 1 e AU 1500 H-1 -4 (cid:144)a1 og10 binarycase 1000 l -6 triplecase -8 0.2 0.5 1.0 2.0 5.0 10.0 0 1 2 3 4 5 6 7 t(cid:144)Gyr t(cid:144)Gyr 1.0 30 0.5 L ot Β Hsit 0.0 o 20 c -0.5 15 -1.0 0.2 0.5 1.0 2.0 5.0 10.0 0 1 2 3 4 5 6 7 t(cid:144)Gyr t(cid:144)Gyr Figure2.QuantitiesofinterestforthesecondexamplesysteminwhichaninnerbinaryCOWDmergeroccursinawideandhighlyeccentricorbit. longer than the duration of the RGB/AGB phases, thus avoiding unlikely that the primary RGB and AGB phases (which occur at strongtidalfrictioneveniftheeccentricitymaximaarehigh. t≈0.3Gyrandt≈0.4Gyrrespectively)coincidewitheccentricity Shortly after KCTF during the primary AGB phase the pri- maxima. Suchacoincidence isindeed not thecase inthesecond mary has swelled up to R ≈ 611R , fills its Roche-lobe and examplesystem. 1 ⊙ invokes CE evolution, shrinking the orbit further to a1 ≈ 1AU AstheprimaryandsecondaryevolvetoCOWDswithoutin- (t ≈222.6Myr).Duringthisprocesstheratioβincreasessubstan- teracting the associated wind mass loss widens the orbit to a ≈ 1 tially to β ≈ 1321, which is large enough for general relativistic 2600AU.Although thisinner binarywindmasslossincreasesa 2 precession to fully quench any subsequent Kozai cycles. Conse- aswell,theratioβ = a /a decreaseswiththeassumptionoffast 2 1 quently, theinclinationangleitot isfrozentoitot ≈ 128◦.Thepri- isotropicwindssuchthata1(m1+m2)anda2(m1+m2+m3)arecon- mary emerges from the CE as a CO WD and the secondary as a stant(inthisexamplem alsoremainsconstant).Consequently,the 3 MSstar.Att ≈ 0.5Gyrthesecondary evolvestoanAGBstarit- ratioβdecreasestoβ≈18afterthesecondaryhasevolvedtoaCO self, invoking a second CE phase. A close CO WD binary with WD.AsthetertiaryevolvestoaCOWDandsubsequently loses a1 ≈ 0.01AU emerges from the CE. Due to GW emission the massatt ≈ 1.5Gyra2 increaseswhilea1 staysconstant, thusin- system subsequently merges at t ≈ 13.2Gyr in a circular orbit. creasingβagain.ThelatterprocessalsoincreasestheKozaiperiod. ThecombinedCOWDmass,1.45M⊙,exceedstheChandrasekhar Aftert ≈ 1.5Gyrthemaximumvaluesofcos(itot),whicharestill massMCh ≈1.4M⊙,thereforethemergercouldpotentiallyleadto negative(retrogradeorbit),slowlyincreaseandthecorresponding aSNIaexplosion(cf.Sect.6.2). eccentricitymaximaincreaseaswell.Ascos(i )approaches0the tot eccentricity maxima reach very high values until at t ≈ 7.0Gyr theorbitsbecomeprograde,whichisassociatedwithe reachinga 1 3.2 Mergerinawideeccentricorbit valueof1−e ≈ 10−7.4.Thisishighenoughtotriggeranorbital 1 Thesecondexamplesystemhasinitialparametersm1 = 3.26M⊙, collisionbetweenthetwowhitedwarfs,eventhougha1 ≈2600AU m =2.00M ,m =1.39M ,a =716.6AU,a =2.012·104AU, isverylarge.SuchacollisioncouldpotentiallyresultinaSNIaex- 2 ⊙ 3 ⊙ 1 2 e =0.78,e =0.64,i =93.4◦,g =150.0◦andg =151.2◦.The plosionasinthepreviousexample(cf.Sect.6.2),butnotethatthe 1 2 tot 1 2 evolutionofa ,e ,β≡a /a andi forthissystemasfunctionof natureofthemergerpriortoapossibleSNeIaeventisverydiffer- 1 1 2 1 tot timeisshowninFig.2.Themaindifferenceininitialparameters ent. inthisexamplesystemcomparedtothepreviousexampleisthata Onemightwonderwhetherinthissystemtidalfrictionissig- 1 anda arelarger.Theirratioβiscomparable,however.Becauseof nificant during close periastron passages before the collision oc- 2 thelargera theKozaiperiod P ≈ 100Myrismuchlongerthan curs.Forthisreasonwehaverecalculatedthissystemwiththetidal 2 K inthefirstexample(P ≈0.3Myr).Consequently,itismuchmore strength quantities k /T for radiative and degenerate damping K am,i i Triplepopulationsynthesisandwhitedwarfmergers 7 multipliedbyadhocfactorsof103 and106 toartificiallyincrease 12 theeffectiveness of tidal friction.Evenwiththesemultiplications Tokovininsample wefindthattheoutcomeisidentical,showingthattidalfrictionis 10 ns(4syoestetiPemSmOepscPotiUr.nt7aLt.nh2Ate)Ti.npIotOhpiNuslasSytYisotNnemTsy.HnWEtheSehIsSaisv:esMtpuEedryTfoaHrnmOdeDhdaSsviemfiolaurntdesntosfeoffreacltl H(cid:144)LlogPd210 2468 ×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××× Before presenting the results of our population synthesis study × (Sect.5)wediscusshereourselectioncriteriaandsamplingmeth- 0 odswhichareessentialingredientsforsuchastudy. 0 2 4 6 8 10 log HP (cid:144)dL 10 1 4.1 Selectioncriteria 12 TSM1 Becausewearemainlyinterestedininnerbinarymergersinvolving 10 bsamteaC1trwOoefevWemonl1Duf,uotiwro=men.i6tna.T5gkheMaeaC⊙ln,oOwuwpWehpriecDlrhimlaainmiptdpiotraofonxfmiOtm1hNeaisteienWlsnyeetDcrtaobipnitnmutarh1re,eylsc=ptahrsie1me.b0aoorfMuysn⊙imdnagafroslyesr H(cid:144)LPd210 68 ××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××× anylowermasswillnotproduceasignificantnumberofCOWDs og withinaHubbletimeforametallicityofZ =0.02.Inadditionwe l 4 focus on triplesystems withwide inner binary systems such that 2 theinner binarystarsdonotinteract duringtheirevolutioninthe absenceofatertiary.Takingintoaccountpossibletidalfrictionthis 0 canbeachievedbyrequiringthattheinitialinnerorbitsemi-latus 0 2 4 6 8 10 rectuml1 ≡a1 1−e21 satisfiesl1 >l1,l ≡12AU. log10HP1(cid:144)dL sOpnts(o2yhreue0sordrts0woeies8rmOrsnee)btlcnsi,etitthneclawiyentltpihhoposotienaehcsbmrshe(sciiP(cid:16)oebrprii1rdsleltv,eesgelPeriimbddkmi2aeae)eet-tlso(cid:17)twadyahfbimeofabeiredngetponwnrclmtaeeaolemorueooogsnb.bfeb1iA0snts(o7aepaPcif2rernvl1y5cte/ehttasddrhetryor)eistsdpp=rtciiaielnffiopuem2iplctceiissiauactynsylwlsytdatytoisnretlifthdmoopesgfml1syve1d.sis00spoet.(euPtaf<Femar1ciaTl/gmstmodbi.nw1k)ie3/ngoti=Maetv(hsrrtiu⊙4isoniecpniiis<nhss)-. H(cid:144)LogPd210 110268 TSM2 ××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××× ×××× 6.5and l > 12AU decrease thenumber of systemsfrom725 to l 4 1 165, where a value of log (P /d) = 4 is taken to represent the 10 1 dividing value l = 12AU. The number of remaining systems 2 1,l (indicatedinthetopfigureofFig.3by dots) isnot largeenough 0 for direct sampling, therefore wechoose toutilize themethod of 0 2 4 6 8 10 MonteCarlosamplingfromobservation-baseddistributions.Inor- log HP (cid:144)dL der togaininformationontheuncertaintiesofour resultsweuse 10 1 twodistinctsamplingmethodsthataredescribedbelow. Figure 3. Inner (P1) and outer (P2) orbital periods of triple systems of theobservedtriplesampleofTokovinin(2008)(top)andthetwosynthetic triplesamplesdescribedinSect.4.2(middleandbottom).Intheobserva- 4.2 Samplingmethods tionalsamplesystemssatisfyingourselectioncriteriaaredenotedwithlarge (red)dots(•).Inthesyntheticsamplesthelargedots(•)denotethesystems 4.2.1 TSM1 that undergo an early MS inner binary mergerordestabilization and are Thefirsttriplesamplingmethod(TSM1)isbasedonthesupposi- thereforenotlikelytobeobserved.ThelinecorrespondstoP2/P1=5and tionthatahierarchicaltriplesystemiscomposedoftwouncorre- representsthetypicalcriticalvaluefordynamicalstability. latedbinarysystems.Themainadvantageofthisapproachisthat thestatisticsofbinaryparametersareknownwithgreatercertainty thanthoseoftriplesystems.Aprimarymass1.0 < m /M < 6.5 e ande fromathermaldistributiondN/de =2e asisappropriate 1 ⊙ 1 2 j j issampledfromaKroupaetal.(1993)initialmassfunction(IMF), forP >103dbinaries(Kroupa&Burkert2001).Twosemi-major j i.e.dN/dm ∝ m−2.70.Subsequently,twomassratios,q ≡ m /m axesarethensampledfromadistributionthatisflatinlog (a ),the 1 1 1 2 1 10 j and q ≡ m /(m +m ), are sampled independently from a uni- smallerofwhichisdesignateda andthelargerofwhichisdesig- 2 3 1 2 1 form distribution such that 0 < q ≤ 1, m > 0.01M and nateda .Thelowerandupperlimitsa anda inthedistributionof j 2 ⊙ 2 l u m > 0.01M ,consistentwithClaeysetal.(inprep.).Thelower thesemi-majoraxesarea =5R anda =5·106R forbothinner 3 ⊙ l ⊙ u ⊙ limitonthestellarmassesisinaccordancewiththelimitfoundby and outer orbits (Kouwenhovenetal. 2007). From these systems Kouwenhovenetal.(2007).Thesecondaryandtertiarymassesare werejectthosethatdonotsatisfyl = a 1−e2 > l = 12AU. 1 1 1 1,l subsequentlycomputedfromthesesampledmassratios.Wesample Lastly, we sample the initial orbital inclin(cid:16)ation(cid:17)angle i from a tot 8 A.S. Hamers,O.R.Pols,J.S.W.Claeys and G. Nelemans Tokovinin TSM1 TSM2 0.25 TokovininsampleHselectedL Mean SD Mean SD Mean SD m1/M⊙ 2.36 1.23 1.85 1.01 2.17 1.24 0.20 TSM1 m2/M⊙ 1.69 0.94 0.93 0.79 1.09 0.93 TSM2 m3/M⊙ 1.53 1.39 1.36 1.23 1.59 1.43 F 0.15 log10(P1/d) 5.13 0.73 5.47 0.81 5.77 1.29 PD log10(P2/d) 7.04 0.76 7.87 0.75 8.28 1.61 0.10 Table1.Meanandstandarddeviation(SD)ofmassesandorbitalperiods 0.05 oftheTokovinin(2008)samplesatisfyingtheselectioncriteria(Sect.4.1) andofbothsampledtriplepopulationsTSM1andTSM2. 0.00 1 2 3 4 5 6 log HP (cid:144)P L distribution that is uniform in cos(i ) with −1 < cos(i ) < 1 10 2 1 tot tot and the initial arguments of periastron of both orbits, g and g , 1 2 Figure4.Probabilitydensityfunctions(PDFs)ofP2/P1fortheTokovinin fromauniformdistributionwith0<gj <2π.Fromthetriplesys- sample with ourselection criteria applied (solid line), the TSM1sample tems obtained in this manner we subsequently reject the systems (dashedline)andtheTSM2sample(dottedline).FortheTokovininsample, that are not dynamically stable based on the stabilitycriterion of errorsbasedonPoissonstatisticsareindicated. Mardling&Aarseth(2001),consistentwithourtripleevolutional- gorithm(cf.Sect.2.3). theTokovininsamplewithourselectioncriteriaappliedarecom- paredtothetwosampledpopulations. Becauseofthesteepslope of −2.70 in the TSM1 IMF the mean masses in TSM1 are small 4.2.2 TSM2 comparedtothoseinTSM2,forwhichaSalpeter-likeslope(-2.35) In the second triple sampling method (TSM2) we use the mul- applies for m > 1.0M . Compared tothe Tokovinin sample the 1 ⊙ tiple system recipe developed by Eggleton (2009). This recipe massesofTSM1andTSM2appeartobeonthelowside,butitis is designed to reproduce the properties of a set of 4558 stellar important tonotethattheTokovinin sampleismagnitude-limited systems with Hipparcos magnitude brighter than 6 collected by ratherthanvolume-limited,thereforeitisstronglybiasedtowards Eggleton&Tokovinin (2008). It is followed until the second bi- moremassive systems. Thedistributions of the orbital periods of furcation,effectivelyrestrictingtomultiplesystemsthataretriple. TSM1andTSM2aresimilar,theorbitalperiodsbeingonaverage Theparametersgivenbytherecipearem1,m2,m3,P1andP2.The somewhathigherinTSM2comparedtothoseinTSM1.Theorbital primarymassdistributioninthisrecipeisdesignedtoresemblethe periodsoftheTokovininsample,notablytheouterorbitalperiods, Salpeter IMF (dN/dm1 ∝ m1−2.35) at large masses and turns over aresmallerthanthoseinthesampledpopulations.Thisisalsolikely for masses below 0.3M⊙. The mass ratio distribution is approxi- affectedbyobservationalbias,becauseverylongorbitalperiodson matelyflatandtheP2 distributionhasabroadpeakaround105d. theorderof107 daysorlongeraregenerallyverydifficulttomea- WerefertoEggleton(2009)forfurtherdetails.Thecorresponding sure. semi-major axes are computed from Kepler’s third law. The pa- Lastly, Fig. 4 compares the distributions of the ratio P /P 2 1 rametersnotprescribedbytherecipeareitot,ej andgj,whichare forthethreepopulations.ForTSM1andTSM2thesedistributions sampledfromthesamedistributionsasinTSM1above.Similarly aresimilar. Thedistribution of P /P of the Tokovinin sample is 2 1 tothemethodinTSM1systemsarerejectedifl1≤l1,l =12AUand peakedtowardssmallerratios,althoughhereobservationalbiasfor iftheydonotsatisfythestabilitycriterionofMardling&Aarseth largeperiodratiosmaybeimportant.Notealsothelargeerrorbars (2001). intheTokovininsampleasaconsequenceoftherathersmallnum- ber of systems in the Tokovinin sample that satisfy our selection criteria(165). 4.2.3 Propertiesandcomparisons Hereweelaborateonsomeofthepropertiesofthesampledandob- 4.2.4 Samplingprocedure servedpopulations.Fig.3(middleandbottom)showsthe(P ,P )- 1 2 diagramforasmallsample(360systems)oftheTSM1andTSM2 WesampleN =2·106triplesystemsforbothpopulationsTSM1 calc populations.TheupperboundariesofP andP inbothpopulations and TSM2. Using the triple algorithm described in Sect. 2 these 1 2 are quite different. In TSM1 P and P are limited by a and a , systemsareevolvedfromt=0,withallthreecomponentsstarting 1 2 l u whereasinTSM2suchsharpboundariesdonotexist.InTSM2the asZAMSstars,toaHubbletimet = 13.7Gyr.Inordertoretain H upperboundaryofP isdependentonP becauseinthissampling sufficientresolutioninhigher-masssystems(2.0 < m /M < 6.5) 2 1 1 ⊙ methodthelargestratioP /P isgivenbyP /P =2·106.These wesplitbothTSM1andTSM2intotwopartsof1·106systems,one 2 1 2 1 wide outer binary systems arevery rare, however. Fig.3 (middle with1.0< m /M < 2.0andonewith2.0 <m /M < 6.5.Inthe 1 ⊙ 1 ⊙ andbottom)alsoshowsthesystemsthataccordingtoourtripleal- resultspresentedinSect5systemsineachpartaregivenappropri- gorithmexperienceamergerintheinnerbinarysystemoradesta- ateweightsdeterminedbythemassfunctionofm toaccountfor 1 bilizationearlyontheMS(cf.Sects.5.1.1and5.3).Suchsystems thefact that theactual number of systemsoccurring inthe1.0 < arenotlikelypartofanobservedsampleoftriplesbecauseoftheir m /M < 2.0rangeislargerthanthatinthe2.0 < m /M < 6.5 1 ⊙ 1 ⊙ shortlifetimes.Becauseoftheirsmallnumber,removingthesesys- range(seeAppendixAfordetails).Severalkeyeventsintheevolu- tems does not significantly affect the distributions of masses and tionarekepttrackof,mostnotablytheonsetofsignificantKCTF, orbitalperiods(themeanvaluesareaffectedbytypically1%). CE evolution, a merger in the inner binary system and a desta- InTable1thedistributionsofthemassesandorbitalperiodsof bilization of the triple system. We thus obtain a catalogue of the Triplepopulationsynthesisandwhitedwarfmergers 9 k Description includesbothCEevolutiontriggeredinhighlyeccentricorbitsand CEevolutiontriggeredbyRLOF(incircularorbits).Thefraction 0 MS(m.0.7M⊙) f includes the possibility for multiple phases of CE evolution. 1 MS(m&0.7M⊙) CE Lastly,thequantity f isdefinedasthefractionofsystemsineach 2 Hertzsprunggap(HG) EC 3 redgiantbranch(RGB) channelinwhichamergeroccursduetoaneccentriccollision.We 4 coreheliumburning(CHeB) definesuchacollisiontooccur iftheinner binaryperiastrondis- 5 earlyasymptoticgiantbranch(EAGB) tanceissmallerthanorequaltothesumoftheinnerbinaryradii, 6 thermallypulsingAGB(TPAGB) i.e.ifa (1−e )≤R +R andwheninthecorrespondingcircular 1 1 1 2 7 nakedheliumstarMS(HeMS) casetherewouldnotbeacollision,i.e.a >R +R . 1 1 2 8 nakedheliumstarHertzsprunggap(HeHG) AnimportantresultofoursimulationsshowninTable3isthat 9 nakedheliumstargiantbranch(HeGB) in≈ 8%ofallsystemsaninnerbinarymergeroccurs,in≈ 6%of 10 heliumwhitedwarf(HeWD) all systemsno inner binary merger occurs but the orbit isshrunk 11 carbon-oxygenwhitedwarf(COWD) significantly and that ≈ 10% of all systems become dynamically 12 oxygen-neonwhitedwarf(ONeWD) unstableatsomepointintheevolution.Thismeansthatin≈24% 13 neutronstar(NS) 14 blackhole(BH) ofallsystemsthetertiarysignificantlyalterstheinnerbinaryevo- 15 masslessremnant lution whereas in the absence of the tertiary there would not be suchinteraction.Takingintoaccountthatsystemsinwhichthein- Table2.DescriptionofthedifferentstellartypesusedinFig.5.Identicalto nerbinarycomponentsmergeduringtheMS(≈4%)orinwhicha thetypesusedinHurleyetal.(2002). dynamicalinstabilityoccursduringtheMS(≈ 4%)arenotlikely to be observed (cf. Sect. 5.1) this estimate is reduced by ≈ 8%. This implies that the tertiary significantly alters the inner binary evolutionary outcomes where we distinguish between three main evolutionin≈ 16%/(1−0.08) ≈ 17%ofthe“observable”triples, channels:innerbinarymergers,noinnerbinarymergersandtriple i.e.triplesinwhichthehierarchicalstructureisnotdisruptedinan destabilizations.Inaverysmallnumberofsystems(55and44for earlystageintheevolution. TSM1andTSM2respectively)thecalculationoftheevolutioncan- A second important feature evident from Table 3 is that the notbecompletedduetoconvergenceerrorsintheODEsolverrou- resultsforTSM1andTSM2aregenerallysimilar,eventhoughthey tine(cf.Sect.2);thesesystemsareexcludedfromtheresultsbelow. have been sampled by different methods. To provide insight into InthesecasestheerrorsoccurjustpriortoaMSmergerorRGB+ the dependence of the probabilities of the main channels on the MSmerger.Becausetheaffectedsystemsconstituteatinyfraction initialparametersweshowinFig.6theseprobabilities(expressed ofallsystemsforwhichaMSmergerorRGB+MSmergerapplies asfractions)asfunctionoftheinitialparametersq ≡ m /m ,a , 1 2 1 1 thisdoesnotaffectourconclusions. βandi .WewillrefertothisfigureandTable3whendiscussing tot thethreemainchannelsinmoredetailbelow. 5 POPULATIONSYNTHESIS:RESULTS 5.1 Innerbinarymergers Wepresentthemainchannelsthatwefindinourpopulationsynthe- As a consequence of high-amplitude eccentricity cycles induced sisstudyinTable3,wherethefirsttwocolumnsshowtheprobabil- intheinnerorbitthecomponentsintheinnerbinarymayatsome itiesP(inpercent)ofthemainchannelsandseveralsubchannels pointmerge,eitherdirectlybecauseofanorbitalcollision(included ofbothsampledpopulationsTSM1andTSM2.Inadditiontothis inTable3inthefraction f )orindirectlyasaresultofstrongtidal table,Fig.5showsmoredetailedinformationonthelikelihoodof EC frictioninducedbyhigheccentricity,possiblyinvokingCEevolu- thedifferentcombinationsofinnerbinarymergerswherethestellar tion.Inthelattercasetheinnerbinarycaneithermergeduringthe typesusedaredefinedinTable2.Apost-MSmergerisdefinedasa CEorsurvivetheCEinatightorbitand(possiblyafteranotherCE mergerbetweenapost-MS(non-compactobject)primaryandany invokedbythesecondary)subsequentlymergeasaresultoforbital secondary,whereasacompactobjectmergerisdefinedasamerger energy loss due to GW emission. We separate further discussion betweenacompactobjectprimaryandanysecondary.Inaddition into mergers occurring on the MS, after the MS and mergers in- totheprobabilitiesofthechannelsinformationontheoccurrence volvingaprimarycompactobject. of KCTF, CE evolution and the nature of the merger (i.e. occur- ring in a circular or highly eccentric orbit) is given by means of thequantities f , f and f . Wedefine f asthefraction KCTF CE EC KCTF 5.1.1 MSmergers ofsystemsineachchannelinwhich|e˙ | > 10−18s−1 (suchthat 1,STD thereisasignificantchangeine duetoSTDinaHubbletime)and As Table 3 demonstrates most mergers occur on the MS and for 1 0.1|e˙ |<|e˙ |<|e˙ |(i.e.e˙ ande˙ areofcomparable almostallofthelatterthemergeroccursthroughaneccentriccol- 1,TF 1,STD 1,TF 1,STD 1,TF orderofmagnitude).Thiscanhappenatvariouspointsintheevolu- lision. In the latter case −4 . log (1−e ) . −5 just prior to 10 1 tionandisstronglyinfluencedbytheenvelopestructureoftheinner merger.IntheBinary calgorithmitisassumedthattheresultof binary stars because thisdetermines the effectiveness withwhich themerger isasingleMS starwithmassm +m ;depending on 1 2 tidalenergycanbedissipated.Inparticularifanyinnerbinarystar thelattervaluethefinalremnantiseitheraCOWD(mostcases), possessesaconvectiveenvelope(mostnotablylow-massMS,HG, an ONe WD or a NS (following a core-collapse supernova). We RGBandAGBstars)strongtidalfrictionislikelyife isalsohigh find that octupole terms in the STD are very important for MS 1 duetoKozaicycles.InTable3adistinctionismadebetweenthe mergers,whichisreflectedbythelargevaluesof|ǫ |(cf.Eq.2) oct typesofthestarinwhichtidalenergyisdissipatedfortheduration prior to merger for these systems; the latter quantity is narrowly ofKCTF.Furthermore, f isdefinedasthefractionofsystemsin distributedaround|ǫ | ≈ 10−1.5.Thiscanbeattributedtoacom- CE oct eachchannelinwhichCEevolutionisatsomepointinvoked.This binationofinitiallysmallsemi-majoraxisratiosβ ≡ a /a ,small 2 1 10 A.S.Hamers, O.R.Pols,J.S.W.Claeys and G.Nelemans 1 1 2 2 100 3 3 4 4 5 5 k1 6 k1 6 7 7 8 8 9 10-6 9 10 10 11 11 12 12 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 k k 2 2 Figure5.Left:thenumberofsystemsinTSM1thatexperienceaninnerbinarymergerforeachoccurringcombinationofstellartypesjustpriortomerging, normalized tothetotalnumberofmergersystems(thatconstitute ≈ 8%ofallsampledtriplesystems).Right:thenumberofsystemsinTSM1inwhich themergeroccursduetoaneccentriccollision,againnormalizedtothetotalnumberofmergersystems.Thestellartypesareidenticaltotheonesusedin Hurleyetal.(2002)andarerepeatedforconvenienceinTable2. inner binary mass ratiosq ≡ m /m and high outer orbit eccen- 1.0 1 2 1 tricitiese . Fig. 6 indeed shows that the fraction of MS mergers, 2 fMSmerge, decreases significantly withincreasing q1 and is peaked 0.8 MSmergers towards small β around 0.5 . log10(β) . 2.0. The MS mergers MSdestabilizations are also characterized by high initial inclination angles (cf. Fig. 0.6 6).Notethatamaximumin f occursatinclinationsslightly F MSmerge D aboveitot =90◦,i.e.forretrogradeorbits,whichisconsistentwith C 0.4 Shappee&Thompson (2012) who find an asymmetry in cos(i ) tot towardsnegativevaluesfortheprobabilityoftheeccentricKozai mechanism to occur. With regards to the dependence of f 0.2 MSmerge ona itmightbeexpectedthatMSmergerslikelyoccurforsmall 1 initiala asatighterorbitmakesaneccentriccollisionmorelikely. 0.0 1 However,wefindthatMSmergersonaveragehavelargeinitiala -6 -5 -4 -3 -2 -1 0 1 withamaximum of fMSmerge around a1 ≈ 102.8AU ≈ 6·102AU log10Ht(cid:144)ΤMSL (cf.Fig.6).Thisimpliesthattheeffectofincreasingtheeccentric- itymaximawithdecreasingβ(andthusincreasinga )isstronger Figure7.CumulativedistributionsforTSM1ofthetimestofMSmerger 1 thanthe effect thateccentric mergersbecome more unlikely with (solid line) and MS destabilization (dashed line) normalized to the MS increasinga1ife1werefixed. timescale,estimatedasτMS=10(m1/M⊙)−2.8Gyr. As Table 3 shows, for a small fraction of MS mergers (i.e. about0.009ofallMSmergersforTSM1)themergerdoesnotoc- sionoccursduringthefirstfewKozaicycleswhichtypicallyhave curduetohigheccentricity,i.e.themergeroccursinacircularor- timescalesofafewMyr,asmallfractionoftheMSlifetimeofthe bit.InthesecasesKCTFisresponsibleforstrongorbitalshrinkage primarystarsconsidered inthetriplesample.Thetimeofmerger leadingtoatightinnerorbit,eventuallyresultinginamergerina is thus mainly determined by the Kozai period P ∝ (P /P )P circularorbitduetoGWemissionwithinaHubbletime.Thefrac- K 2 1 2 andhencetheorbitalperiods.Weindeedfindthatthedistribution tionofMSmergersystemsinwhichthisoccurs(0.009forTSM1) ofthetimesofMSmergersisverysimilartotheinitialdistribution isindeedcomparablewiththefractionofMSmergersystemsthat of the Kozai periods. The fact that most MS mergers occur early satisfy our KCTF criterion on the MS (0.010 for TSM1); this is on the MS makes it unlikely to observe these systems as triples. alsothecaseforTSM2.WefindthatsuchstrongKCTFontheMS AsimilarconclusionappliestotheMSdestabilizations(Sect.5.3) occursonly inlow-massinner binarysystems(m < 1.25M )in 1 ⊙ thathappenevenearlier. whichthecomponents possessconvective envelopes (i.e.thesce- ArelevantquestionfortheMSmergersiswhetherthemerged narioofFabrycky&Tremaine2007). MSremnant couldevolvetoabluestraggler star,i.e.astarmore The eccentricMS mergers, which constitute thebulkof MS luminousthanstarsattheMSturn-offpoint.Thistriplebluestrag- mergers, typically occur early on the MS, with the majority of gler scenario has been proposed by Perets&Fabrycky (2009). If mergers(about70%)occurringwithin10%oftheprimaryMSlife- theMSstarsmergeveryearlyintheevolutionthentheageofthe time (Fig. 7, solid line). This is because in many cases the colli- merged MS star would appear to be consistent withitsmass and

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.