Research Article Composition of fungal soil communities varies with plant D o w abundance and geographic origin nlo a d e d Vanessa Reininger1,2,3*, Laura B. Martinez-Garcia1,4, Laura Sanderson1 and Pedro M. Antunes1 fro m 1 DepartmentofBiology,AlgomaUniversity,SaultSte.Marie,ON,P6A2G4Canada h 2 Presentaddress:Agroscope,InstituteforPlantProductionSciencesIPS,Schloss1,8820Wa¨denswil,Switzerland ttp s 3 Presentaddress:ETHZurich,InstituteofIntegrativeBiology,ForestPathologyandDendrology,Universita¨tstrasse16,8092Zurich, ://a Switzerland ca 4 Presentaddress:DepartmentofSoilQuality,WageningenUniversity,6700AA,Wageningen,TheNetherlands de m Received:27May2015;Revised:30July2015;Accepted:1September2015;Published:14September2015 ic.o u AssociateEditor:JeanH.Burns p .c o Citation:ReiningerV,Martinez-GarciaLB,SandersonL,AntunesPM.2015.Compositionoffungalsoilcommunitiesvarieswithplant m abundanceandgeographicorigin.AoBPLANTS7:plv110;doi:10.1093/aobpla/plv110 /a o b p la dArbivsetrsraofcptl.anInttceormacmtiounnsitoyfsbtreuloctwugreroiunnindvfaudnegdalgcroamssmlanudnsit.ieHsowwietvheer,xfioetilcdasnudrvneaytsivlienkpilnagntpslapnetciceosmmmayunbietyimstpruocrttaunret /article withbelowgroundfungalcommunitiesaremissing.Weinvestigatedwhetheraselectednumberofabundantandrela- -ab s tivelyrareplants,eithernativeorexotic,fromanold-fieldsiteassociatewithdifferentfungalcommunities.Wealso tra c assessedwhethertheseplantsshoweddifferentsymbioticrelationshipswithsoilbiotathroughtheirroots.Wechar- t/d acterizedtheplantcommunityandcollectedrootstoinvestigatefungalcommunitiesusing454pyrosequencingand oi/1 assessedarbuscular mycorrhizalcolonizationandenemy-inducedlesions.Differencesinfungalcommunitieswere 0.1 consideredbasedontheassessmentofa-andbdiversitydependingonplant‘abundance’and‘origin’.Plantabun- 09 3 danceandorigindeterminedthefungalcommunity.Fungalrichnesswashigherfornativeabundantasopposedto /a o relativelyrarenativeplantspecies.However,thiswasnotobservedforexoticsofcontrastingabundance.Regardlessof bp la theirorigin,bdiversitywashigherforrarethanforabundantspecies.Abundantexoticsinthecommunity,whichhap- /p pentobegrasses,weretheleastmycorrhizalwhereasrarenativesweremostsusceptibletoenemyattack.Ourresults lv1 1 suggestthatcomparedwithexotics,therelativeabundanceofremnantnativeplantspeciesinourold-fieldsiteisstill 0/1 linkedtothestructureofbelowgroundfungalcommunities.Incontrast,exoticspeciesmayactasadisturbingagent 80 3 contributingtowardsthehomogenizationofsoilfungalcommunities,potentiallychangingfeedbackinteractions. 79 1 b Keywords: Arbuscularmycorrhizalfungi;communityecology;adiversity;bdiversity;454pyrosequencing. y g u e s t o Introduction n communityassemblythroughtestingplant–plantcom- 0 9 Oneofthemajorgoalsinecologyistounderstandwhy petitiveinteractionsandplant–abioticinteractionssuch A p some plant species in natural communities are more asnutrientandlightavailability(Tilman1985;Thompson ril 2 abundantthanothers(Hubbell2001;Chave2004;McGill 1987;WilbyandBrown2001;Milleretal.2005;Dybzinski 01 9 etal.2007;Dumbrelletal.2010).Manystudiesfocusing andTilman2007;Beveretal.2012).Thereisincreasing on plantcommunityecologyhaveprovidedinsightinto evidencethatbelowgroundplant–microbeinteractions *Correspondingauthor’se-mailaddress:[email protected] PublishedbyOxfordUniversityPressonbehalfoftheAnnalsofBotanyCompany. ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.org/ licenses/by/4.0/),whichpermitsunrestrictedreuse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 1 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field areimportanttoexplainplantcommunitydynamics(Bever 2002). However, (cid:2)50% of the studies do not support etal.1997,2010,2012;ReynoldsandHaubensak2009). the Enemy Release Hypothesis (Agrawal et al. 2005; Many studies have already been conducted focusing on Jeschkeetal.2012).Thesecontrastinghypotheseshigh- belowground microbes and their interactions with the lighttheuncertaintysurroundingmicrobialcommunities hostplant (Johnsonetal.1997;JumpponenandTrappe associatingwithnativeandexoticplantspeciesinnatural 1998; Reynolds et al. 2003; Bonfante and Anca 2009; communitiesandhowalterationsimposedbyexoticsmay Compant et al. 2010; Porras-Alfaro and Bayman 2011; affect the soil biota community and by extension, the Reininger et al. 2012; Reininger and Sieber 2012, 2013). entireplantcommunity. D o However,littleisknownabouttheimpactofplantcommu- Next-GenerationSequencingtechnologiessuchas454 wn lo nitystructureonthebelowgroundsoilmicrobialcommu- pyrosequencing using universal primers provide an a d nity(Klironomos2003;Reynoldsetal.2003;Bagchietal. opportunity to survey the soil microbial diversity asso- ed 2010; Bever et al. 2010, 2012) especially with regard to ciatedwithplantspeciesinnaturalcommunities(Bue´e fro m plant communities which are progressively invaded by etal.2009;CostaandAntunes2012).Thesesurveyscon- h exotic plant species (Levine 2000; Klironomos 2002). tributetoimproveourunderstandingofthebiodiversityof ttp s AccordingtotheWildSpeciesReportissuedbytheGovern- microorganisms that co-exist and interact with plant ://a c ment of Canada, extant natural plant communities in rootsacrossspatialscalesandpossiblyinfluenceplants’ ad e Canadanowincludealargeportionofexoticspecies,com- relative abundance and the dynamics between native m ic prising24%ofallthevascularplants(WildSpecies2010, andexoticplantspecies.Specifically,fungiarekeydrivers .o u http://publications.gc.ca/collections/collection_2011/ec/ of primary productivityand plant communitystructure p.c o CW70-7-2010-eng.pdf,November2014).Duetoestablish- due to their diverse roles as mycorrhizal fungi, endo- m mentofexoticplantspecies,plantcommunitystructure phytes,decomposersandpathogens.Theydirectlyinter- /ao b canchangeandconsequently,interactionswithsoilmicro- actwithplantrootsresultinginfunctionaloutcomesthat pla bialcommunitiesmaychangeaccordingly.Bycomparing range from mutualism to parasitism (Schulz and Boyle /a theassociationsbetweenco-occurringnativeandexotic 2005;SinclairandHoward2005;SmithandRead2008). rticle plant species and their respective belowground fungal Betterknowledgeoffungalcommunitystructurewithin -ab s communities,wemaybebetterabletounderstandand plantrootsamongdifferentplantspecies is afirststep tra c predictplantcommunitydynamicsininvadedecosystems. towardsunderstandinghowfungiinfluenceplantcom- t/d o AccordingtoKlironomos(2002),plantspeciesrelative munitydynamics. i/1 abundance may partially be explained by interactions Wesurveyedthefungaldiversitypresentintherootsof 0.1 0 betweenplantsandsoilmicrobes.Plant–soilfeedbacks fournativeandfourexoticplantspeciesfromanatural 9 3 aredefinedastheeffectthatplantspeciesexertonsoil old-field plant community. Within each of these two /a o b biotic and abiotic factors, which in turn can feedback groups,twospecieswerehighlyabundantinthecommu- p la intogrowthandfitnesseffectsonsubsequentconspecific nityandtheothertwowererelativelyrare.aDiversitywas /p lv or heterospecific plants (Van der Putten et al. 2013). In usedtomeasurethefungaldiversityineachplantspecies 1 1 0 native plants, feedbacks are subjected to co-evolution whereasbdiversitywasameasureofvariationinfungal /1 8 betweensymbionts.Exoticspeciesinvadinganewrange composition among groups (abundant versus rare and 0 3 7 willalsoestablish interactionswiththesoil biotabutby native versus exotic) (Anderson et al. 2011). We also 9 1 virtueofthehostplant’snoveltyinthesystem,thoseinter- determinedlevelsofarbuscularmycorrhizalcolonization b y g actionsmaynotyethaveexperiencedco-evolutionarypro- andlesionsinflictedbyenemiestoplantroots. u e cesses.Asaresult,exoticsmayassociateindiscriminately Wepredictedthatfungalcommunitiesassociatingwith st o with soil microbial communities and function as a non- plantrootsdifferdependingonplantspecies‘abundance’ n 0 hostforsomeplantpathogens,i.e.theyshowasymptom- and ‘origin’. More specifically, abundant natives would 9 A lBeosyslein2fe0c0t5io).nT(hNeu¨srenbfuenrggearlasnymdbLiiopnkats,2a0c0c5u;mScuhlautliznganind arasrseoncaiattiveeswaitshthmeyoareresmimoirlearofftuenngsaulrrcooumndmeudnbiytiecosntshpaen- pril 20 1 exotic species without necessarily causing population cificsthatarelikelytoharborthesamefungalcommunity. 9 declines, may in turn negatively affect native plants to However,exoticswereexpectedtoassociatewithamore whichtheyarepathogenic(RoyandHandley2012;Flory variablefungalcommunityastheyarenotyetrestricted andClay2013;VanderPuttenetal.2013). toaparticular(i.e.co-evolved)fungalcommunity.Abun- Exotic plants are assumed to leave their enemies dant and rare exotic plant species were expected to behindintheirhomegeographicrange(EnemyRelease show the same variable pattern as they have not had Hypothesis)andthiscouldexplainthedifferentialinfeed- the same amount of time to interact with the below- backintheirnewrangerelativetonatives,whicharemore groundfungalcommunitiesandestablishspecies-specific affected by a negative feedback (Keane and Crawley relationshipsincomparisontothenatives. 2 AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field Methods zone.Onehundredplotswereselectedrandomlyforassess- mentofplantspeciesrichnessandabundance.Speciesrich- Studysiteandplantcommunitydiversity nesswasassessedinthesecondweekofeachmonthfrom The study site, our long-term ecological research site MaytoAugust2012.Plotswerethoroughlyexaminedandall (LTERS), is a 100×100m flat homogeneous (i.e. plant speciespresentwererecorded.Percentoccurrenceofspe- coverandedaphicconditions)oldagriculturalfieldatthe cieswascalculated by counting the numberof plots (i.e. Ontario Ministry of Natural Resources Research (OMNR) the100randomlyassignedplots)containingeachspecies. Arboretum in Sault Ste. Marie, Ontario (46832′34.1′′N, Thisprovidedanestimateofspecies’abundance(i.e.percent D o 84827′29.4′′W).Thefieldsitehasnotbeencultivatedfor occurrence)inourold-fieldsite(Fig.1). wn six decades and has not been mowed since 2009. The Thesurveycomprisedfourexoticandfournativeplant loa d soil is a silty loam and soil analysis conducted in 2011 species(Table1).Ineachcategory,i.e.exoticandnative, ed were as follows (n¼6): 22.6+1.06% clay, 53.1+ twospecieswereabundantandtwowererelativelyrare fro m 0.27% silt, 24.4+1.07% sand, 0.13+0.001% total N, (termedabundantandrarehereon)atthisold-fieldsite h 1.81+0.02%totalC,11.4+0.07mgkg21Brayavailable (Fig.1).Thespecieswerechosenaccordingtotheirnat- ttp s P,360.7+2.55mgkg21Ca,45.0+0.23mgkg21K,38.9+ ural relative abundance at the old-field site and, as ://a c 0.32MgandpH¼5.74+0.01.Thefieldwasdividedinto such, the lack of a balanced phylogenetic design was ad e twohundredandeighty-nine1×1mplotsona17×17 unavoidable. Exotic grasses dominate the site and we m ic plotgrid.Eachplotwassurroundedbya1mwidebuffer selected two of the most dominant for our exotic .o u p .c o m /a o b p la /a rtic le -a b s tra c t/d o i/1 0 .1 0 9 3 /a o b p la /p lv 1 1 0 /1 8 0 3 7 9 1 b y g u e s t o n 0 9 A p ril 2 0 1 9 Figure1. Plantcommunityattheold-fieldsiteinSaultSte.Marie,ON,Canada.Relativeabundancewascalculatedasthenumberofplotsin whicheachspecieswaspresentoutof100plots(1×1m).Blackbarsandspeciesnameswithanasteriskindicatethespeciesusedinthisstudy. E,exoticorigin;N,nativeorigin. AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 3 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field Table1. PlantspeciesfromourLTERSinvestigatedinthisstudy. at2808Candfreeze-driedfor4days(LabconcoFreeZone 2.5,USA).Toverifypropersurfacesterilizationthree0.5-cm Nativerare Nativeabundant Exoticrare Exotic rootpiecesofeachindividualplantwereexcisedandsur- abundant facesterilizedasdescribedaboveandincubatedatroom .................................................................................. R.hirta S.canadensis H.perforatum B.inermis temperatureonpotatodextroseagarplates.Surfacester- ilizationoftheplantrootsystemswassuccessfulasfungi S.lanceolatum P.arundinacea P.recta D.glomerata started growing out of the roots onlyafter several days at208C.Thismeans organismsattachedtothesurface D o abundantcategory (i.e. Dactylisglomerata and Bromus wereexcludedbutfungiwithintherootswerestillactively wnlo growing. a inermis).Forthenative-abundantcategoryweselected d DNAwasextractedusingtheDNeasy96PlantKit(Qia- ed themostabundantnativesatthesite(i.e.Solidagocana- gen, Toronto, ON, Canada) according to the manufac- fro densis and Phalaris arundinacea). Rare (i.e. relatively m rarer) specieswerechosenbasedon thepresenceofat tpuurreifir’esdpursoitnogcothl.eTGheenoexmtricacDtNeAd CDlNeaAnw&aCsocnlceeannteradtoarnTMd http least four replicates in the field. Potentilla recta and Kit (ZymoResearch,USA).AfterDNApurification,thesix s://a Hypericumperforatumweretheselectedrareexoticspe- c cies and Symphyotrichum lanceolatum and Rudbeckia technicalreplicatescomingfromonesinglerootsystem ade were pooled together leading to 32 samples in total m hirtatherarenatives.Ourmaingoalwasnottocontrol (eight plant species×four replicates). The amount of ic.o for phylogenetic relatedness or functional group but u insteadtosurveyand compareplantspeciesaccording DNAwasmeasuredusingaBioTekTM EpochTM Microplate p.c o Spectrophotometer(Winooski,VT,USA). m totheirrelativeabundanceinthiscommunity.Oureight PrimersfITS7asaforward(5′-GTGARTCATCGAATCTTTG-3′) /ao selectedspeciesrepresent24%ofallthespeciesinthe b community. Across the entire old-field site four indivi- andITS4asareverse(5′-TCCTCCGCTTATTGATATGC-3′)were pla chosen to sequence samples using 454 pyrosequencing /a dpvioudtauelasnlptpieaerlrsspppleaacntiietasslpwveaecrriieeasbs)ailwimtyep,rleseesdtasfmoorpfrloreeodptsilniaccanltodestseo(pmornoinexiimimnidiztiey- (sIphercmifiacrkfuentgaall.2p0ri1m2e).rWfITeSs7pbeceicfiacuaslleywcheowseerteheinnteerweshteigdhilny rticle-abs to each other in a smaller area wherever possible. To amplifyingtheentirefungalcommunitypresentwithinthe trac account for this possible spatial variation we included plantroots.IncombinationwithITS4thispairspecifically t/d o thefactor‘replicate’inourstatisticalmodel.Thechoice amplifiestheITS2regionandproducesshorteramplicons i/1 offourreplicatesisconsistentwithotherstudiesinvesti- compared with the ITS1f/ITS4 primer pair. We expected 0.10 that as we sequenced an entire fungal community any 9 gating belowground fungal community interactions 3 bias resulting from different sequence lengths would be /a with plants(Johnsonet al.2004;Mart´ınez-Garc´ıaet al. ob minimizedbyamplifyingtheshorterITS2regioninstead p 2011). la oftheentireinternaltranscribedspacer(ITS)region.Accord- /p lv ing to a BLASTN search, our selected primer pair should 1 1 454Pyrosequencingoffungalcommunities match68%oftheGlomeromycota(Ihrmarketal.2012). 0/1 8 Todeterminethefungalcommunityintheselectedspe- SamplesweresenttoGenomeQue´bec(Montre´al,Canada) 0 3 7 cies,plantswerecollectedincludingtheirwhole-rootsys- andpurifiedanddiluted1:4usingaMultiScreenPCRfiltra- 9 1 tem using a spade within 2 days in the second half of tionplate(Millipore,Canada).PCRwithprimersfITS7and b y August 2013. They were placed into Ziploc bags and ITS4wasconductedin25mLreactionvolumecontaining gu e cooledimmediately inacold boxandlaterat48Cuntil 2.5mL purified DNA, 2.5mL 10× buffer, 1.5mM MgCl2, st o furtherprocessing.Plantswerestoredat48Cnolonger 0.2mMdNTPs,0.4mMofeachprimerand5UmL21HotStar- n 0 than24h.Rootsystemswerewashedinthelaboratory TaqDNAPolymerase(Qiagen)asfinalconcentrations.PCR 9 A wanityhrcoooldt tfraapgwmaetnetrstothraetmwoveerethneotsociloannndecttoedseptoartahtee rautn9n6in8gCfcoorn1d5itimoninsfwoleloreweadsbfoyll3o5wcsy:cilneistiaolfddeennaattuurraattiioonn pril 20 1 mainsystemandwhichcouldbelongtoadifferentplant. at968Cfor30s,annealingat528Cfor30s,extensionat 9 DNAwasextractedfromsixtechnicalreplicatesperindi- 728C for 1min and a final extension step at 728C for vidualplanttoensurehavingarepresentativeamountof 10min.Samplesweretaggedusing10-bpmultiplexidenti- DNA.Foreachtechnicalreplicatetwenty-one0.5-cm-long fiers(MIDTags)inaseparatebarcodingPCRreaction.The rootpieceswereexcised.Forverythickroots,theamount tagged,equimolarampliconsweresequencedonaRoche ofrootmaterialwasadjustedaccordinglytoavoidover- 454GSFLXinstrumentusingtheFLX+chemistryatGenome loadingtheDNA extraction column. Rootswere surface Que´bec.Atotalof327867singlereadswereproducedina sterilizedfor30sin30%hydrogenperoxideandthereac- one-fourthregionofa454plate.Sequencedataweresub- tionwasstoppedusing70%EtOH.Theywerethenfrozen mittedtoNCBI(accessionno.SRP043133). 4 AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field Symbioticrelationships effect of plant abundance and origin was calculated by measuringtheeffectofeachfactorafteraccountingfor To investigate symbiotic (i.e. functional) relationships betweenmutualisticandantagonisticbelowgroundbiota thevarianceexplainedbytheotherfactor(varianceparti- andourtargetspecies,plantswerecollectedatourold- tioning (Schmid et al. 2002)). This was done after first field site in mid-August 2012, with the exception of accountingforourfourreplicates(i.e.spatialvariability) R.hirta,whichcouldnotbefoundonthatoccasion.Four and we also took into consideration the two different individualplantswerecollectedforeachspeciesusinga plantfunctionalgroups(i.e.monocotyledonsanddicotyle- spade(exceptforH.perforatumforwhichwecouldonly dons).Wefirstranamodelincluding‘plantspecies’asa Do samplethreeindividuals).Inthelaboratory,rootsamples thirdfactorand,asexpected,plantspecieswereasignifi- wn lo werecarefullywashedanddividedintotwosub-samples. cantpredictoroffungalcommunitycomposition.Bythis ad Onesub-samplewasusedtoquantifythepercentageof factor, 42% of the variance was explained. However, ed root colonizationbyarbuscularmycorrhizalfungi (AMF) since our main goal was to survey general patterns of fro m usingthe gridline intersect method byMcGonigle et al. fungaldiversityratherthanspecies-specificeffects,we h (1990). The roots werestained using 0.03% Chlorazol- considered species as ‘plant functional group’ thereby ttps blackEandaminimumof100intersectionsperreplicate gainingdegreesoffreedominourtwofactormodel. ://a c wereexamined.Theothersub-samplewasusedtoquan- Tocalculatethevarianceexplainedbythefactor‘abun- ad e dance’(fullmodelincludinginteraction)weusedthefol- m tifytheincidenceofdiseaseandenemyattackbyvisually ic estimatingdamage(i.e.thenumberoflesionsperroot) lowingformula: .ou p caused by pathogens, parasites and herbivores. This Dissimilaritymatrix(cid:2)replicate+ plant functionalgroup .co methodisidenticaltotherootstainingandquantification m method used for AMF,excludingthe stainingstep.This +origin+abundance+origin:abundance /ao b approachprovidesaconsistentestimate ofplanttoler- (1) pla /a a20n0c3e;Sacghaninitszetrpeattahl.o2g0e1n1s).aFnordbootthheArMeFnaenmdileessio(Mniqtcuhaenl-l Tocalculatethevarianceexplainedbythefactor‘origin’ rticle tification,H.perforatumsampleshadtoundergoanadd- (fullmodelincludinginteraction)weusedthefollowing -ab s itionalbleachingstepusingalkalinehydrogenperoxideto formula: tra c removerootpigmentationtoallowvisualization. t/d Dissimilaritymatrix(cid:2)replicate+ plant functionalgroup o i/1 +abundance+origin+abundance:origin 0.1 Bioinformaticsandstatisticalanalysis (2) 09 3 BioinformaticswereperformedatGenomeQue´becusing /a o b Qiime(version1.7.0)thepipelinefordataprocessing.In Theplantfunctionalgroupwaskeptinthemodelsinceit p la total, 327867 readsweregenerated,assessed fortheir explained9.21%ofthetotalvariance.Bykeepingit,the /p lv qualityand clustered.Reads witha Phred qualityscore variancefromthisfactorcouldbedeductedfromourvari- 1 1 ≥30, ,3 undetermined bases and ,4 bases having a ablesofinterest(‘abundance’and‘origin’).Asdissimilar- 0/1 8 Phredqualityscore ,20passedthequalitycontrolstep. ity measure, Bray–Curtis was used to account for the 0 3 7 Allreadswerecuttoafinallengthof220bases.Reads composition of the fungal communities as well as to 9 1 wereclusteredat100%ID,followedby99%andfinally exclude joint absences. a Diversity wastested foreach b y g by97%.Chimeraclusterswereremovedduringthisstep. sampleusingthefunction‘rarefy’fromtheveganpack- u e SequenceswereblastedagainsttheITS2databaseofthe age (Oksanen et al. 2013) in R (R CoreTeam 2013) and st o UNITEITSdatabase(Ko˜ljalgetal.2013),trimmedtothe an ANOVA was run to test for significant differences n 0 ITS2region.AnOperationalTaxonomicUnits(OTU)table dependingonthefactors‘abundance’and‘origin’.Adis- 9 A wraaresfigeednteora1t0e0d0rreepardessepnetrinsgamfupnlgei.TohnelyQaiinmdespaimpeplliensew(veerre- t(Oankscaenemnaettriaxl.w20a1s3c)rineaRte(RdCuorseinTgeatmhe20v1e3g)atnoepsatcimkaagtee pril 20 1 sion1.7.0)wasusedtocalculatetherarefractioncurves. b diversity using the function ‘betadisper’ and to draw 9 Afterrarefaction,singletonsanddoubletonswereremoved principlecoordinatesanalysis(PCoA)plots. andtheresultingOTUtablewasusedforfurtheranalysis. AnotherANOVAwasruntotestwhetherAMFrootcol- To determine whether fungal communities differed onization and lesions varied according to ‘abundance’ betweenthefactors‘abundance’(i.e.rareandabundant and‘origin’.Tomeettherequirementsofthestatistical plantspecies)and‘origin’(i.e.nativeandexoticplantspe- tests,variableswerearcsinetransformed.Meansamong cies),aPermutationalMANOVAwasconductedusingfunc- treatmentswerecomparedusingTukey’shonestlysignifi- tion‘adonis’fromtheveganpackage(Oksanenetal.2013) cant difference (HSD) test (P,0.05). These statistical implementedinthesoftwareR(RCoreTeam2013).The analyses were performed with the software StatSoft, AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 5 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field Inc.(2013),STATISTICA(dataanalysissoftwaresystem), Table2. Taxonomicfungalgroupsdetectedintherootsofallplant version12.www.statsoft.com. speciesinthefilteredandrarefiedOTUtableexcludingsingletons anddoubletons. Taxonomicgroup No.of OTUs No.of Reads Results OTUs in% reads in% .................................................................................. Fungalcommunitypatterns Ascomycetes 138 84 26754 95.5 Wedetected164fungalOTUsacrossallsamples.Thephy- Helotiales 57 41.3 17964 67.1 D o lum Ascomycota comprised 138 OTUs (84% of fungal Chaetothyriales 25 18.1 1291 4.8 wn lo OTUs) whereas Basidiomycota only comprised 23 OTUs a Pleosporales 17 12.3 1522 5.7 d (14%offungalOTUs),theremainingthreeOTUs(1.8%of ed fungal OTUs) could only be assigned to Kingdom Fungi Capnodiales 9 6.5 1522 5.7 fro m (Table 2). We were unable to recover AM fungi as we Sordariales 7 5.1 809 3 h expectedbasedonourprimerchoice.Fungalrichnessof Hypocreales 3 2.2 129 0.5 ttps rarefiedandnon-rarefiedsamplesforeachplantspecies Xylariales 2 1.4 195 0.7 ://a c isprovidedinTable3.ThetwoplantspeciesH.perforatum ad Chaetosphaeriales 2 1.4 121 0.5 e and P. arundinacea had the highest number of fungal m OTUs(Table3)andtheHelotialeswasthemostcommon Dothideales 2 1.4 50 0.2 ic.o u fungalorderacrossallplantspecies(Fig.2andSupporting Hysteriales 1 0.7 52 0.2 p.c o Information—TableS1fordetailedtaxonomicresults). Basidiomycetes 23 14 1258 4.5 m Permutational MANOVA showed significant fungal Agaricales 6 26.1 198 15.7 /aob Rco2m¼m0u.1n4it0y,dPis¼sim0.0ila0r1it)ieasnfdor‘o‘aribguinn’d(aFnce’¼(F14,2.599¼0,5.R129¼4, Auriculariales 5 21.7 102 8.1 pla/a 0.120, P¼0.001) after accounting fo1r,2b9oth the spatial Sebacinales 3 13 630 50.1 rticle variation (factor ‘replicate’) in our field site (F3,29¼ Cantharellales 2 8.7 285 22.7 -ab s 1.322 with R2¼0.103, P¼0.161 (1) and, R2¼0.103, Polyporales 1 4.3 8 0.6 tra c P¼0.140 (2)) and our two plant functional groups Undetermined(fungi) 3 1.8 3134 11.2 t/d o (monocotyledons and dicotyledons) which explained i/1 9.21% of the total variance (F1,29¼3.756 with R2¼ 0.1 0.092,P¼0.005(1)andR2¼0.092,P¼0.002(2)).How- 09 3 ever,theinteractionof‘abundance’and‘origin’wasnot Table 3. Fungal richness per plant species for non-rarefied and /a o significant(F ¼1.235,R2¼0.034,P¼0.255)ineither rarefiedsamples. bp 1,29 la ofthetwomodelsandtherefore,wecontinuedwiththe /p Plantspecies Non-rarefied Rarefied lv analysisusingthereducedmodels(i.e.byexcludingthe .................................................................................. 11 interaction but keeping the factor ‘replicate’) (Table 4). R.hirta 45.26127 27.25000 0/1 8 ThePCoAplotswereinconcertwiththeresultsfromthe S.lanceolatum 78.96880 49.00000 03 7 permutationalMANOVApointingtowardsthestructuring S.canadensis 75.55551 44.33333 91 offungalcommunitiesasafunctionof‘abundance’and b P.arundinacea 107.10158 64.75000 y g ‘origin’(Fig.3).Figure3Cshowsthatour‘plantfunctional u groups’didnotsharethesamefungalcommunitiesbut H.perforatum 108.59286 55.25000 est o those were rather dependent on origin except for P.recta 63.01892 40.33333 n 0 H.perforatumandS.canadensis. B.inermis 69.51156 43.50000 9 A affaecDtievedrsbiytyt,hi.ee.ftahcetnoursm‘abbeuronfdOaTnUces’p(eFr1s,2a6m¼p1le.1,w08a,sPno¼t D.glomerata 64.02056 39.25000 pril 201 0.302)or‘origin’(F ¼0.163,P¼0.690)buttheirinter- 9 1,26 actionwassignificant(F ¼6.908,P¼0.014)(Fig.4A). 1,26 native plants, fungal community composition among Fungalbdiversityvariedsignificantlydependingonplant exoticswasmoresimilar(Fig.3B). species’relative‘abundance’(F ¼5.77,P¼0.017)but 1,28 notontheir‘origin’(Fig.4B). Symbioticrelationshippatterns Overall, abundant plant species tended to associate with a more similar fungal community compared with Species‘abundance’aswellastheinteractionbetween rareplants(Fig.3A).Thiswasalsosupportedbybdiversity ‘abundance’ and ‘origin’ significantly determined AMF (Fig.4B).Inaddition,PCoAindicatedthatcomparedwith colonization by hyphae in our selected plant groups 6 AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field Incontrast,hyphalcolonizationdidnotvarysignificantly withplantrelativeabundancefornativeplants(Fig.5A). Arbuscularcolonizationshowedthesametrendsbutthe resultswerenotstatisticallysignificantduetoahighvari- ancefortherareexoticspecies,whichwereunderrepre- sented(Fig.5B).Wefoundasignificanteffectof‘origin’as well as‘origin’בabundance’ for vesicularcolonization (F ¼7.663, P¼0.011 and F ¼6.937, P¼0.015, D 1,23 1,23 o respectively).However,thiswasincontrastwithhyphal wn lo colonization. The rare native species had the greatest a d numberofvesiclesandrareexoticstheleast(Fig.5C). ed ‘Origin’wasasignificantfactordeterminingthesuscep- fro m tibility of plant species to enemy attack belowground h (F ¼17.811,P≤0.001),anddespitethelowerreplica- ttp 1,22 s tion of rare plants due to the absence of R. hirta, we ://a c detected a marginally significant effect of ‘abundance’ ad e (F ¼4.148,P¼0.054).Inaddition,therewasamargin- m 1,22 ic allysignificanteffectfortheinteraction(F1,22¼3.273,P¼ .ou 0.084).Rarenativeswerethemostsusceptiblegroupto p.c o enemy attack whereas for exotics, their lesion number m was the same regardless of their relative abundance in /ao b thecommunity(Fig.5D). pla /a rtic Discussion le-a b s Figure2. Rarifiedabundanceoffungalsequencereadsdiscrimi- Themainobjectiveofthisstudywastoinvestigatepatterns tra nated by fungal order for each plant species. ‘Undetermined’ connectedwithplantandbelowgroundfungalcommunity ct/d meansOTUsnotdeterminedtothelevel‘Order’butatleasttothe o kPAin,gPd.oamrunodfiafunnagcie.aR;HH,PR,.Hh.iprtear;foSrLa,tSu.mla;nPcRe,oPl.arteucmta;;SBCI,,BS..icnaenramdies;nDsiGs;, aspsseecmiesbloyf.Mcoonretrasspteincgificreallalyt,ivweeadbeutnedrmaninceedanwdhegtehoegrrapplahnict i/10.1 0 D.glomerata. origininanaturalold-fieldcommunitytypicalofeastern 93 NorthAmericaassociateddifferentlywiththebelowground /a o b fungalcommunity.Ourmaingoalwastoprimarilysurvey p Table 4. Factors and their interaction referring to community la plants based on their relative abundance. As such, the /p dissimilarityandresultingfromthePermutationalMANOVAforthe lv responsevariables‘abundance’and‘origin’;*Significantata¼0.05. lackofabalancedphylogeneticdesignwasanunavoidable 11 0 featureofthestudysystem.Ourchoiceofplantspeciespro- /1 F-value R2 P-value videsinsightintohownaturalplantdiversitymaycontrib- 80 .................................................................................. 3 7 Calculatingfactor‘abundance’ utetoinfluencethebelowgroundfungalcommunityofa 91 typicalold-fieldgrasslandineasternNorthAmerica.Never- b Abundance 5.194 0.14 0.001* y g theless, in addition to plant abundance (abundant and u Replicate 1.322 0.103 0.161 e rare) and plant origin (native and exotic) we accounted st o Plantfunctionalgroup 3.756 0.092 0.005* fortheproportionofthevarianceexplainedbyplantfunc- n 0 Abundance×origin 1.235 0.034 0.255 tional groups (monocotyledons and dicotyledons). Our 9 A Calculatingfactor‘origin’ rceosmulmtsuwnietireescaosnssoisctieantetdwditihffeoruerntplyredwiictthionplathnattsfpuencgieasl pril 20 Origin 4.59 0.12 0.001* 1 dependingontheplants’relative‘abundance’and‘origin’. 9 Replicate 1.322 0.103 0.14 Plantspecies‘abundance’wasoneofthetwofactors Plantfunctionalgroup 3.756 0.092 0.002* influencingfungalcommunitiesinplantrootssuggesting Abundance×origin 1.235 0.034 0.255 thatsoilcommunitiesmayalsoplayaroleindetermining therelativeabundanceofourplantspeciesinthecom- munity.Thisisconsistentwithreportsemphasizingthe (F ¼11.548, P¼0.002 and F ¼6.972, P¼0.015, importanceofsoilmicrobialcommunitiesinstructuring 1,23 1,23 respectively).Rareexoticplantshadthelargestamount plantcommunities(Klironomos2002;Beveretal.2010; of AMF colonization and abundant exotics the least. Pendergastetal.2013). AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 7 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /a o b p la /a rtic le -a b s tra c t/d o i/1 Figure3. Principalcoordinateanalysisplotsdiscriminatingbetweenbelowgroundroot-associatedfungalcommunitiesaccordingto(A)abun- 0 .1 dance,(B)originand(C)plantspecies.In(AandC)exoticplantspeciesarelabeledwithastarandnativespecieswithtrianglesandin(B)abun- 0 9 dantplantspeciesarelabeledwithatriangleandrarespecieswithastar.Confidenceinterval¼80%for(AandB)and75%for(C).RH,R.hirta; 3 /a SL,S.lanceolatum;SC,S.canadensis;PA,P.arundianacea;HP,H.perforatum;PR,P.recta;BI,B.inermis;DG,D.glomerata. o b p la /p lv Partlyconsistentwithourprediction,wefoundbdiver- species occupya greater numberof microsites to avoid 1 1 0 sitytobesignificantlyhigherforrarethanforabundant competitionastheyarepresumablyratherweakcompeti- /1 8 plantspecies,indicatingthatfungalcommunitiesamong torscomparedwithabundantplantspecies.Duetothese 0 3 7 abundant plant species were more similar compared differentenvironmentsrareplantscannotbeveryselective 9 1 withthosepresentinrareplantspecies(Fig.4B).Thisresult inchoosingtheirfungalcommunities.Thisinturnmight b y wasadditionallysupportedbythePCoAplot(Fig.3A).How- influencetheirbdiversitywhichwasratherhighcompared gu e ever, the interaction between ‘abundance’ and ‘origin’ withabundantspecies.Sincerarityincommunitiesmaybe st o wasnot significant contrary to our predictionthat pat- drivenbynegativefeedback(Klironomos2002)basedon n 0 ternsoffungal communitydiversitywere connectedto ourresultsitistemptingtospeculatethatrarenativespe- 9 A nboifitchapnltalnytdaibffuenrednatncbeetawnedeonrigeixno.tbicDaivnedrsnitaytwivaessnpoetcsieigs-. c(Bieesvemraeytaasl.s2o0c1ia2t;eVwanithdepruPtauttitveenlyemtaolr.e20a1n3ta).gTohnisiswticasfufnugr-i pril 20 1 bDiversityofrareplantsmaybeinfluencedbythefungal thersupportedbyourrootlesiondata,showingthatroot 9 communityofneighboringplantspecieswhicharelikely enemiesaffectedmostlyrarenativeplants(Fig.5B).Add- to be composed of different plant species. Conversely, itionally,anegativefeedbackhasbeenshowntobepreva- abundantplantsaremoreoftensurroundedbyconspeci- lent in grasslands maintaining a high plant diversity ficsandtherefore,shareamoresimilarfungalcommu- (Kulmatiskietal.2008). nitythanrare plant species.Alternatively,our fourrare Fungalrichness(adiversity)inabundantnativeplants species (Table 1) may be more selectivein their fungal washigherthaninrarenativesbutforexoticswedidnot associations,explainingthehigheroverallbdiversitybut observe a significant difference (Fig. 4A). Perhaps such lower a diversity. Another scenario could be that rare higher fungal diversity in the roots of native plants 8 AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /a o b p la /a rtic le -a b s tra c t/d Figure4. a(A)andb(B)diversityoffungalcommunitiesforthefactors‘abundance’and‘origin’inplantrootsfromanaturalold-fieldcommu- o nity.aDiversityshowedasignificantinteractionbetween‘abundance’and‘origin’(P¼0.014).Standarderrorsareindicatedbyerrorbars.Means i/10 inabarsharingthesameletterarenotsignificantlydifferentaccordingtoTukey’sHSDatasignificancelevelofP≤0.05. .1 0 9 3 /a o b couldbeimportanttoexplaintheirabundance.Ecosys- toassociatewithaspecificbelowgroundmicrobialcommu- p la tems and communities may be considered to be more nity. Despite the importance of fungi as drivers of plant /p lv stable if biodiversity is higher since productive species communitystructure(VanderHeijdenetal.1998;Reynolds 1 1 0 cancompensateforotherspeciesthatmaynotperform etal.2003)onlyveryfewstudieshavecomparedthefungal /1 8 aswell(NaeemandLi1997).Thismayalsobelinkedto communitiesassociatingwithexoticsversusnativesina 0 3 7 the success of individual plant species. For instance, naturalcommunity(Bongardetal.2013).Consistentwith 9 1 highergenotypicdiversityofroot-associateddarkseptate our results, Nelson and Karp (2013) found that distinct b y g endophyticfungihasbeenshowntoincreasetheirhost communities of pathogenic fungi associate with native u e plants’ growthrate (Reiningeret al.2012). Perhapsthe andexotichaplotypesofPhragmitesaustralis,suggesting st o microbialcommunitiesassociatedwithabundantnative that exotic plants mayassociate with a different fungal n 0 plant species may be even more conducive to positive communitythannativespecies. 9 A feeAdsbparcekdi(cVtaend,dfuenrgPaultctoemnemtuanl.it2ie0s1a3s)s.ociatingwithexotic beOlounrgminogletocuthlaerAmsectohmoydcoolotag,icwahlaicphpirsotahcehladregteescttecdlafduenogfi pril 20 1 speciesweredifferentfromfungalcommunitiesassociat- fungi(Kirketal.2001;Wangetal.2006),andBasidiomy- 9 ingwithnativespecies.However,wefoundnodifferences cota.Morespecifically,themostrepresentedorderacross in a- and b diversity between abundant exotic and rare allplantspeciesregardlessoftheir‘abundance’and‘origin’ exoticspecies,andexoticandnativespecies,respectively. weretheHelotialesbelongingtotheAscomycota(Fig.2). Thissuggeststhattherelativeabundanceofexoticsinthe Thisverydiverseandlargefungalorderincludes (cid:2)2300 communitymaybeindependentfromtheirfungalcommu- specieswhichtakeseveralecologicalfunctionalrolesran- nities.Sinceexoticspeciesmayhaveescapedfromtheir gingfromericoidmycorrhiza,endophytes,saprobesand co-evolvedsoilenemies(KeaneandCrawley2002;Agrawal pathogens(WebsterandWeber2007).Therefore,itisnot etal.2005),theymightbeuncoupledfromtherequirement surprisingthatwefoundsomanyOTUsbelongingtothis AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 9 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /a o b p la /a rtic le -a b s tra c t/d o i/1 0 .1 0 9 Figure5. Arbuscularmycorrhizalfungalcolonizationbyhyphae(A),arbuscules(B)andvesicles(C)andincidenceoflesions(D)intherootsof 3 /a nativeandexoticplantsofcontrastingrelativeabundanceinaruderalnaturalplantcommunity.Meansinabarsharingthesameletterarenot o b significantlydifferentaccordingtoTukey’sHSDatasignificancelevelofP≤0.05. pla /p lv 1 1 0 largeanddiversefungalorder.SinceOTUswerenotdeter- ITSandLSUregions.Furthermore,duetothefactthatin /1 8 minedtospecieslevel,wewereunabletomakeanystate- ourstudytheprimersweredegenerate,thereisanincreas- 0 3 7 mentabouttheirparticularfunctioninourold-fieldsite. ingchanceofgettingunspecificresultsbyrunningtoomany 9 1 TheITSregionhasbeenshownahighdegreeofsuccess PCRcycles (Ihrmarket al. 2012). This primer bias can be b y forthebroaddetectionoffungi(Bue´eetal.2009)andwas expectedasaresultofahighnumberof PCRcycles(35) gu e recentlyproposedtoserveastheprimaryfungalbarcode andthelowGCcontentoftheGlomeromycota(Stockinger st o marker(Schochetal.2012).Eventhoughtheprimerpair etal.2010;Gianinazzi-Pearsonetal.2012;Kauserudetal. n 0 fITS7/ITS4hasbeentestedpositivelytomatchGlomero- 2012;PintoandRaskin2012).Nevertheless,alloursamples 9 A tmhyocuogthaA(IMhrFmwaerkreecteartl.ai2n0ly12p)r,ewseentfaiinledthteorodootssoofevoeunr wcaeprteurteretahteedfuellqbureaalldytahnodftehveenfutnhgoaulgKhinwgdeowme,roeuurn4a5b4lepytro- pril 20 1 plantspecies(Fig.5A).Thisisincontrastwith aBLASTN osequencing approach was able to consistently detect a 9 searchatNCBIwithfITS7,whichmatched68%oftheGlo- broaddiversityoftaxaamongourplantgroups.Thisisin meromycota5.8Ssequences(Ihrmarketal.2012).Even accordancewithIhrmarketal.(2012)asourprimersare thoughweselectedthisprimerpairtakingintoconsider- supposedtobetterpreservethequantitativecomposition ation the shorter sequence length, it is known that the of the template between-sample differences in fungal choice of ITS could bias against certain groups such as communitycomposition. Wealsoneedto considerthat EarlyDivergingLineages,AscomycotaandGlomeromycota fungalcommunitycompositionshiftsseasonally(Thoms (seeSchochetal.2012).Forthelattergroup,Stockinger and Gleixner 2013;Vorˇ´ısˇkova´ et al.2014).The sampling et al. (2010) proposed a larger barcode, combining the was undertaken mid-summer to ensure that fungal 10 AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015
Description: