ebook img

Population genetics of purple saxifrage (Saxifraga oppositifolia) in the high Arctic archipelago of PDF

14 Pages·2015·0.64 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Population genetics of purple saxifrage (Saxifraga oppositifolia) in the high Arctic archipelago of

Research Article Composition of fungal soil communities varies with plant D o w abundance and geographic origin nlo a d e d Vanessa Reininger1,2,3*, Laura B. Martinez-Garcia1,4, Laura Sanderson1 and Pedro M. Antunes1 fro m 1 DepartmentofBiology,AlgomaUniversity,SaultSte.Marie,ON,P6A2G4Canada h 2 Presentaddress:Agroscope,InstituteforPlantProductionSciencesIPS,Schloss1,8820Wa¨denswil,Switzerland ttp s 3 Presentaddress:ETHZurich,InstituteofIntegrativeBiology,ForestPathologyandDendrology,Universita¨tstrasse16,8092Zurich, ://a Switzerland ca 4 Presentaddress:DepartmentofSoilQuality,WageningenUniversity,6700AA,Wageningen,TheNetherlands de m Received:27May2015;Revised:30July2015;Accepted:1September2015;Published:14September2015 ic.o u AssociateEditor:JeanH.Burns p .c o Citation:ReiningerV,Martinez-GarciaLB,SandersonL,AntunesPM.2015.Compositionoffungalsoilcommunitiesvarieswithplant m abundanceandgeographicorigin.AoBPLANTS7:plv110;doi:10.1093/aobpla/plv110 /a o b p la dArbivsetrsraofcptl.anInttceormacmtiounnsitoyfsbtreuloctwugreroiunnindvfaudnegdalgcroamssmlanudnsit.ieHsowwietvheer,xfioetilcdasnudrvneaytsivlienkpilnagntpslapnetciceosmmmayunbietyimstpruocrttaunret /article withbelowgroundfungalcommunitiesaremissing.Weinvestigatedwhetheraselectednumberofabundantandrela- -ab s tivelyrareplants,eithernativeorexotic,fromanold-fieldsiteassociatewithdifferentfungalcommunities.Wealso tra c assessedwhethertheseplantsshoweddifferentsymbioticrelationshipswithsoilbiotathroughtheirroots.Wechar- t/d acterizedtheplantcommunityandcollectedrootstoinvestigatefungalcommunitiesusing454pyrosequencingand oi/1 assessedarbuscular mycorrhizalcolonizationandenemy-inducedlesions.Differencesinfungalcommunitieswere 0.1 consideredbasedontheassessmentofa-andbdiversitydependingonplant‘abundance’and‘origin’.Plantabun- 09 3 danceandorigindeterminedthefungalcommunity.Fungalrichnesswashigherfornativeabundantasopposedto /a o relativelyrarenativeplantspecies.However,thiswasnotobservedforexoticsofcontrastingabundance.Regardlessof bp la theirorigin,bdiversitywashigherforrarethanforabundantspecies.Abundantexoticsinthecommunity,whichhap- /p pentobegrasses,weretheleastmycorrhizalwhereasrarenativesweremostsusceptibletoenemyattack.Ourresults lv1 1 suggestthatcomparedwithexotics,therelativeabundanceofremnantnativeplantspeciesinourold-fieldsiteisstill 0/1 linkedtothestructureofbelowgroundfungalcommunities.Incontrast,exoticspeciesmayactasadisturbingagent 80 3 contributingtowardsthehomogenizationofsoilfungalcommunities,potentiallychangingfeedbackinteractions. 79 1 b Keywords: Arbuscularmycorrhizalfungi;communityecology;adiversity;bdiversity;454pyrosequencing. y g u e s t o Introduction n communityassemblythroughtestingplant–plantcom- 0 9 Oneofthemajorgoalsinecologyistounderstandwhy petitiveinteractionsandplant–abioticinteractionssuch A p some plant species in natural communities are more asnutrientandlightavailability(Tilman1985;Thompson ril 2 abundantthanothers(Hubbell2001;Chave2004;McGill 1987;WilbyandBrown2001;Milleretal.2005;Dybzinski 01 9 etal.2007;Dumbrelletal.2010).Manystudiesfocusing andTilman2007;Beveretal.2012).Thereisincreasing on plantcommunityecologyhaveprovidedinsightinto evidencethatbelowgroundplant–microbeinteractions *Correspondingauthor’se-mailaddress:[email protected] PublishedbyOxfordUniversityPressonbehalfoftheAnnalsofBotanyCompany. ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.org/ licenses/by/4.0/),whichpermitsunrestrictedreuse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 1 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field areimportanttoexplainplantcommunitydynamics(Bever 2002). However, (cid:2)50% of the studies do not support etal.1997,2010,2012;ReynoldsandHaubensak2009). the Enemy Release Hypothesis (Agrawal et al. 2005; Many studies have already been conducted focusing on Jeschkeetal.2012).Thesecontrastinghypotheseshigh- belowground microbes and their interactions with the lighttheuncertaintysurroundingmicrobialcommunities hostplant (Johnsonetal.1997;JumpponenandTrappe associatingwithnativeandexoticplantspeciesinnatural 1998; Reynolds et al. 2003; Bonfante and Anca 2009; communitiesandhowalterationsimposedbyexoticsmay Compant et al. 2010; Porras-Alfaro and Bayman 2011; affect the soil biota community and by extension, the Reininger et al. 2012; Reininger and Sieber 2012, 2013). entireplantcommunity. D o However,littleisknownabouttheimpactofplantcommu- Next-GenerationSequencingtechnologiessuchas454 wn lo nitystructureonthebelowgroundsoilmicrobialcommu- pyrosequencing using universal primers provide an a d nity(Klironomos2003;Reynoldsetal.2003;Bagchietal. opportunity to survey the soil microbial diversity asso- ed 2010; Bever et al. 2010, 2012) especially with regard to ciatedwithplantspeciesinnaturalcommunities(Bue´e fro m plant communities which are progressively invaded by etal.2009;CostaandAntunes2012).Thesesurveyscon- h exotic plant species (Levine 2000; Klironomos 2002). tributetoimproveourunderstandingofthebiodiversityof ttp s AccordingtotheWildSpeciesReportissuedbytheGovern- microorganisms that co-exist and interact with plant ://a c ment of Canada, extant natural plant communities in rootsacrossspatialscalesandpossiblyinfluenceplants’ ad e Canadanowincludealargeportionofexoticspecies,com- relative abundance and the dynamics between native m ic prising24%ofallthevascularplants(WildSpecies2010, andexoticplantspecies.Specifically,fungiarekeydrivers .o u http://publications.gc.ca/collections/collection_2011/ec/ of primary productivityand plant communitystructure p.c o CW70-7-2010-eng.pdf,November2014).Duetoestablish- due to their diverse roles as mycorrhizal fungi, endo- m mentofexoticplantspecies,plantcommunitystructure phytes,decomposersandpathogens.Theydirectlyinter- /ao b canchangeandconsequently,interactionswithsoilmicro- actwithplantrootsresultinginfunctionaloutcomesthat pla bialcommunitiesmaychangeaccordingly.Bycomparing range from mutualism to parasitism (Schulz and Boyle /a theassociationsbetweenco-occurringnativeandexotic 2005;SinclairandHoward2005;SmithandRead2008). rticle plant species and their respective belowground fungal Betterknowledgeoffungalcommunitystructurewithin -ab s communities,wemaybebetterabletounderstandand plantrootsamongdifferentplantspecies is afirststep tra c predictplantcommunitydynamicsininvadedecosystems. towardsunderstandinghowfungiinfluenceplantcom- t/d o AccordingtoKlironomos(2002),plantspeciesrelative munitydynamics. i/1 abundance may partially be explained by interactions Wesurveyedthefungaldiversitypresentintherootsof 0.1 0 betweenplantsandsoilmicrobes.Plant–soilfeedbacks fournativeandfourexoticplantspeciesfromanatural 9 3 aredefinedastheeffectthatplantspeciesexertonsoil old-field plant community. Within each of these two /a o b biotic and abiotic factors, which in turn can feedback groups,twospecieswerehighlyabundantinthecommu- p la intogrowthandfitnesseffectsonsubsequentconspecific nityandtheothertwowererelativelyrare.aDiversitywas /p lv or heterospecific plants (Van der Putten et al. 2013). In usedtomeasurethefungaldiversityineachplantspecies 1 1 0 native plants, feedbacks are subjected to co-evolution whereasbdiversitywasameasureofvariationinfungal /1 8 betweensymbionts.Exoticspeciesinvadinganewrange composition among groups (abundant versus rare and 0 3 7 willalsoestablish interactionswiththesoil biotabutby native versus exotic) (Anderson et al. 2011). We also 9 1 virtueofthehostplant’snoveltyinthesystem,thoseinter- determinedlevelsofarbuscularmycorrhizalcolonization b y g actionsmaynotyethaveexperiencedco-evolutionarypro- andlesionsinflictedbyenemiestoplantroots. u e cesses.Asaresult,exoticsmayassociateindiscriminately Wepredictedthatfungalcommunitiesassociatingwith st o with soil microbial communities and function as a non- plantrootsdifferdependingonplantspecies‘abundance’ n 0 hostforsomeplantpathogens,i.e.theyshowasymptom- and ‘origin’. More specifically, abundant natives would 9 A lBeosyslein2fe0c0t5io).nT(hNeu¨srenbfuenrggearlasnymdbLiiopnkats,2a0c0c5u;mScuhlautliznganind arasrseoncaiattiveeswaitshthmeyoareresmimoirlearofftuenngsaulrrcooumndmeudnbiytiecosntshpaen- pril 20 1 exotic species without necessarily causing population cificsthatarelikelytoharborthesamefungalcommunity. 9 declines, may in turn negatively affect native plants to However,exoticswereexpectedtoassociatewithamore whichtheyarepathogenic(RoyandHandley2012;Flory variablefungalcommunityastheyarenotyetrestricted andClay2013;VanderPuttenetal.2013). toaparticular(i.e.co-evolved)fungalcommunity.Abun- Exotic plants are assumed to leave their enemies dant and rare exotic plant species were expected to behindintheirhomegeographicrange(EnemyRelease show the same variable pattern as they have not had Hypothesis)andthiscouldexplainthedifferentialinfeed- the same amount of time to interact with the below- backintheirnewrangerelativetonatives,whicharemore groundfungalcommunitiesandestablishspecies-specific affected by a negative feedback (Keane and Crawley relationshipsincomparisontothenatives. 2 AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field Methods zone.Onehundredplotswereselectedrandomlyforassess- mentofplantspeciesrichnessandabundance.Speciesrich- Studysiteandplantcommunitydiversity nesswasassessedinthesecondweekofeachmonthfrom The study site, our long-term ecological research site MaytoAugust2012.Plotswerethoroughlyexaminedandall (LTERS), is a 100×100m flat homogeneous (i.e. plant speciespresentwererecorded.Percentoccurrenceofspe- coverandedaphicconditions)oldagriculturalfieldatthe cieswascalculated by counting the numberof plots (i.e. Ontario Ministry of Natural Resources Research (OMNR) the100randomlyassignedplots)containingeachspecies. Arboretum in Sault Ste. Marie, Ontario (46832′34.1′′N, Thisprovidedanestimateofspecies’abundance(i.e.percent D o 84827′29.4′′W).Thefieldsitehasnotbeencultivatedfor occurrence)inourold-fieldsite(Fig.1). wn six decades and has not been mowed since 2009. The Thesurveycomprisedfourexoticandfournativeplant loa d soil is a silty loam and soil analysis conducted in 2011 species(Table1).Ineachcategory,i.e.exoticandnative, ed were as follows (n¼6): 22.6+1.06% clay, 53.1+ twospecieswereabundantandtwowererelativelyrare fro m 0.27% silt, 24.4+1.07% sand, 0.13+0.001% total N, (termedabundantandrarehereon)atthisold-fieldsite h 1.81+0.02%totalC,11.4+0.07mgkg21Brayavailable (Fig.1).Thespecieswerechosenaccordingtotheirnat- ttp s P,360.7+2.55mgkg21Ca,45.0+0.23mgkg21K,38.9+ ural relative abundance at the old-field site and, as ://a c 0.32MgandpH¼5.74+0.01.Thefieldwasdividedinto such, the lack of a balanced phylogenetic design was ad e twohundredandeighty-nine1×1mplotsona17×17 unavoidable. Exotic grasses dominate the site and we m ic plotgrid.Eachplotwassurroundedbya1mwidebuffer selected two of the most dominant for our exotic .o u p .c o m /a o b p la /a rtic le -a b s tra c t/d o i/1 0 .1 0 9 3 /a o b p la /p lv 1 1 0 /1 8 0 3 7 9 1 b y g u e s t o n 0 9 A p ril 2 0 1 9 Figure1. Plantcommunityattheold-fieldsiteinSaultSte.Marie,ON,Canada.Relativeabundancewascalculatedasthenumberofplotsin whicheachspecieswaspresentoutof100plots(1×1m).Blackbarsandspeciesnameswithanasteriskindicatethespeciesusedinthisstudy. E,exoticorigin;N,nativeorigin. AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 3 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field Table1. PlantspeciesfromourLTERSinvestigatedinthisstudy. at2808Candfreeze-driedfor4days(LabconcoFreeZone 2.5,USA).Toverifypropersurfacesterilizationthree0.5-cm Nativerare Nativeabundant Exoticrare Exotic rootpiecesofeachindividualplantwereexcisedandsur- abundant facesterilizedasdescribedaboveandincubatedatroom .................................................................................. R.hirta S.canadensis H.perforatum B.inermis temperatureonpotatodextroseagarplates.Surfacester- ilizationoftheplantrootsystemswassuccessfulasfungi S.lanceolatum P.arundinacea P.recta D.glomerata started growing out of the roots onlyafter several days at208C.Thismeans organismsattachedtothesurface D o abundantcategory (i.e. Dactylisglomerata and Bromus wereexcludedbutfungiwithintherootswerestillactively wnlo growing. a inermis).Forthenative-abundantcategoryweselected d DNAwasextractedusingtheDNeasy96PlantKit(Qia- ed themostabundantnativesatthesite(i.e.Solidagocana- gen, Toronto, ON, Canada) according to the manufac- fro densis and Phalaris arundinacea). Rare (i.e. relatively m rarer) specieswerechosenbasedon thepresenceofat tpuurreifir’esdpursoitnogcothl.eTGheenoexmtricacDtNeAd CDlNeaAnw&aCsocnlceeannteradtoarnTMd http least four replicates in the field. Potentilla recta and Kit (ZymoResearch,USA).AfterDNApurification,thesix s://a Hypericumperforatumweretheselectedrareexoticspe- c cies and Symphyotrichum lanceolatum and Rudbeckia technicalreplicatescomingfromonesinglerootsystem ade were pooled together leading to 32 samples in total m hirtatherarenatives.Ourmaingoalwasnottocontrol (eight plant species×four replicates). The amount of ic.o for phylogenetic relatedness or functional group but u insteadtosurveyand compareplantspeciesaccording DNAwasmeasuredusingaBioTekTM EpochTM Microplate p.c o Spectrophotometer(Winooski,VT,USA). m totheirrelativeabundanceinthiscommunity.Oureight PrimersfITS7asaforward(5′-GTGARTCATCGAATCTTTG-3′) /ao selectedspeciesrepresent24%ofallthespeciesinthe b community. Across the entire old-field site four indivi- andITS4asareverse(5′-TCCTCCGCTTATTGATATGC-3′)were pla chosen to sequence samples using 454 pyrosequencing /a dpvioudtauelasnlptpieaerlrsspppleaacntiietasslpwveaecrriieeasbs)ailwimtyep,rleseesdtasfmoorpfrloreeodptsilniaccanltodestseo(pmornoinexiimimnidiztiey- (sIphercmifiacrkfuentgaall.2p0ri1m2e).rWfITeSs7pbeceicfiacuaslleywcheowseerteheinnteerweshteigdhilny rticle-abs to each other in a smaller area wherever possible. To amplifyingtheentirefungalcommunitypresentwithinthe trac account for this possible spatial variation we included plantroots.IncombinationwithITS4thispairspecifically t/d o thefactor‘replicate’inourstatisticalmodel.Thechoice amplifiestheITS2regionandproducesshorteramplicons i/1 offourreplicatesisconsistentwithotherstudiesinvesti- compared with the ITS1f/ITS4 primer pair. We expected 0.10 that as we sequenced an entire fungal community any 9 gating belowground fungal community interactions 3 bias resulting from different sequence lengths would be /a with plants(Johnsonet al.2004;Mart´ınez-Garc´ıaet al. ob minimizedbyamplifyingtheshorterITS2regioninstead p 2011). la oftheentireinternaltranscribedspacer(ITS)region.Accord- /p lv ing to a BLASTN search, our selected primer pair should 1 1 454Pyrosequencingoffungalcommunities match68%oftheGlomeromycota(Ihrmarketal.2012). 0/1 8 Todeterminethefungalcommunityintheselectedspe- SamplesweresenttoGenomeQue´bec(Montre´al,Canada) 0 3 7 cies,plantswerecollectedincludingtheirwhole-rootsys- andpurifiedanddiluted1:4usingaMultiScreenPCRfiltra- 9 1 tem using a spade within 2 days in the second half of tionplate(Millipore,Canada).PCRwithprimersfITS7and b y August 2013. They were placed into Ziploc bags and ITS4wasconductedin25mLreactionvolumecontaining gu e cooledimmediately inacold boxandlaterat48Cuntil 2.5mL purified DNA, 2.5mL 10× buffer, 1.5mM MgCl2, st o furtherprocessing.Plantswerestoredat48Cnolonger 0.2mMdNTPs,0.4mMofeachprimerand5UmL21HotStar- n 0 than24h.Rootsystemswerewashedinthelaboratory TaqDNAPolymerase(Qiagen)asfinalconcentrations.PCR 9 A wanityhrcoooldt tfraapgwmaetnetrstothraetmwoveerethneotsociloannndecttoedseptoartahtee rautn9n6in8gCfcoorn1d5itimoninsfwoleloreweadsbfoyll3o5wcsy:cilneistiaolfddeennaattuurraattiioonn pril 20 1 mainsystemandwhichcouldbelongtoadifferentplant. at968Cfor30s,annealingat528Cfor30s,extensionat 9 DNAwasextractedfromsixtechnicalreplicatesperindi- 728C for 1min and a final extension step at 728C for vidualplanttoensurehavingarepresentativeamountof 10min.Samplesweretaggedusing10-bpmultiplexidenti- DNA.Foreachtechnicalreplicatetwenty-one0.5-cm-long fiers(MIDTags)inaseparatebarcodingPCRreaction.The rootpieceswereexcised.Forverythickroots,theamount tagged,equimolarampliconsweresequencedonaRoche ofrootmaterialwasadjustedaccordinglytoavoidover- 454GSFLXinstrumentusingtheFLX+chemistryatGenome loadingtheDNA extraction column. Rootswere surface Que´bec.Atotalof327867singlereadswereproducedina sterilizedfor30sin30%hydrogenperoxideandthereac- one-fourthregionofa454plate.Sequencedataweresub- tionwasstoppedusing70%EtOH.Theywerethenfrozen mittedtoNCBI(accessionno.SRP043133). 4 AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field Symbioticrelationships effect of plant abundance and origin was calculated by measuringtheeffectofeachfactorafteraccountingfor To investigate symbiotic (i.e. functional) relationships betweenmutualisticandantagonisticbelowgroundbiota thevarianceexplainedbytheotherfactor(varianceparti- andourtargetspecies,plantswerecollectedatourold- tioning (Schmid et al. 2002)). This was done after first field site in mid-August 2012, with the exception of accountingforourfourreplicates(i.e.spatialvariability) R.hirta,whichcouldnotbefoundonthatoccasion.Four and we also took into consideration the two different individualplantswerecollectedforeachspeciesusinga plantfunctionalgroups(i.e.monocotyledonsanddicotyle- spade(exceptforH.perforatumforwhichwecouldonly dons).Wefirstranamodelincluding‘plantspecies’asa Do samplethreeindividuals).Inthelaboratory,rootsamples thirdfactorand,asexpected,plantspecieswereasignifi- wn lo werecarefullywashedanddividedintotwosub-samples. cantpredictoroffungalcommunitycomposition.Bythis ad Onesub-samplewasusedtoquantifythepercentageof factor, 42% of the variance was explained. However, ed root colonizationbyarbuscularmycorrhizalfungi (AMF) since our main goal was to survey general patterns of fro m usingthe gridline intersect method byMcGonigle et al. fungaldiversityratherthanspecies-specificeffects,we h (1990). The roots werestained using 0.03% Chlorazol- considered species as ‘plant functional group’ thereby ttps blackEandaminimumof100intersectionsperreplicate gainingdegreesoffreedominourtwofactormodel. ://a c wereexamined.Theothersub-samplewasusedtoquan- Tocalculatethevarianceexplainedbythefactor‘abun- ad e dance’(fullmodelincludinginteraction)weusedthefol- m tifytheincidenceofdiseaseandenemyattackbyvisually ic estimatingdamage(i.e.thenumberoflesionsperroot) lowingformula: .ou p caused by pathogens, parasites and herbivores. This Dissimilaritymatrix(cid:2)replicate+ plant functionalgroup .co methodisidenticaltotherootstainingandquantification m method used for AMF,excludingthe stainingstep.This +origin+abundance+origin:abundance /ao b approachprovidesaconsistentestimate ofplanttoler- (1) pla /a a20n0c3e;Sacghaninitszetrpeattahl.o2g0e1n1s).aFnordbootthheArMeFnaenmdileessio(Mniqtcuhaenl-l Tocalculatethevarianceexplainedbythefactor‘origin’ rticle tification,H.perforatumsampleshadtoundergoanadd- (fullmodelincludinginteraction)weusedthefollowing -ab s itionalbleachingstepusingalkalinehydrogenperoxideto formula: tra c removerootpigmentationtoallowvisualization. t/d Dissimilaritymatrix(cid:2)replicate+ plant functionalgroup o i/1 +abundance+origin+abundance:origin 0.1 Bioinformaticsandstatisticalanalysis (2) 09 3 BioinformaticswereperformedatGenomeQue´becusing /a o b Qiime(version1.7.0)thepipelinefordataprocessing.In Theplantfunctionalgroupwaskeptinthemodelsinceit p la total, 327867 readsweregenerated,assessed fortheir explained9.21%ofthetotalvariance.Bykeepingit,the /p lv qualityand clustered.Reads witha Phred qualityscore variancefromthisfactorcouldbedeductedfromourvari- 1 1 ≥30, ,3 undetermined bases and ,4 bases having a ablesofinterest(‘abundance’and‘origin’).Asdissimilar- 0/1 8 Phredqualityscore ,20passedthequalitycontrolstep. ity measure, Bray–Curtis was used to account for the 0 3 7 Allreadswerecuttoafinallengthof220bases.Reads composition of the fungal communities as well as to 9 1 wereclusteredat100%ID,followedby99%andfinally exclude joint absences. a Diversity wastested foreach b y g by97%.Chimeraclusterswereremovedduringthisstep. sampleusingthefunction‘rarefy’fromtheveganpack- u e SequenceswereblastedagainsttheITS2databaseofthe age (Oksanen et al. 2013) in R (R CoreTeam 2013) and st o UNITEITSdatabase(Ko˜ljalgetal.2013),trimmedtothe an ANOVA was run to test for significant differences n 0 ITS2region.AnOperationalTaxonomicUnits(OTU)table dependingonthefactors‘abundance’and‘origin’.Adis- 9 A wraaresfigeednteora1t0e0d0rreepardessepnetrinsgamfupnlgei.TohnelyQaiinmdespaimpeplliensew(veerre- t(Oankscaenemnaettriaxl.w20a1s3c)rineaRte(RdCuorseinTgeatmhe20v1e3g)atnoepsatcimkaagtee pril 20 1 sion1.7.0)wasusedtocalculatetherarefractioncurves. b diversity using the function ‘betadisper’ and to draw 9 Afterrarefaction,singletonsanddoubletonswereremoved principlecoordinatesanalysis(PCoA)plots. andtheresultingOTUtablewasusedforfurtheranalysis. AnotherANOVAwasruntotestwhetherAMFrootcol- To determine whether fungal communities differed onization and lesions varied according to ‘abundance’ betweenthefactors‘abundance’(i.e.rareandabundant and‘origin’.Tomeettherequirementsofthestatistical plantspecies)and‘origin’(i.e.nativeandexoticplantspe- tests,variableswerearcsinetransformed.Meansamong cies),aPermutationalMANOVAwasconductedusingfunc- treatmentswerecomparedusingTukey’shonestlysignifi- tion‘adonis’fromtheveganpackage(Oksanenetal.2013) cant difference (HSD) test (P,0.05). These statistical implementedinthesoftwareR(RCoreTeam2013).The analyses were performed with the software StatSoft, AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 5 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field Inc.(2013),STATISTICA(dataanalysissoftwaresystem), Table2. Taxonomicfungalgroupsdetectedintherootsofallplant version12.www.statsoft.com. speciesinthefilteredandrarefiedOTUtableexcludingsingletons anddoubletons. Taxonomicgroup No.of OTUs No.of Reads Results OTUs in% reads in% .................................................................................. Fungalcommunitypatterns Ascomycetes 138 84 26754 95.5 Wedetected164fungalOTUsacrossallsamples.Thephy- Helotiales 57 41.3 17964 67.1 D o lum Ascomycota comprised 138 OTUs (84% of fungal Chaetothyriales 25 18.1 1291 4.8 wn lo OTUs) whereas Basidiomycota only comprised 23 OTUs a Pleosporales 17 12.3 1522 5.7 d (14%offungalOTUs),theremainingthreeOTUs(1.8%of ed fungal OTUs) could only be assigned to Kingdom Fungi Capnodiales 9 6.5 1522 5.7 fro m (Table 2). We were unable to recover AM fungi as we Sordariales 7 5.1 809 3 h expectedbasedonourprimerchoice.Fungalrichnessof Hypocreales 3 2.2 129 0.5 ttps rarefiedandnon-rarefiedsamplesforeachplantspecies Xylariales 2 1.4 195 0.7 ://a c isprovidedinTable3.ThetwoplantspeciesH.perforatum ad Chaetosphaeriales 2 1.4 121 0.5 e and P. arundinacea had the highest number of fungal m OTUs(Table3)andtheHelotialeswasthemostcommon Dothideales 2 1.4 50 0.2 ic.o u fungalorderacrossallplantspecies(Fig.2andSupporting Hysteriales 1 0.7 52 0.2 p.c o Information—TableS1fordetailedtaxonomicresults). Basidiomycetes 23 14 1258 4.5 m Permutational MANOVA showed significant fungal Agaricales 6 26.1 198 15.7 /aob Rco2m¼m0u.1n4it0y,dPis¼sim0.0ila0r1it)ieasnfdor‘o‘aribguinn’d(aFnce’¼(F14,2.599¼0,5.R129¼4, Auriculariales 5 21.7 102 8.1 pla/a 0.120, P¼0.001) after accounting fo1r,2b9oth the spatial Sebacinales 3 13 630 50.1 rticle variation (factor ‘replicate’) in our field site (F3,29¼ Cantharellales 2 8.7 285 22.7 -ab s 1.322 with R2¼0.103, P¼0.161 (1) and, R2¼0.103, Polyporales 1 4.3 8 0.6 tra c P¼0.140 (2)) and our two plant functional groups Undetermined(fungi) 3 1.8 3134 11.2 t/d o (monocotyledons and dicotyledons) which explained i/1 9.21% of the total variance (F1,29¼3.756 with R2¼ 0.1 0.092,P¼0.005(1)andR2¼0.092,P¼0.002(2)).How- 09 3 ever,theinteractionof‘abundance’and‘origin’wasnot Table 3. Fungal richness per plant species for non-rarefied and /a o significant(F ¼1.235,R2¼0.034,P¼0.255)ineither rarefiedsamples. bp 1,29 la ofthetwomodelsandtherefore,wecontinuedwiththe /p Plantspecies Non-rarefied Rarefied lv analysisusingthereducedmodels(i.e.byexcludingthe .................................................................................. 11 interaction but keeping the factor ‘replicate’) (Table 4). R.hirta 45.26127 27.25000 0/1 8 ThePCoAplotswereinconcertwiththeresultsfromthe S.lanceolatum 78.96880 49.00000 03 7 permutationalMANOVApointingtowardsthestructuring S.canadensis 75.55551 44.33333 91 offungalcommunitiesasafunctionof‘abundance’and b P.arundinacea 107.10158 64.75000 y g ‘origin’(Fig.3).Figure3Cshowsthatour‘plantfunctional u groups’didnotsharethesamefungalcommunitiesbut H.perforatum 108.59286 55.25000 est o those were rather dependent on origin except for P.recta 63.01892 40.33333 n 0 H.perforatumandS.canadensis. B.inermis 69.51156 43.50000 9 A affaecDtievedrsbiytyt,hi.ee.ftahcetnoursm‘abbeuronfdOaTnUces’p(eFr1s,2a6m¼p1le.1,w08a,sPno¼t D.glomerata 64.02056 39.25000 pril 201 0.302)or‘origin’(F ¼0.163,P¼0.690)buttheirinter- 9 1,26 actionwassignificant(F ¼6.908,P¼0.014)(Fig.4A). 1,26 native plants, fungal community composition among Fungalbdiversityvariedsignificantlydependingonplant exoticswasmoresimilar(Fig.3B). species’relative‘abundance’(F ¼5.77,P¼0.017)but 1,28 notontheir‘origin’(Fig.4B). Symbioticrelationshippatterns Overall, abundant plant species tended to associate with a more similar fungal community compared with Species‘abundance’aswellastheinteractionbetween rareplants(Fig.3A).Thiswasalsosupportedbybdiversity ‘abundance’ and ‘origin’ significantly determined AMF (Fig.4B).Inaddition,PCoAindicatedthatcomparedwith colonization by hyphae in our selected plant groups 6 AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field Incontrast,hyphalcolonizationdidnotvarysignificantly withplantrelativeabundancefornativeplants(Fig.5A). Arbuscularcolonizationshowedthesametrendsbutthe resultswerenotstatisticallysignificantduetoahighvari- ancefortherareexoticspecies,whichwereunderrepre- sented(Fig.5B).Wefoundasignificanteffectof‘origin’as well as‘origin’בabundance’ for vesicularcolonization (F ¼7.663, P¼0.011 and F ¼6.937, P¼0.015, D 1,23 1,23 o respectively).However,thiswasincontrastwithhyphal wn lo colonization. The rare native species had the greatest a d numberofvesiclesandrareexoticstheleast(Fig.5C). ed ‘Origin’wasasignificantfactordeterminingthesuscep- fro m tibility of plant species to enemy attack belowground h (F ¼17.811,P≤0.001),anddespitethelowerreplica- ttp 1,22 s tion of rare plants due to the absence of R. hirta, we ://a c detected a marginally significant effect of ‘abundance’ ad e (F ¼4.148,P¼0.054).Inaddition,therewasamargin- m 1,22 ic allysignificanteffectfortheinteraction(F1,22¼3.273,P¼ .ou 0.084).Rarenativeswerethemostsusceptiblegroupto p.c o enemy attack whereas for exotics, their lesion number m was the same regardless of their relative abundance in /ao b thecommunity(Fig.5D). pla /a rtic Discussion le-a b s Figure2. Rarifiedabundanceoffungalsequencereadsdiscrimi- Themainobjectiveofthisstudywastoinvestigatepatterns tra nated by fungal order for each plant species. ‘Undetermined’ connectedwithplantandbelowgroundfungalcommunity ct/d meansOTUsnotdeterminedtothelevel‘Order’butatleasttothe o kPAin,gPd.oamrunodfiafunnagcie.aR;HH,PR,.Hh.iprtear;foSrLa,tSu.mla;nPcRe,oPl.arteucmta;;SBCI,,BS..icnaenramdies;nDsiGs;, aspsseecmiesbloyf.Mcoonretrasspteincgificreallalyt,ivweeadbeutnedrmaninceedanwdhegtehoegrrapplahnict i/10.1 0 D.glomerata. origininanaturalold-fieldcommunitytypicalofeastern 93 NorthAmericaassociateddifferentlywiththebelowground /a o b fungalcommunity.Ourmaingoalwastoprimarilysurvey p Table 4. Factors and their interaction referring to community la plants based on their relative abundance. As such, the /p dissimilarityandresultingfromthePermutationalMANOVAforthe lv responsevariables‘abundance’and‘origin’;*Significantata¼0.05. lackofabalancedphylogeneticdesignwasanunavoidable 11 0 featureofthestudysystem.Ourchoiceofplantspeciespro- /1 F-value R2 P-value videsinsightintohownaturalplantdiversitymaycontrib- 80 .................................................................................. 3 7 Calculatingfactor‘abundance’ utetoinfluencethebelowgroundfungalcommunityofa 91 typicalold-fieldgrasslandineasternNorthAmerica.Never- b Abundance 5.194 0.14 0.001* y g theless, in addition to plant abundance (abundant and u Replicate 1.322 0.103 0.161 e rare) and plant origin (native and exotic) we accounted st o Plantfunctionalgroup 3.756 0.092 0.005* fortheproportionofthevarianceexplainedbyplantfunc- n 0 Abundance×origin 1.235 0.034 0.255 tional groups (monocotyledons and dicotyledons). Our 9 A Calculatingfactor‘origin’ rceosmulmtsuwnietireescaosnssoisctieantetdwditihffeoruerntplyredwiictthionplathnattsfpuencgieasl pril 20 Origin 4.59 0.12 0.001* 1 dependingontheplants’relative‘abundance’and‘origin’. 9 Replicate 1.322 0.103 0.14 Plantspecies‘abundance’wasoneofthetwofactors Plantfunctionalgroup 3.756 0.092 0.002* influencingfungalcommunitiesinplantrootssuggesting Abundance×origin 1.235 0.034 0.255 thatsoilcommunitiesmayalsoplayaroleindetermining therelativeabundanceofourplantspeciesinthecom- munity.Thisisconsistentwithreportsemphasizingthe (F ¼11.548, P¼0.002 and F ¼6.972, P¼0.015, importanceofsoilmicrobialcommunitiesinstructuring 1,23 1,23 respectively).Rareexoticplantshadthelargestamount plantcommunities(Klironomos2002;Beveretal.2010; of AMF colonization and abundant exotics the least. Pendergastetal.2013). AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 7 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /a o b p la /a rtic le -a b s tra c t/d o i/1 Figure3. Principalcoordinateanalysisplotsdiscriminatingbetweenbelowgroundroot-associatedfungalcommunitiesaccordingto(A)abun- 0 .1 dance,(B)originand(C)plantspecies.In(AandC)exoticplantspeciesarelabeledwithastarandnativespecieswithtrianglesandin(B)abun- 0 9 dantplantspeciesarelabeledwithatriangleandrarespecieswithastar.Confidenceinterval¼80%for(AandB)and75%for(C).RH,R.hirta; 3 /a SL,S.lanceolatum;SC,S.canadensis;PA,P.arundianacea;HP,H.perforatum;PR,P.recta;BI,B.inermis;DG,D.glomerata. o b p la /p lv Partlyconsistentwithourprediction,wefoundbdiver- species occupya greater numberof microsites to avoid 1 1 0 sitytobesignificantlyhigherforrarethanforabundant competitionastheyarepresumablyratherweakcompeti- /1 8 plantspecies,indicatingthatfungalcommunitiesamong torscomparedwithabundantplantspecies.Duetothese 0 3 7 abundant plant species were more similar compared differentenvironmentsrareplantscannotbeveryselective 9 1 withthosepresentinrareplantspecies(Fig.4B).Thisresult inchoosingtheirfungalcommunities.Thisinturnmight b y wasadditionallysupportedbythePCoAplot(Fig.3A).How- influencetheirbdiversitywhichwasratherhighcompared gu e ever, the interaction between ‘abundance’ and ‘origin’ withabundantspecies.Sincerarityincommunitiesmaybe st o wasnot significant contrary to our predictionthat pat- drivenbynegativefeedback(Klironomos2002)basedon n 0 ternsoffungal communitydiversitywere connectedto ourresultsitistemptingtospeculatethatrarenativespe- 9 A nboifitchapnltalnytdaibffuenrednatncbeetawnedeonrigeixno.tbicDaivnedrsnitaytwivaessnpoetcsieigs-. c(Bieesvemraeytaasl.s2o0c1ia2t;eVwanithdepruPtauttitveenlyemtaolr.e20a1n3ta).gTohnisiswticasfufnugr-i pril 20 1 bDiversityofrareplantsmaybeinfluencedbythefungal thersupportedbyourrootlesiondata,showingthatroot 9 communityofneighboringplantspecieswhicharelikely enemiesaffectedmostlyrarenativeplants(Fig.5B).Add- to be composed of different plant species. Conversely, itionally,anegativefeedbackhasbeenshowntobepreva- abundantplantsaremoreoftensurroundedbyconspeci- lent in grasslands maintaining a high plant diversity ficsandtherefore,shareamoresimilarfungalcommu- (Kulmatiskietal.2008). nitythanrare plant species.Alternatively,our fourrare Fungalrichness(adiversity)inabundantnativeplants species (Table 1) may be more selectivein their fungal washigherthaninrarenativesbutforexoticswedidnot associations,explainingthehigheroverallbdiversitybut observe a significant difference (Fig. 4A). Perhaps such lower a diversity. Another scenario could be that rare higher fungal diversity in the roots of native plants 8 AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /a o b p la /a rtic le -a b s tra c t/d Figure4. a(A)andb(B)diversityoffungalcommunitiesforthefactors‘abundance’and‘origin’inplantrootsfromanaturalold-fieldcommu- o nity.aDiversityshowedasignificantinteractionbetween‘abundance’and‘origin’(P¼0.014).Standarderrorsareindicatedbyerrorbars.Means i/10 inabarsharingthesameletterarenotsignificantlydifferentaccordingtoTukey’sHSDatasignificancelevelofP≤0.05. .1 0 9 3 /a o b couldbeimportanttoexplaintheirabundance.Ecosys- toassociatewithaspecificbelowgroundmicrobialcommu- p la tems and communities may be considered to be more nity. Despite the importance of fungi as drivers of plant /p lv stable if biodiversity is higher since productive species communitystructure(VanderHeijdenetal.1998;Reynolds 1 1 0 cancompensateforotherspeciesthatmaynotperform etal.2003)onlyveryfewstudieshavecomparedthefungal /1 8 aswell(NaeemandLi1997).Thismayalsobelinkedto communitiesassociatingwithexoticsversusnativesina 0 3 7 the success of individual plant species. For instance, naturalcommunity(Bongardetal.2013).Consistentwith 9 1 highergenotypicdiversityofroot-associateddarkseptate our results, Nelson and Karp (2013) found that distinct b y g endophyticfungihasbeenshowntoincreasetheirhost communities of pathogenic fungi associate with native u e plants’ growthrate (Reiningeret al.2012). Perhapsthe andexotichaplotypesofPhragmitesaustralis,suggesting st o microbialcommunitiesassociatedwithabundantnative that exotic plants mayassociate with a different fungal n 0 plant species may be even more conducive to positive communitythannativespecies. 9 A feeAdsbparcekdi(cVtaend,dfuenrgPaultctoemnemtuanl.it2ie0s1a3s)s.ociatingwithexotic beOlounrgminogletocuthlaerAmsectohmoydcoolotag,icwahlaicphpirsotahcehladregteescttecdlafduenogfi pril 20 1 speciesweredifferentfromfungalcommunitiesassociat- fungi(Kirketal.2001;Wangetal.2006),andBasidiomy- 9 ingwithnativespecies.However,wefoundnodifferences cota.Morespecifically,themostrepresentedorderacross in a- and b diversity between abundant exotic and rare allplantspeciesregardlessoftheir‘abundance’and‘origin’ exoticspecies,andexoticandnativespecies,respectively. weretheHelotialesbelongingtotheAscomycota(Fig.2). Thissuggeststhattherelativeabundanceofexoticsinthe Thisverydiverseandlargefungalorderincludes (cid:2)2300 communitymaybeindependentfromtheirfungalcommu- specieswhichtakeseveralecologicalfunctionalrolesran- nities.Sinceexoticspeciesmayhaveescapedfromtheir gingfromericoidmycorrhiza,endophytes,saprobesand co-evolvedsoilenemies(KeaneandCrawley2002;Agrawal pathogens(WebsterandWeber2007).Therefore,itisnot etal.2005),theymightbeuncoupledfromtherequirement surprisingthatwefoundsomanyOTUsbelongingtothis AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015 9 Reiningeretal.—Surveyofassociatedfungalcommunitiesfromanold-field D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /a o b p la /a rtic le -a b s tra c t/d o i/1 0 .1 0 9 Figure5. Arbuscularmycorrhizalfungalcolonizationbyhyphae(A),arbuscules(B)andvesicles(C)andincidenceoflesions(D)intherootsof 3 /a nativeandexoticplantsofcontrastingrelativeabundanceinaruderalnaturalplantcommunity.Meansinabarsharingthesameletterarenot o b significantlydifferentaccordingtoTukey’sHSDatasignificancelevelofP≤0.05. pla /p lv 1 1 0 largeanddiversefungalorder.SinceOTUswerenotdeter- ITSandLSUregions.Furthermore,duetothefactthatin /1 8 minedtospecieslevel,wewereunabletomakeanystate- ourstudytheprimersweredegenerate,thereisanincreas- 0 3 7 mentabouttheirparticularfunctioninourold-fieldsite. ingchanceofgettingunspecificresultsbyrunningtoomany 9 1 TheITSregionhasbeenshownahighdegreeofsuccess PCRcycles (Ihrmarket al. 2012). This primer bias can be b y forthebroaddetectionoffungi(Bue´eetal.2009)andwas expectedasaresultofahighnumberof PCRcycles(35) gu e recentlyproposedtoserveastheprimaryfungalbarcode andthelowGCcontentoftheGlomeromycota(Stockinger st o marker(Schochetal.2012).Eventhoughtheprimerpair etal.2010;Gianinazzi-Pearsonetal.2012;Kauserudetal. n 0 fITS7/ITS4hasbeentestedpositivelytomatchGlomero- 2012;PintoandRaskin2012).Nevertheless,alloursamples 9 A tmhyocuogthaA(IMhrFmwaerkreecteartl.ai2n0ly12p)r,ewseentfaiinledthteorodootssoofevoeunr wcaeprteurteretahteedfuellqbureaalldytahnodftehveenfutnhgoaulgKhinwgdeowme,roeuurn4a5b4lepytro- pril 20 1 plantspecies(Fig.5A).Thisisincontrastwith aBLASTN osequencing approach was able to consistently detect a 9 searchatNCBIwithfITS7,whichmatched68%oftheGlo- broaddiversityoftaxaamongourplantgroups.Thisisin meromycota5.8Ssequences(Ihrmarketal.2012).Even accordancewithIhrmarketal.(2012)asourprimersare thoughweselectedthisprimerpairtakingintoconsider- supposedtobetterpreservethequantitativecomposition ation the shorter sequence length, it is known that the of the template between-sample differences in fungal choice of ITS could bias against certain groups such as communitycomposition. Wealsoneedto considerthat EarlyDivergingLineages,AscomycotaandGlomeromycota fungalcommunitycompositionshiftsseasonally(Thoms (seeSchochetal.2012).Forthelattergroup,Stockinger and Gleixner 2013;Vorˇ´ısˇkova´ et al.2014).The sampling et al. (2010) proposed a larger barcode, combining the was undertaken mid-summer to ensure that fungal 10 AoBPLANTS www.aobplants.oxfordjournals.org &TheAuthors2015

Description:
Species 2010, http://publications.gc.ca/collections/collection_2011/ec/ . 1.81+0.02 % total C, 11.4+0.07 mg kg21 Bray available. P, 360.7+2.55 mg
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.