ebook img

Polyurethane Insulation Foams for Energy and Sustainability PDF

297 Pages·2019·16.777 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polyurethane Insulation Foams for Energy and Sustainability

Advanced Structured Materials Engin Burgaz Polyurethane Insulation Foams for Energy and Sustainability Advanced Structured Materials Volume 111 Series Editors Andreas Öchsner, Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Esslingen, Germany Lucas F. M. da Silva, Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal Holm Altenbach, Faculty of Mechanical Engineering, Otto-von-Guericke-UniversitätMagdeburg,Magdeburg,Sachsen-Anhalt,Germany Common engineering materials reach in many applications their limits and new developments are required to fulfil increasing demands on engineering materials. The performance ofmaterials can beincreasedby combiningdifferent materials to achieve better properties than a single constituent or by shaping the material or constituents in a specific structure. The interaction between material and structure mayariseondifferentlengthscales,suchasmicro-,meso-ormacroscale,andoffers possible applications in quite diverse fields. Thisbookseriesaddressesthefundamentalrelationshipbetweenmaterialsandtheir structure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced Structured Materials include but are not limited to (cid:129) classical fibre-reinforced composites (e.g. glass, carbon or Aramid reinforced plastics) (cid:129) metal matrix composites (MMCs) (cid:129) micro porous composites (cid:129) micro channel materials (cid:129) multilayered materials (cid:129) cellular materials (e.g., metallic or polymer foams, sponges, hollow sphere structures) (cid:129) porous materials (cid:129) truss structures (cid:129) nanocomposite materials (cid:129) biomaterials (cid:129) nanoporous metals (cid:129) concrete (cid:129) coated materials (cid:129) smart materials Advanced Structured Materials is indexed in Google Scholar and Scopus. More information about this series at http://www.springer.com/series/8611 Engin Burgaz Polyurethane Insulation Foams for Energy and Sustainability 123 EnginBurgaz Department ofMetallurgical andMaterials Engineering, Faculty of Engineering Ondokuz Mayis University Atakum, Samsun, Turkey ISSN 1869-8433 ISSN 1869-8441 (electronic) AdvancedStructured Materials ISBN978-3-030-19557-1 ISBN978-3-030-19558-8 (eBook) https://doi.org/10.1007/978-3-030-19558-8 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface For more than three decades, polyurethane rigid foams consisting of micron- and nano-sizedadditiveshavebeenfabricatedandcharacterizedforthedevelopmentof new and highly advanced insulation materials that can function in wide range of environmental, chemical, mechanical, and thermomechanical conditions while taking aim at generating high energy efficiency and sustainability. In the current book, I have tried to present a recent survey and review of previously published significant works in this important application area in which the priority should be given to energy saving and sustainability for fulfilling the needs of modern world. Particularly, this book focuses on structure–property relationships of polyurethane rigid nanocomposite foams consisting of plate-like nanofillers, cylindrical nano- fillers, and spherical nanofillers in comparison with those of conventional polyurethane rigid composite foams containing micron-sized fillers. Thermal insu- lationpropertyofpolyurethanerigidcompositefoamsisdiscussedalongwiththeir significantcharacteristicssuchasclosed-cellularmorphology,thermal,mechanical, and thermomechanical properties, thermal degradation and flammability, energy absorption and saving capability, recycling and recovery behavior, modeling and simulationresults.Potentialapplicationsofpolyurethanerigidcompositefoamsare discussed, and the main problems that are still not resolved and the future work relatedtothisimportanttopicareaddressed.Thisbookissystematicallyarrangedin accordance with following main topics. In Chap. 1, a brief introduction to the fascinating area of polyurethane foams is given by focusing on subtopics such as types of polyurethane foams, types of polyurethane rigid composite foams, poly- urethane rigid composite foams, including micron-sized fillers, polyurethane rigid composite foams, including nano-sized fillers and experimental conditions for polyurethane rigid foam fabrication at the introductory level. In Chap. 2, poly- urethane rigid composite foams containing micron-sized fillers are presented in detail by highlighting subtopics such as morphology, mechanical, thermal and thermomechanical properties, thermal degradation and flammability, and recycling and recovery behavior. In Chaps. 3–5, closed-cellular morphology, mechanical, thermal,andthermomechanicalproperties,thermaldegradation,andflammabilityof polyurethane rigid nanocomposite foams containing plate-like, cylindrical, and v vi Preface spherical nanofillers are discussed, respectively. It is believed that the information that is covered in this book can be useful to colleagues and researchers in both academicandindustriallaboratoriesandstudentsatbothundergraduateandgraduate levels.Moreover,itisexpectedthatsystematicallyorganizedandrevieweddatathat is given about polyurethane insulation foams in this book can help and guide researchers in their distinct research projects for the development of advanced polyurethane rigid foams with improved properties by particularly focusing on energy saving and sustainability issues. Samsun, Turkey Engin Burgaz July 2019 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Types of Polyurethane (PU) Foams . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Types of PU Rigid Composite Foams . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 PU Rigid Composite Foams Including Micron-Sized Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 PU Rigid Composite Foams Including Nano-sized Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Experimental Conditions for PU Rigid Foam Fabrication . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 PU Rigid Composite Foams Containing Micron-Sized Fillers. . . . . . 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Mechanical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4 Thermal and Thermomechanical Properties . . . . . . . . . . . . . . . . . 65 2.5 Thermal Degradation and Flammability . . . . . . . . . . . . . . . . . . . . 75 2.6 Recycling and Recovery Behavior. . . . . . . . . . . . . . . . . . . . . . . . 96 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3 PU Rigid Nanocomposite Foams Containing Plate-Like Nanofillers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.3 Mechanical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.4 Thermal and Thermomechanical Properties . . . . . . . . . . . . . . . . . 142 3.5 Thermal Degradation and Flammability . . . . . . . . . . . . . . . . . . . . 153 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 vii viii Contents 4 PU Rigid Nanocomposite Foams Containing Cylindrical Nanofillers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.2 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 4.3 Mechanical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 4.4 Thermal and Thermomechanical Properties . . . . . . . . . . . . . . . . . 206 4.5 Thermal Degradation and Flammability . . . . . . . . . . . . . . . . . . . . 214 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 5 PU Rigid Nanocomposite Foams Containing Spherical Nanofillers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 5.2 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 5.3 Mechanical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 5.4 Thermal and Thermomechanical Properties . . . . . . . . . . . . . . . . . 263 5.5 Thermal Degradation and Flammability . . . . . . . . . . . . . . . . . . . . 274 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Chapter 1 Introduction 1.1 Introduction Thefabricationandcharacterizationofnewandhighlyadvancedinsulationmaterials thatcanfunctioninextraordinarycircumstancessuchasveryhighandlowtemper- atures, extensive pressures and loadings, highly corrosive and chemically reactive environments with high energy efficiency and sustainability should be realized in ordertofindsolutionsforinsulationproblemsintoday’smodernworld.Thermalinsu- lationmaterialshavebeenusedinvariousapplicationsincludingthermalprotection ofhousesandbuildings,conveyorsandcontainers,foodstorageandtransportation, deep-freezingcontainersforspaceliftoffandtransportationsystems,appliancessuch asrefrigeratorsathomesandthermalinsulationandefficientdeliveryofnaturalgas inliquidform[1–4].Amongtheseapplicationareas,thermalinsulationofbuildings in the construction industry is the most important issue to handle since more than 10%oftheworld’stotalenergyconsumptionequalstotheenergyneededtoprovide acomfortablelivingenvironmentinbuildings[5].Thus,forthisreason,researchers inacademicandindustriallaboratorieshaveusedtheirexpertisetoenhanceenergy savingcapabilityandthermalinsulationofsystemsinwhichpreservationofheatand temperatureisacriticalissue.Tosatisfytheneedsofmodernworld,newinsulation materialswithimprovementsinstiffness,reducedcompressivemodulusandstrength, thermalinsulationcharacteristics,fracturetoughness,impactenergyabsorptionand vibrationdamping,thermaldegradation,flammabilityandthermomechanicalprop- ertieshavebeentriedtodevelopintermsofreachingtheessentialthermalinsulation resistance. Thermal insulation has been recognized as one of the most efficient methods of decreasing the energy consumption in new and old buildings [6–10]. In addi- tion, previous studies [11] on thermal insulation of buildings showed that energy efficiency actions such as insulation retrofitting of old buildings are proven to be morecost-effectiveonesincomparisonwithnewalternativemethodssuchassolar ©SpringerNatureSwitzerlandAG2019 1 E.Burgaz,PolyurethaneInsulationFoamsforEnergyandSustainability, AdvancedStructuredMaterials111, https://doi.org/10.1007/978-3-030-19558-8_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.