ebook img

Polyphyly of "Sclerosponges" (Porifera, Demospongiae) Supported by 28S Ribosomal Sequences PDF

9 Pages·1997·3.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polyphyly of "Sclerosponges" (Porifera, Demospongiae) Supported by 28S Ribosomal Sequences

Reference:Biol. Bull. 193:359-367.(December, Polyphyly of "Sclerosponges' (Porifera, Demospongiae) Supported by 28S Ribosomal Sequences CATHERIANNENICEHTOIMLBLIAERRD1.1A*,NNDICJOELAEN BVOAUCREYL-EETS2NAULT . ' Laboratoire de biologic desInvertebresMarins etMalacologie (CNRS URA 699) etSen'icede SystematiqueMoleculaire (CNRS GDR 1005), MuseumNationald'Histoire Naturelle, 57, rue Cuvier, 75005Paris, France: and-Centre d'Oceanologie deMarseille (CNRS UMR 6540), Universitede la Mediterranee. Station Marined'Endoume, 13007Marseille, France Abstract. To test the competing hypotheses of poly- during the Paleozoic and Mesozoic eras and that were phyly and monophyly of "sclerosponges," sequences long thought to be extinct (Hartman and Goreau, 1970; from the 5' end of 28S ribosomal RNA were obtained Vacelet, f983; Wood, 1990). forAstrosclera willeyana, Acanthochaetetes wellsi, and Since the discovery ofthese living coralline sponges, sixotherdemospongespecies.Phylogeneticrelationships theyhavebeenclassifiedaccordingtothreesystems,each deduced from parsimony and neighbor-joining analyses reflecting a different belief in the number of times that suggest that these sclerosponges belong to two different sponges have inventeda massivecalcareous skeleton. In orders of Demospongiae: Astrosclera willevana, being the first, all ofthe coralline sponges are included in the closely related to the Agelasidae, belongs to the Agela- class Ischyrospongiae (Termier and Termier, 1973). In sida,Acanthochaeteteswellsi, beingcloselyrelatedtothe thesecond,themassivecalcareousskeletonisbelievedto Spirastrellidae,belongstotheHadromerida.Theseresults haveevolvedatleasttwice,onceamongcorallinesponges contradict the hypothesis that sclerosponges are mono- withsimilaritiestotheCalcareaandonceamongcoralline phyleticandimplythatamassivecalcareousskeletonhas sponges that more closely resemble the Demospongiae: evolved independently in several lineages ofsponges. the latter group is assigned to the class Sclerospongiae (Hartman and Goreau, 1970). This second interpretation Introduction hasbeenthemostwidelyused,appearinginmanyrecent treatisesonzoology(Parker, 1982;Riedl, 1983)andpale- Recentspongesgenerallyhaveaskeletonmadeofspic- ontology (Rigby and Stearn. 1983). A third system (Va- ules that are either siliceous (classes Demospongiae and celet, 1979, 1985) reflects the assertion that the massive Hexactinellida) orcalcareous (class Calcarea). However, calcareous skeleton is more plastic and has evolved in 16livingspeciesbuildanunusualsolidcalcareousskele- several different lineages within the Demospongiae and ton, which bears a striking similarity to that of various Calcarea. Underthis system, living and, where possible, Cnidaria, in addition to this spicular skeleton. These fossil coralline sponges are classified within the various "coralline sponges" are believed to be the survivors of taxa of Demospongiae and Calcarea with which they the stromatoporoids, sphinctozoans, and chaetetids, im- share derived characters. portant ancient reefbuilders that were highly diversified Three coralline sponges are included in this study: Acanthochaetetes wellsi Hartman and Goreau, 1975; Received 12March 1997;accepted29August 1997. Astrosclerawilleyana Lister, 1900; and Petrobionamas- *To whom correspondence should be addressed. E-mail: gdretudi siliana Vacelet and Levi, 1958. Acanthochaetetes wellsi (S'mnhn.fr andAstrosclerawilleyanaareofspecial interest,because 359 360 C. CHOMBARD ETAL theyareconsideredtobelivingrepresentativesofchaete- was crushed in a sterile mortar after total dehydration tidsandstromatoporoids,twogroupsofgreatimportance (overnightair-dry at +4C orspeedvac) forthe alcohol- in the fossil record. The affinities ofthese groups were preserved samples and in liquid nitrogen for the frozen previously uncertain, but they were most oftenclassified samples.Thepowderwasgentlymixedforafewminutes in the Cnidaria (Lecompte, 1956: Fischer, 1970). The with500ij\oflysisbuffer(Palumbietal.. 1991).Spicules separationofthetwogroupsimpliesanindependentderi- andcellularremainswerethenremovedbycentrifugation vation of the massive calcareous skeleton. The spicular for2 minat 13.000rpm. Digestedtissuewaspurifiedsuc- andcytologicalcharactersofbothspeciesstronglyresem- cessively in phenol, phenol-chloroform-isoamylalcohol. ble those found in well-defined families ofnon-calcified andchloroform-isoamylalcoholextractions.Nucleicacids demosponges. The choanocytes of Acanthochaetetes were precipitated with ammonium acetate-isopropanol, wellsi possess a periflagellar sleeve; a central cell at the followedby a70% ethanol wash. Total DNA was resus- apopyleofthechoanocytechambers,asintheHadromer- pendedin steriledistilledwateranditsconcentrationde- ida;andaspiculecomplementsimilartothatofthefamily termined by optic density at 260nm. Spirastrellidae in the order Hadromerida (Hartman and Polvmerase chain reaction. Two overlapping frag- Goreau, 1975: Vacelet and Garrone, 1985; Reitner and ments ofthe ribosomal RNA gene were amplified using Engeser, 1987; Boury-Esnault et ai, 1990). Astrosclera auniversal primerand a sponge-specificprimer. Primers willeyana has smallchoanocyte chambers, flattenedcho- usedwereasfollows(specificity,orientation,andposition anocytes. verticillate acanthostyles. and chemical affini- of primers in the aligned sequences of Figure 1 follow tieswiththeorderAgelasida(HartmanandGoreau, 1970; each sequence): ITS3 5'-GTCGATGAAGAACGCAGC- Vacelet. 1981; Boury-Esnault etal, 1990; Williams and 3'. universal, forward, external 5'; Eplb' 5'-GTGGCC- Faulkner, 1996). Petrobionamassiliana has morphologi- GGGAGAGGCAGC-3',partofDemospongiaenotTetrac- cal affinities with the class Calcarea. tinellida,forward.257-274;Ep25'-CTYYGACGTGCC- In this work we generate a new. independent data set TTTCCAGGT-3'. Demospongiae. reverse. 303-323; D2 basedonDNAsequences,useittoconstructphylogenies. 5'-TCCGTGTTTCAAGACGGG-3', universal, reverse. and compare these with morphological ones. Our main external 3'. objectiveisthentodeterminewhichofthethreehypothe- The fragment 'TTS3-Ep2" contains apartofthe 5.8S ses are consistent with the molecularphylogeny. rRNAgene,the ITS2, the Cl domain andhalfofthe Dl domainofthe28SrRNAgene;the "Eplb'-D2"fragment Materials and Methods contains theotherhalfofthe Dl domain, the C2 andthe D2 domains ofthe 28S rRNA gene. Material: selection andpreservation A 50p] double-stranded PCR reaction mix contains lisTtehdeinspTeacbileesI.anSaolmyseeddeamnodsptohenigresistpeescioefscwoelrleectsieolnectaered 0d.N3TAP/,g 3t0emppmloatleeaDcNhAp.rob2e..5^/11.5DUMTSaOq,D0N.A16p5omlAy/mereaasche as representatives ofthe various taxa supposedly related (Bioprobe). This reaction mix wasoverlaid with mineral toAstrosclera andAcanthochaetetes. Otherspecies with oil and placed in aTrio-thermoblock thermocycler (Bio- vthaersieousinlcelvuedlesorefpdriessteanntcaetifvresomotfheotihne-rgrdoeumpowseproengcehosseunb:- mteetmrpae)r.atCuyrceli(nTga)c:onrdeistpieoctnisvealrye v6a0riCablaendfo6r3thCe afonrneIaTlSi3n-g classes one Ceractinomorpha species (Halichondria Ep2 and Eplb'-D2 primer pair. The first cycle is 4min panicea) and two Tetractinellida species (Cinachyrella at94C, 2min atTa. and 2minat72C; this is followed s(pC.luatnhdriDniascceordeebrrmuima),powliytdhiswchuisc)hPaetnrdoobfiocnlaasmsaCsasliclairaneaa Tbay,3a0ndcyc1lmeisneaatch72coCn;sisttheingreaocfti1onmiins faitni9s4hCed,b1ym4inmiant has affinities. For further convenience, all demosponge at 72C. csoplelceicetsivtehattearrme n"omtoTneatcrtaicnteilnleilldisd.a"arAellgrsopuepceidmeunnsderwetrhee agaArfotseer vgeils,ualtihzeatrieomnaionfi5ng^/l45offj\theofrePaCctRionproonducat1w.a5%s eniitthreorgepnreasnedrvtehdeninke7pt0%ate-t8ha0nCol,odrepdeenedpi-nfrgooznencoilnlelcitqiunigd ppuarniofli,edfoblylopwreedcipbiytaati7on0%witehthaanmomlownaisuh.mTahceetapteel-liestopwraos- conditions. then resuspended in 6/A ofsterile distilled water. The approximateconcentration wasevaluatedvisually DNA byelectrophoresisof 1 ^1ofthepurified PCR productin processing a 1.5%agarosegel,andcomparisonto 1.5p\oftheDNA Extraction. The total genomic DNA extraction tech- molecularweight marker VI (Boehringer Mannheim). nique was modified from the Simple Fool's Guide to Cloning and sequencing. Each PCR fragment was PCR (Palumbi et al., 1991). Less than 0.5g of tissue cloned into PCR-Script SK(+) cloning vector (PCR- POLYPHYLY OF "SCLEROSPONGES' 361 TableI iigespeciessequencedforanalysisofphylogeneticrelationshipsamongsclerosponges Classification Species Collectionlocality DEMOSPONGIAE Tetractinellida Tetillidae Cinachyrellasp.* NewCaledonia Theonellidae DiscodermiapolydixciisBocage, 1870* Mediterraneansea.3PPcave.LaCiotat "monactinellids" Axinellidae Axinelladamicurnis(Esper. 1794)* Mediterraneansea.LaCiotat Agelasidae Agelasoroides(Schmidt, 1864)** Mediterraneansea,LaCiotat Astroscleridae AstroscleralwilleyanaLister, 1900 NewCaledonia 1992 Astrosclera2willeyanaLister, 1900 NewCaledonia 1994 Clionidae Clionarirulis(Schmidt. 1862)* Mediterraneansea.LaVesse ASpciarnatshtorcelhlaiedtacetidae AScpiarnatshtorcehllaaetcef.tecsocwceilnlseiaH(aDrutcmhaasnsa&inGgor&eaMui,ch1e9lo7t5ti, 1874) NPaenwamCaa.leAdtolnaintaic19c9o2astSanBiasIsland Halichondriidae Halichondriapanicea(Pallas, 1766)* SouthWestChannel,AberWrac'h CALCAREA Clathrinidae Clathrinacerebrum(Haeckel, 1872)** Mediterraneansea.LaVesse Petrobionidae PetrobionamassilianaVacelet&Levi. 1958** Mediterraneansea.AnsedesCuivres *SequencesfromChombardetal. (Inpress). **SequencesfromLafayetal. (1992). ScriptSK(+)cloningkit,Stratagene)andsequencedwith matrices (with NET or from NJ trees), distance calcula- the T7 Sequencing kit (Pharmacia Biotech) using [33P]- tions andconstruction oftrees with the neighborjoining dATP and adding DMSO in the annealing reaction. The algorithm (with NJ), matrix comparison (with COMP- internal probe C2' is used to obtain the middle of the MAT), and calculation of bootstrap proportions from "Eplb'-D2" fragments, in addition tothe vectorprobes neighborjoining trees (with NJBOOT). Wherever likely Ks and T3 <C2' 5'-GAAAAGAACTTTGRARAG- secondary structures were detected, sequences were AGAGT-3',universalspecificity,forwardorientation,po- aligned according to supposed conservation ofhelices. sition 483-505 on the aligned sequences ofFigure 1). PAUP, version 3.1.1 (Swofford. 1991), was also used Each PCRproductwassequencedfromaminimumof forconstructionoftreesandcalculationofbootstrappro- twoclones; whencontradictions in the sequencesofsev- portions,discussedbelow. Inbootstrapcalculations,non- eralclonescouldnotberesolved,thecorrespondingposi- majority nodes were compared in order to explore the tions werecodedaccording tothe UPIACcode. Thetwo robustness ofalternative topologies. strandsweresequencedforthe mainpartofthe sequence ThefinalalignmentpresentedinFigure 1 wasobtained length, with special attention to the D2 domain where by eye using the editor of MUST (ED). The ITS2 (not strong secondary structures of the molecule cause com- presented in Fig. 1) and part of the 5' extremity of the pressions inthe sequence migration. From the twoover- D2 domain (corresponding to positions 575-640, Fig. 1) lappingPCRproducts,thefinal sequencewas 1104bpto are very divergentand cannot be aligned in all oursam- 1197bp in length, depending on the species. This frag- ples, thus these regions were not used in the sequence ment corresponds to the 3' extremity ofthe 5.8S rRNA analysis. (about 108bp), the InternalTranscribe Spacer ITS2 (be- tween 167bp and 224bp), and the fourfirst domains of Results the 5' extremity ofthe 28S rRNA: Cl, Dl, C2, and D2 (between 816 and 866bp). Becausepreviouslypublishedsequencesof28S rRNA (Lafayetal.. 1992) are shorterthanours, twosuccessive Sequence managementandalignment analyses were made. The first grouped all species and correspondstothelengthpublishedbyLafayetal. (Table TheMUSTpackage(Philippe. 1993)wasusedtoman- I): inthesecond, Clathrina. Petrobiona. andAgelaswere age sequences, including registration (with ENTRYSEQ removed so that we could use ourtotal alignable length. program), alignment (with ED), construction ofdistance The first analysis included 12 species and 374bp of 362 C. CHOMBARD ETAL. 1 10 20 30 40 50 60 460 CCGATAGCAAACAJ 364 C. CHOMBARD ETAL. 21 * a; CD 20- CO- "o'~^- ^ "> -CEQD CCcDJ ^ CD CD!^ CO73 CD CL 31 62 93 124 Pairwise numberofinferred substitutions inthe mostparsimonioustree Figure2. Global saturation curve for 12 species and short-length aligned sequences (374bp). CC0.98. Whitecircles are distancesbe- tween pairs monactinellids-monactinellids. Dark circles are distances betweenpairsTetractinellida-monactinellids.Darksquaresaredistances between pairs Calcarea-Demospongiae. White squares are distances withinTetractinellidaandwithinCalcarea. ofPAUPprovidedonesingleshortesttreewith268steps, aconsistency index (CD of0.795, aretention index (RI) of0.767,andaGl of 1.50.Thetreewasrootedusingthe out-groupmethodonbothspeciesofCalcarea(Clathrina cerebrum andPetrobiona massiliana). Theresulting sin- gle topology is presented in Figure 3. The Branch and Boundsearchoptionwasusedtoprovideabootstrapwith 1000 replicates in PAUP. The majority-rule consensus 99 P01.YPHYLY OF --.SCLEROSPONGES" 365 28- .2.00. 100 -o 0> Q) O 8 o iff to-o * 05 CL 0-O 86 172 258 124 Pairwise numberofinferred substitutions inthe mostparsimonioustree Figure 5. Global saturation curve for 9 species and full-length aligned sequences (914bp). CC0.97. Whitecirclesaredistancesbe- tween pairs monactinellids-monactinellids. Dark circles are distances between pairs Tetractinellida-monactinellids. White squares are dis- tanceswithinTetractinellida. tive for parsimony. No global saturation is evident (CC 0.97. Fig. 5). The exhaustive search algorithm ofPAUP provided one single shortest tree with 640 steps. CI = 0.839,RI = 0.783,andGl = -1.01.Thetreewasrooted using the out-group method on the tetractinellids (Cina- chyrella sp. and Discodermiapolydiscus). The resulting singletopology ispresented in Figure6. The Branchand Boundsearchoptionwasusedtoprovideabootstrapwith 1000 replicates in PAUP. The majority-rule consensus treeexhibitsthesametopologyasthe shortesttreefound byexhaustivesearch(BPreportedonFig. 6).The neigh- 366 C. CHOMBARD ETAL. 1985; Reitner and Engeser, 1987; Boury-Esnault et a/.. biius.andananonymousreviewerforcommentsandsug- 1990). These results support the interpretation that the gestions. capacitytosecreteamassiveskeletonofcalciumcarbon- ate has developed several times during the course ofthe Literature Cited evolution of the Porifera (Vacelet, 1979, 1983, 1985; Wood et ul.. 1989). Accordingly, these "coralline" Ayling,A.I,. 1482. A redescriptionofAstrosclera willeyami Lister. spongeshavetobeclassifiedintheDemospongiae;Acan- 1900(Ceratoporellida.Demospongiae),anewrecordfromtheGreat thochaetetes wellsi in the orderHadromerida; andAstro- BarrierReef.Mem.Nail. Mint. Vic.43:99-103. sclera willeyanaintheorderAgelasida, which isconsid- Boury-Esnault, N., L. De Vos, C. Donadey,andJ. Vacelet. 1990. eArxiendelblyidam,osatltrheocuegnht caluotsheolrys raesladtiesdtintcotitf.rTomhethcereoartdieonr sU2lo4ln4riaaisnntrNIuncesttwuirtePuetiroosfnpecPchrteoisavsne.soWsiaonsmhSeipnoagnntgdoens.BpioDonlCgo.egy.claKs.siRfiiictaztlieorn..edP.p.Sm2i3t7h-- ofa special order the Tabulospongida based on the (.'bombard,C.,N.Boury-Ksnault,andS.Tillier. Inpress Reassess- presence ofacalcareous skeleton (Hartman and Goreau, ment of homology of morphological characters in tetractinellid 1975) in Acanthochaetetes wellsi and its fossil relatives spongesbasedonmoleculardata.Sy.it. Bin/. hasnostrongjustificationaccordingtothepresentresults. DecVeolset,.L1.,99K1.. RuAttzllaesr,deN.moBropuhroyl-oEgsincaduelst,EpCo.nDgoensadeAytl,asanodfsJp.oVnag-e At a lowertaxonomic level, the classification ofthese morphology: Smithsonian Institution Press. Washington. DC. 117 sponges as belonging either within existing families to PP which they are closely related or in distinct families is Fischer,J.C.1970. RevisionetessaideclassificationdesChaetetida stillsubjective.Pendinganalysesofotherrelatedsponges, (Cnidaria) post-paleozoiques. Ann. Paleontol. Invertehr. 56: 151- the decision depends upon individual judgments about Har2t2m0a.n. \V.D.. and T.F. Goreau. 1970. Jamaican coralline thesizeofthemorphologicalgapneededtoseparatetaxa sponges: theirmorphology,ecologyand fossilrelatives. Pp. 205- andaboutthe importance ofthecalcareous skeleton asa 243inTheBiologyofthePorifera.W.G.Fry.ed.AcademicPress, taxonomiccharacter.InthecaseofAcanthochaetetes, we London. pRridolpeoyseatnodclDaessnidfyy,the18g8e6n.usininvtiheewfaomfiltyheSpsipriacsutlraerlliadnade Harl1ti-mv1ia1nng.,rWep.reDs.e,ntaantdiveT.ofF.aGnoerewaour.de1r97o5f.sclAerPoascpiofnigcesta.buPloastteilslpaon1g6e7:, cytological resemblances (periflagellar sleeve, central Lafay,B.,N.Boury-Esnault,J.Vacelet,andR.Christen.1992. An cell) and the low genetic distance between Acantho- analysis ofpartial 28S ribosomal RNA sequences suggests early chaetetesandSpimstrellathatisindicatedbythepresent radiationsofsponges.BioSystems28: 139-151. work. This hypothesis, which was already proposed by Lecompte,M. 1956. Stromatoporoidea. Pp. 107-144 in Treats-<>n Reitner (1991). avoids the use of the family Acantho- Invertebrate Paleontology, R.C. Moore,ed. University ofKansas chaetetidae, which would be monogeneric at least in the LiacPir,esLs.,,LaanwdreMn.ceS.ciKsacnioslais..1975. Modalitadiriproduzionesessuale Recent fauna. (We reject, however, on the grounds of di alcune poecilosclerina (Porifera).AttiSoc. Peloritana Sci. Fis. morphology. Reitner's merging of the genus Acantho- Mat.Nat. 21: 109-I14. wcLihesateetprer.teef1es9r0w0itoth(wmiaStpiihnrtafasitivrnecllgtiheien.e)rtawInointfhaetmhieclaiRseeesceoAnfsttA,rsotisrfcomslceelrreigrdeaa,de LPiasltGsuepm.ro,bnGiJg,r.easJSb...o,1wWA9is.0lkl0ieM..ya'rst1A9isZ9nto1r,o.olsSo.cgliTRechroaeamlaSwRiinelmoslpu,ellyetaWsnF.a4o.:oOlt.4'h5seM9ctG-Myu4pii8eld2le.oafntao,nPLeC.wKS.lfiaVcmeei,rlsyainoodnf withCeratoporellidae),andAgelasidaeVerril, 1907(with 2.0.CompilationdistributedbytheDepartmentofZoologyandKew- one large genus). The genetic distance between Astro- aloMarineLaboratory.UniversityofHawaii.Honolulu.46pp. smHcioltweterevadelayrn,adstAhlgeoewAlgaases,lafasosirdAeascetainamtnahdtoetcdhheabeAytsetotrueorsscsaleenqrduiedSnapcieersads,itfrfieesrllabad.y- PPhairlkViieeopslrp.,efo,SIr..HSM.Pec.q1Gu91r9e9a38nw.2c-.eHsiMlSalUyn.SndoTNpT,erseiwaesscY.aoonmNrdpukuc.Ctlleea1irs1cs6pi6Afaicccpikapdat.sgieoRneosof.fML2ai1nv:aing5ge2m6Oe4rgn-u5tn2iU7\t2nili.ist.- an important reproductive character: Agelas is oviparous Reiswig,H.M. 1976. NaturalgametereleaseandoviparityinCarib- (Liaci and Sciscioli. 1975: Reiswig. 1976), whereas bean Demospongiae. Pp. 99-112 in Aspects ofSponge Bii>log\, Astroscleraisviviparous(Lister, 1900). Furthermore,the F.W.HarrisonandR.R.Cowden.eds.AcademicPress,NewYork. s1t9r9u1c)t,urwehiofchthaerespuonnigqiuneafimboernsgofthAegDeelmasos(pDoengVioase,etisala.n, Reitutnloener-,(beTJae.rtir1na9gc9t1hi.andormPoohrmypelhroaig.denDseeptmoioncsgpeaossnpwgeiicttahse)aa.nsdPepcn.oen1wd7ad9rey-s2cc1ra1ilpctiainroenFosoussosfislksepulineci--t important difference betweenAgelas andAstrosclera. Recent Sponges. J. Reitner and H. Keupp. eds. Springer-Verlag. Berlin. Reitner,J..andT.S.Engeser.1987. Skeletalstructuresandhabitats Acknowledgments ofRecentandfossilAcanthochaetetes(subclassTetractinomorpha, We thankthe divers ofORSTOM (G. Bargibant. J.-L. RiedDle.moR.spo19n8g3i.ae,FaPournifaernan).dCfolorraaldReesefMsit6t:eln1t3e-e1r8es.. Springer-Verlag. Menou and P. Hamel) fortheir help during fieldtrips in Berlin. 836pp. New Caledonia which were kindly organized by C. De- Rigby,J.K.,andC.W.Stearn.1983. SpongesandSpongiomorphs, POLYPHYLY OF "SCLEROSPONGES" 367 NotesforaShortCourse. UniversityofTennessee,Knoxville.219 Vacelet,J.1985. CorallinespongesandtheevolutionofthePorifera. PP- Pp. 1-13inTheOriginsandRelationshipsofLowerInvertebrates. Swofford, D.L. 1991. PAUP: Pliylot>cncti>- Analysis UsiiiK Parsi- S. Conway Morris.J.D. George, R.Gibson,and H.M. Platt.eds. mony. Version3.1.1. Computerprogramdistributedbythe Illinois ClarendonPress,Oxford. NaturalHistoryService.Champaign.1L. Vacelet,J.,andR.Garrune.1985. Twodistinctpopulationsofcolla- Termier,H.,andG.Termier. 1973. Stromatopores.Sclerosponges genfibrilsina"Sclerosponge"(Porifera).Pp. 183-189inBiology etPhuretrones:lesIschyrospongia.Ann.MinesGeol.26:285-297. ntInvertebratesandLowerVertebrateCollagens.A.BairatiandR. Vacelet,J.1979. Descriptionetaffinitesd'uneEpongeSphinctozoaire Garrone,eds.PlenumPress.New York. actuelle. Pp.483-493 inBiologicdesSpungiaires, C. LeviandN. Williams,D.H.,andD.J.Faulkner.1996. N-Methylatedageliferins Boury-Esnault,eds.EditionsduC.N.R.S..Paris. fromthespongeAstride/emu'illeyanafromPohnpei. Tetrahedron Vacelet,J.1981. EpongeshypercalcirieesC'Pharetronides.""Sclcrns 52:5381-5390. ponges") descavites des recifscoralliens de Nouvelle-Caledonie. Wood,R. 1990. Reef-buildingsponges.Am.Sci. 78:224-235. Bull.Mus. Nail. His.Nat.3A:313-351. Wood,R..J.Reitner,andR.R.West.1989. Systematicsandphylo- Vacelet,J.1983. Lesepongescalcifieesetlesrecifsanciens.Pourla genetic implications of the haplosclerid stromaloporoid Newellia Science68: 14-22. iniranov.gen.Leihaia22: 85-93.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.