ebook img

Polynomial Convexity PDF

453 Pages·2007·2.829 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polynomial Convexity

Progress in Mathematics Volume261 SeriesEditors HymanBass JosephOesterle´ AlanWeinstein Edgar Lee Stout Polynomial Convexity Birkha¨user Boston • Basel • Berlin EdgarLeeStout DepartmentofMathematics UniversityofWashington Seattle,WA98195 U.S.A. MathematicsSubjectClassification(2000):32A40,32D20,32E10,32E20,32E30 LibraryofCongressControlNumber:2007923422 ISBN-10:0-8176-4537-3 e-ISBN-10:0-8176-4538-1 ISBN-13:978-0-8176-4537-3 e-ISBN-13:978-0-8176-4538-0 Printedonacid-freepaper. (cid:1)c2007Birkha¨userBoston Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrit- tenpermissionofthepublisher(Birkha¨userBoston,c/oSpringerScience+BusinessMediaLLC,233 SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsor scholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterde- velopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. 987654321 www.birkhauser.com (JLS/SB) Preface Thisbookisdevotedtoanexpositionofthetheoryofpolynomiallyconvexsets.Acompact subset of CN is polynomially convex if it is defined by a family, finite or infinite, of polynomial inequalities. These sets play an important role in the theory of functions of severalcomplexvariables,especiallyinquestionsconcerningapproximation.Ontheone hand,thepresentvolumeisastudyofpolynomialconvexityperse,ontheother,itstudies theapplicationofpolynomialconvexitytootherpartsofcomplexanalysis,especiallyto approximationtheoryandthetheoryofvarieties. Not every compact subset of CN is polynomially convex, but associated with an (cid:1) arbitrarycompactset,sayX,isitspolynomiallyconvexhull,X,whichistheintersection of all polynomially convex sets that contain X. Of paramount importance in the study ofpolynomialconvexityisthestudyofthecomplementarysetX(cid:1)\X.Theonlyobvious reason for this set to be nonempty is for it to have some kind of analytic structure, and initiallyonewonderswhetherthissetalwayshascomplexstructureinsomesense.Itis notlongbeforeoneisdisabusedofthisnaivehope;anaturalproblemthenisthatofgiving conditionsunderwhichthecomplementarysetdoeshavecomplexstructure.Inanatural classofone-dimensionalexamples,suchanalyticstructureisfound.Thestudyofthisclass ofexamplesisoneofthemajordirectionsoftheworkathand. This book is not self-contained. Certainly it is assumed that the reader has some previousexposuretothetheoryoffunctionsofseveralcomplexvariables.Hereandthere wedrawonsomemajorresultsfromthetheoryofSteinmanifolds.Thisseemsreasonable in the context: Stein manifolds are the natural habitat of the complex analyst. We draw freelyontheelementsofrealvariables,functionalanalysis,andclassicalfunctiontheory. Atcertainpointsinthetext,partsofalgebraictopologyandMorsetheoryareinvoked.For resultsinalgebraictopologythatgobeyondwhatonecouldreasonablyexpecttomeetin anintroductorycourseinthesubject,precisereferencestothetextbookliteraturearegiven, asarereferencesforMorsetheory.Inaddition,itisnecessarytoinvokecertainresultsfrom geometric measure theory, particularly some of the seminal work of Besicovitch on the structureofone-dimensionalsets,workthatisquitetechnical.Again,precisereferences aregivenasrequired. Chapterbychapter,thecontentsofthebookcanbesummarizedasfollows.Chap- ter1isintroductoryandcontainstheinitialdefinitionsofthesubject,developssomeofthe toolsthatwillbeusedinsubsequentchapters,andgivesillustrativeexamples.Chapter2 is concerned mainly with general properties of polynomially convex sets, for the most vi Preface part properties that are independent of particular structural requirements. Chapter 3 is a systematicstudyofthepolynomialhullofaone-dimensionalsetthatisconnectedandhas finitelengthor,moregenerally,thatiscontainedinaconnectedsetoffinitelength.Forex- ample,inthischapter,itisfoundthatarectifiablearcispolynomiallyconvex,aresultthat, despitethesimplicityofitsformulation,isnotatallsimpletoprove.Alsointhischapter thetheoryofpolynomiallyconvexsetsisappliedtothestudyofone-dimensionalvarieties, especiallytoquestionsofanalyticcontinuation.Chapter4continuesthestudyofthepoly- nomiallyconvexhullofone-dimensionalsets,thistimeadmittingsetsmoregeneralthan thoseconsideredinChapter3,setsthataresometimestermedgeometrically1-rectifiable. Chapter5studiesthreedistinctsubjectsthatdo,though,havesomeconnectionswithone another.Thefirstconcernscertainisoperimetricpropertiesofhulls.Next,wepresentsome resultsonremovablesingularities.Finally,thehullsofsurfacesinstrictlypseudoconvex boundaries are considered. Chapter 6 is devoted to approximation questions, mostly on compact sets, but with some consideration of approximation on unbounded sets. Chap- ter7appliesideasofpolynomialconvexitytothestudyofone-dimensionalsubvarieties of strictly pseudoconvex domains, for example the ball. In part, the motivation for this work comes from the well-developed theory of the boundary behavior of holomorphic functions.Chapter8isdevotedtosomeadditionaltopicsthateitherfurtherthesubjectof polynomialconvexityitselforareapplicationsofthistheory. As it stands, the book is not short, but it has been necessary to omit certain topics that might naturally have been considered. For example, it is with real reluctance that I omitalldiscussionofthehullsoftwo-spheresorofthehullsofsetsfiberedovertheunit circle.Theformeromissionisexplainedbythehighlytechnicalnatureofthesubject,the latterbyaperceptionthatthesubjecthasnotyetachieveditsdefinitiveform. Acknowledgmentsareinorder.Formanyyearsthemathematicsdepartmentofthe UniversityofWashingtonhasprovedtobeanexcellentplaceformywork;toitIamtruly thankful. Mary Sheetz of that department has been unflaggingly good-humored as she helpedwiththemanuscriptofthisbook,ofteninthefaceofveryfrustratingdifficulties. TheworkonthisbookwassupportedinpartbytheRoyaltyResearchFundattheUniversity ofWashington.NormanLevenbergreadmuchofthetextinmanuscriptandmademany helpfulsuggestions,allofwhichIappreciatedbutnotallofwhichIfollowed.Iamindebted toV.M.Gichev,MarkLawrence,andJean-PierreRosayforpermissiontoincludeasyet unpublished results of theirs. Other friends and colleagues have made useful comments andsuggestions;toallIexpressmythanks. The reader will note the great influence of the work of HerbertAlexander on our subject.Overthecourseofhiscareer,Alexandermademanypenetratingcontributionsto the theory of polynomial convexity. His friends and colleagues, who looked forward to hisfurtherdevelopmentofthesubject,wereappalledtolearnofhisuntimelydeathatthe ageof58,tolearnthatadistinguishedcolleagueandgoodfriendhadbeensoprematurely takenaway.Themanisgonebutnotforgotten;hisworkwillendure. EdgarLeeStout Seattle MayDay,2006 Contents Preface v IndexofFrequentlyUsedNotation ix 1 INTRODUCTION 1 1.1 PolynomialConvexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 UniformAlgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 PlurisubharmonicFunctions . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4 TheCauchy–FantappièIntegral . . . . . . . . . . . . . . . . . . . . . . . 28 1.5 TheOka–WeilTheorem. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.6 SomeExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.7 HullswithNoAnalyticStructure . . . . . . . . . . . . . . . . . . . . . . 68 2 SOMEGENERALPROPERTIESOFPOLYNOMIALLYCONVEXSETS 71 2.1 ApplicationsoftheCousinProblems . . . . . . . . . . . . . . . . . . . . 71 2.2 TwoCharacterizationsofPolynomiallyConvexSets . . . . . . . . . . . 83 2.3 ApplicationsofMorseTheoryandAlgebraicTopology . . . . . . . . . . 93 2.4 ConvexityinSteinManifolds . . . . . . . . . . . . . . . . . . . . . . . . 106 3 SETSOFFINITELENGTH 121 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.2 One-DimensionalVarieties . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.3 GeometricPreliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.4 Function-TheoreticPreliminaries . . . . . . . . . . . . . . . . . . . . . . 132 3.5 SubharmonicityResults . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 3.6 AnalyticStructureinHulls . . . . . . . . . . . . . . . . . . . . . . . . . 148 3.7 FiniteArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 3.8 TheContinuationofVarieties . . . . . . . . . . . . . . . . . . . . . . . . 156 4 SETSOFCLASSA 169 1 4.1 IntroductoryRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 4.2 Measure-TheoreticPreliminaries . . . . . . . . . . . . . . . . . . . . . . 170 4.3 SetsofClassA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 1 viii Contents 4.4 FiniteArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 4.5 Stokes’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 4.6 TheMultiplicityFunction . . . . . . . . . . . . . . . . . . . . . . . . . . 203 4.7 CountingtheBranches . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 5 FURTHERRESULTS 217 5.1 Isoperimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 5.2 RemovableSingularities . . . . . . . . . . . . . . . . . . . . . . . . . . 231 5.3 SurfacesinStrictlyPseudoconvexBoundaries . . . . . . . . . . . . . . . 257 6 APPROXIMATION 277 6.1 TotallyRealManifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 6.2 HolomorphicallyConvexSets . . . . . . . . . . . . . . . . . . . . . . . 289 6.3 ApproximationonTotallyRealManifolds . . . . . . . . . . . . . . . . . 300 6.4 SomeToolsfromRationalApproximation . . . . . . . . . . . . . . . . . 310 6.5 AlgebrasonSurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 6.6 TangentialApproximation . . . . . . . . . . . . . . . . . . . . . . . . . 341 7 VARIETIESINSTRICTLYPSEUDOCONVEXDOMAINS 351 7.1 Interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 7.2 BoundaryRegularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 7.3 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 8 EXAMPLESANDCOUNTEREXAMPLES 377 8.1 UnionsofPlanesandBalls . . . . . . . . . . . . . . . . . . . . . . . . . 377 8.2 PluripolarGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 8.3 Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 8.4 SetswithSymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 References 415 Index 431 Index of Frequently Used Notation ⊥ A thespaceofmeasuresorthogonaltothealgebraA. bE theboundaryofthesetE. B theopenunitballinCN. N B (z,r) theopenballofradiusr centeredatthepointz∈CN. N B (r) theopenballofradiusr centeredattheorigininCN. N C(X) thespaceofcontinuousC-valuedfunctionsonthespaceX. D(M) the space of compactly supported functions of class C∞ onM. Dp(M) the space of compactly supported forms of degree p and classC∞onM. Dp,q(M) thespaceofcompactlysupportedformsofbidegree(p,q) andclassC∞onM. D (M)=Dp(cid:4)(M) thespaceofcontinuouslinearfunctionalsonDp(M). p D (M)=D(p,q)(cid:4)(M) thespaceofcontinuouslinearfunctionalsonD(p,q)(M). p,q G (C) theGrassmannianofallk-dimensionalcomplex-linearsub- N,k spacesofCN. G (R) theGrassmannianofallk-dimensionalreal-linearsubspaces N,k ofRN. Hˇ∗ Cˇechcohomology. Hp (M) thepthdeRhamcohomologygroupofthemanifoldM. deR (cid:6)z theimaginarypartofthecomplexnumberz. k (z,w) theBochner–Martinellikernel. BM L Lebesguemeasure. O(M) thealgebraoffunctionsholomorphiconthecomplexman- ifoldM. PN(C) N-dimensionalcomplexprojectivespace. x IndexofFrequentlyUsedNotation P(X) the algebra of functions on the set X uniformly approx- imablebypolynomials. Psh(M) the space of plurisubharmonic functions on the complex manifoldM. (cid:7)z therealpartofthecomplexnumberz. R-hullX therationallyconvexhullofX. R(X) the algebra of functions on X uniformly approximable by rationalfunctionswithoutpolesonX. Sn theunitsphereinRn+1. TN thetorus{(z ,...,z )∈CN :|z |=···=|z |=1}. 1 N 1 N UN theopenunitpolydiskinCN. U(N) theunitarygroup. (cid:1)p p-dimensionalHausdorffmeasure. ω(z) thedifferentialformdz ∧···∧dz . 1 N ω[k](z) thedifferentialformdz1∧···∧d(cid:2)zk ∧···∧dzN. (cid:9)f(cid:9) =sup{|f(x)|:x ∈X}. X (cid:1) E thepolynomiallyconvexhullofthecompactsetE. X (cid:1)Y XisarelativelycompactsubsetofY. ∅ theemptyset.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.